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Abstract This paper aims to solve an optimal tracking control (OTC) problem of large-scale systems with

multitime scales and coupled subsystems using singular perturbation (SP) theory and reinforcement learning

(RL) techniques. A considerable contribution of this paper is the development of a data-driven SP-based

RL method for the OTC of unknown large-scale systems with multitime scales. To achieve this, a multitime

scale tracking problem was decomposed into a linear quadratic tracker problem for slow subsystems and a

dynamical game problem for fast subsystems using the SP theory. Then, the distributed composite feedback

controllers were found using a distributed off-policy integral RL algorithm that uses only measured data

from the system in real time. Thus, the operational index can follow its prescribed target value via an

approximately optimal approach. Theoretical analysis and proof are presented to demonstrate that the sum

of the performances of reduced-order subsystems is approximately equal to the performance of the original

large-scale system. Finally, numerical and practical examples are provided to validate the effectiveness of the

proposed method.
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1 Introduction

With the development of society, increasing productivity, and continuous advancement of science and
technology, large-scale systems in the field of modern engineering, such as electric power systems, robotic
systems, communication networks, economic systems, traffic networks, and industrial process control
systems [1–3] are becoming increasingly common. Large-scale systems refer to systems that comprise
several interconnected local systems that may be coupled in some way to achieve a common performance
goal. Conventional centralized control schemes [2] are unsuitable for such large-scale systems because of
their high dimension of state variables, high computational complexity, and high search complexity of
action space.

Solving the optimal control problem of complex large-scale systems is challenging due to the different
time-scale characteristics exhibited by local subsystems, resulting in a multitime scale system [3–6]. In
the practical process operation of large-scale industrial systems, plant-wide performance indicators often
comprise a unit equipment layer with fast time scales and an operation indicator layer with slow time
scales to form a global system with two time scales or more. It is desirable to find optimal set-points
for the unit processes to ensure that the operational indices remain within their target ranges or at their
desired target values when all units in the equipment layer adhere to the set-points [3, 4, 7]. To meet
this requirement, the singular perturbation (SP) theory has been a prime candidate for analyzing and
modeling systems with two time scales or more, after which the composite controller comprising the
controllers of the subsystems can be designed using various control methods [8–14].
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It should be noted that existing SP-based control methods still have limitations, such as a lack of
consideration for performance optimization of systems with multitime scales and a heavy reliance on
accurate models of controlled systems. These constraints severely impede the performance enhancement
of large-scale systems, and the existing methods [8–14] even fail to work for unknown large-scale systems
with more than two time scales. In practical applications, the large scale, complex coupling relations,
and multitime scales between subsystems make it impossible to model accurate system dynamics. Thus,
developing data-driven SP-based optimal control methods to meet the desire for performance optimization
by overcoming these limitations is crucial and is the main motivation of this paper.

Recently, the integration of case-based-reasoning intelligent control and reinforcement learning (RL)
methods has demonstrated a promising prospect for studying data-driven optimal control for large-scale
complex systems with multitime scales [15]. It is well known that RL is proven to be a powerful tool for
determining optimal control for systems with unknown dynamics (see [16,17] and the references therein).
More RL methods have been utilized to achieve optimal control of large-scale systems with multitime
scales [18–22] without the need for system dynamics information. For optimal operational control (OOC)
of industrial processes with two time scales, the RL algorithms merged with the SP theory were developed
in [18,19] to identify the optimal control policies from the perspective of discrete-time and continuous-time
domains using only data. In [20], the off-policy RL was used to address the OOC problem for nonlinear
industrial operational processes. Refs. [21,22] considered a class of industrial systems comprising multiple
unit devices and an unknown operational process, and the noncascade decentralized composite control
methods were developed.

Notably, in the preceding RL-based research for control of multitime scale systems using data, some of
them can work only for systems with one fast process and one slow process [18–20], and the others simply
designed decentralized composite controllers without the concern of coupling among subsystems, although
they exist in practice [21, 22]. To the best of our knowledge, data-driven distributed RL algorithms
dedicated to achieving optimal tracking control (OTC) have received little attention. However, finding
an effective way to solve this problem from a practical application standpoint is a pressing matter, even
though it is considerably challenging due to the existence of mutual coupling among systems, multitime
scales, and unknown system dynamics in large-scale systems.

The purpose of this paper is to combine SP and RL techniques to solve the OTC problem of large-scale
systems with multitime scales, inner coupling relations, and unknown models. Motivated by the desire
to solve this problem in an efficient and completely data-driven manner, a novel distributed composite
controller design method is created using only measurable data.

The main contributions of this paper are summarized below.

(1) In contrast to [18–22], which only concern two time scales and decentralized control, this paper
develops a novel distributed SP-based RL method for solving OTC problems of multitime-scale large-scale
systems. The off-policy integral RL (IRL), the minmax strategy, and the actor-critic neural network (NN)
structure are integrated for the first time with some mathematical manipulation, allowing the composite
controller for performance optimization to be found without requiring the knowledge of systems dynamics.

(2) In fact, the longer the time scale, the more difficult it is to solve the OTC problem. Note that the
data-driven SP method for large-scale systems with more than two time scales is currently unavailable.
This paper introduces mathematical manipulations for successfully removing the obstacles caused by
multitime scales and coupling relations among systems when performing SP decomposition.

(3) Theoretical analysis and proof that the designed composite controllers are capable of achieving
OTC of multitime scale systems are presented.

The remainder of the paper is organized as follows. Section 2 defines the SP decomposition of large-
scale systems with multitime scales. Section 3 describes the optimal control problems for global multitime
scale systems as well as fast and slow separated subsystems. Based on Section 3, the RL technique is used
to solve optimal control problems. Section 4 develops a data-driven distributed RL algorithm using the
actor-critic NN architecture to find approximately optimal composite controllers capable of tracking the
operational index using only measured data. Section 5 shows the results of two illustrative simulations.
Finally, Section 6 concludes this article.

Notation. Π denotes a concatenated multiplicative relation. ⊗ represents the Kronecker product. ‖· ‖
represents Euclidean norms. Re(· ) denotes the real part of the number, and U denotes a compact set
{u1, . . . , uN}. Diag(· ) denotes a diagonal matrix.
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Figure 1 Structure diagram of a multitime-scale system.

2 Singular perturbation formulation for multitime scale systems

In this section, the multitime scale problem of large-scale systems is addressed. The SP theory is used
to divide the systems into two parts—fast and slow subsystems.

2.1 Model of large-scale systems with multitime scales

Multitime scales operation is a common feature of practical industrial processes. The industrial opera-
tional processes comprise multiple unit device processes that are linked together and operate on different
fast time scales of seconds. It is preferred that the operational indies adhere to desired target values for
hours or longer.

Because unit devices in practical operational processes typically operate at some steady states, their
nonlinear dynamics can be linearized near the steady operating points. Thus, the large-scale system with
coupled multiple unit devices is defined as follows:















ẋ1(t) = A11x1(t) +B11u1(t),

... i = 2, . . . , N,

ẋi(t) = Aiixi(t) +Ai,i−1xi−1(t) +Biiui(t),

(1)

where xi(t) ∈ R
nx and ui(t) ∈ R

nu are the state and input of the ith subsystem, respectively. The fast
state matrices Aii and Ai,i−1 and the input matrices Bii are assumed to be unknown with appropriate
dimensions. N denotes the number of subsystems.

The linear dynamics of the operational index is given as follows:















ẏ(t) = A0y(t) +

N
∑

i=1

A0ixi(t),

r(t) = C0y(t),

(2)

where y(t) ∈ R
ny is the state vector of the operational processes and r(t) ∈ R

nr represents the operational
index. The slow state matrix A0, input matrices A0i, and output matrix C0 are assumed to be unknown
with appropriate dimensions.

Remark 1. As illustrated in Figure 1, the large-scale system under consideration in this paper comprises
a main operating system and multiple unit device subsystems. Unit devices are generally cascaded and run
on different time scales in practical industrial processes, such as multiple reactors with cascade coupling
in nonferrous metallurgy processes and cascade coupling screening, grinding, and magnetic separation
units in mining processes. Furthermore, the operational index generally changes at a slower rate than
the states of unit device processes [23, 24].
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2.2 Singular perturbation for multitime scale separation

Since multitime scale characteristics of the global system (1) and (2) imply that the variables xi(t) change
faster than the variable y(t), there is a so-called gap in changing rate between the multiple unit devices and
the operational processes. Here, we introduce small time-scale parameters εi and define xi(t) = εizi(t).
These parameters εi could be small time constants, inertias, or masses in practice, and they explicitly
demonstrate the different changing rates of the slow process (2). Substituting these new variables into
the global system (1) and (2) yields a new singularly perturbed system as follows:















ε1ż1(t) = Â11z1(t) +B11u1(t),

... i = 2, . . . , N,

εiżi(t) = Âiizi(t) + Âi,i−1zi−1(t) +Biiui(t),

(3)















ẏ(t) = A0y(t) +

N
∑

i=1

Â0izi(t),

r(t) = C0y(t),

(4)

where Âii = εiAii, Âi,i−1 = εi−1Ai,i−1, and Â0i = εiA0i.
Using classical SP theory, we will decompose the singularly perturbed systems (3) and (4) as the

approximate fast and slow subsystems, respectively. Therefore, ui(t) and zi(t) can be defined as ui(t) =
uis(t) + uif (t) and zi(t) = zis(t) + zif (t), where uis(t) and zis(t) are the slow components of the system
variables, while uif (t) and zif (t) denote the fast components of the system variables. To separate the
kth (k 6= i and k 6= 1) subsystem from system (3), setting εi = 0 (i = 1, 2, . . . , k − 1, k + 1, . . . , N) yields

εkżk(t) = Âkkzk(t) + Âk,k−1zk−1(t) +Bkkuk(t), (5a)

0 = Âiizi(t) + Âi,i−1zi−1(t) +Biiui(t), (5b)

where z0(t) = 0 and Â10 = I (I is the identity matrix). Eq. (5b) can be specifically represented as follows:


































































































0 = Â11z1(t) +B11u1(t),

0 = Â22z2(t) + Â21z1(t) +B22u2(t),

0 = Â33z3(t) + Â32z2(t) +B33u3(t),

...

0 = Âk−1,k−1zk−1(t) + Âk−1,k−2zk−2(t)

+Bk−1,k−1uk−1(t),

0 = Âk+1,k+1zk+1(t) + Âk+1,kzk(t)

+Bk+1,k+1uk+1(t),

...

0 = ÂNNzN(t) + ÂN,N−1zN−1(t) +BNNuN(t).

(6)

The following general assumption is expressed like [25].

Assumption 1. Matrices Aii, i = 1, . . . , N are nonsingular.
Now, the quasi-steady-state values of the various unit devices can be calculated using (6) as follows:

z1(t) =− Â−1
11 B11u1(t), (7)

z2(t) =− Â−1
22 [Â21(−Â−1

11 B11u1(t)) +B22u2(t)]

=Â−1
22 Â21Â

−1
11 B11u1(t)− Â−1

22 B22u2(t), (8)

z3(t) =− Â−1
33 (Â32z2(t) +B33u3(t))

=− Â−1
33 Â32Â

−1
22 Â21Â

−1
11 B11u1(t)
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+ Â−1
33 Â32Â

−1
22 B22u2(t)− Â−1

33 B33u3(t), (9)

...

zk−1(t) =(−1)k−1
1
∏

i=k−1

(Â−1
ii Âi,i−1)B11u1(t)

+ (−1)k−2
2
∏

i=k−1

(Â−1
ii Âi,i−1)B22u2(t)

+ · · ·+ (−1)1Â−1
k−1,k−1Bk−1,k−1uk−1(t). (10)

Then, Eq. (10) can be rewritten as follows:

zk−1(t) =

k−1
∑

j=1

B̄k−1,juj(t), (11)

where B̄k−1,j = (−1)k−j
∏j

i=k−1(Â
−1
ii Âi,i−1)Â

−1
j,j−1Bjj , j 6 k − 1.

Similarly, it follows

zk+1(t) =− Â−1
k+1,k+1Âk+1,kzk(t)− Â−1

k+1,k+1Bk+1,k+1uk+1(t), (12)

zk+2(t) =Â−1
k+2,k+2Âk+2,k+1Â

−1
k+1,k+1Âk+1,kzk(t)

+ Â−1
k+2,k+2Âk+2,k+1Â

−1
k+1,k+1Bk+1,k+1uk+1(t)

− Â−1
k+2,k+2Bk+2,k+2uk+2(t), (13)

...

zN (t) = (−1)N−k

k+1
∏

i=N

(Â−1
ii Âi,i−1)zk(t)

+ (−1)N−k

k+1
∏

i=N

(Â−1
ii Âi,i−1)Â

−1
k+1,kBk+1,k+1uk+1(t)

+ · · · − Â−1
NNBNNuN (t). (14)

Then, there are the following general forms:

zp(t) = (−1)p−k

k+1
∏

i=p

(Â−1
ii Âi,i−1)zk(t) +

p
∑

j=k+1

N̄p,juj(t), (15)

where N̄p,j = (−1)p−j+1
∏j

i=p(Â
−1
ii Âi,i−1)Â

−1
j,j−1Bjj(j 6 p), p = k + 1, k + 2, . . . , N .

Substituting (11) into (5a) yields

εkżk(t) = Âkkzk(t) + Âk,k−1

k−1
∑

i=1

B̄k−1,iui(t) +Bkkuk(t). (16)

Like [8, 10, 21], letting εk = 0 in (16) yields

zks(t) = −Â−1
kk

(

Âk,k−1

k−1
∑

i=1

B̄k−1,iuis(t) +Bkkuks(t)

)

, (17)

where matrix Akk is invertible as assumed in Assumption 1. Substituting (11), (15), and (17) into (4)
produces the kth reduced-order slow subsystem dynamics as follows:

ẏks(t) =A0yks(t)− Ã0kÂ
−1
kk Bkkuks(t) +

k−1
∑

j=1

(B̃0j − Ã0kÂ
−1
kk Âk,k−1B̄k−1,j)ujs(t)
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+

N
∑

j=k+1

C̃0jujs(t), k 6= 1, (18)

where B̃0j = (
∑1

i=k−1 Â0iB̄i,j), C̃0j = (
∑k+1

i=N Â0iN̄ij), and Ã0k = (Â0k+
∑N

i=k+1 Â0i((−1)i−k
∏k+1

w=i(Â
−1
ww

· Âw,w−1))).
Similarly, the derivation of the kth (k = 1) slow subsystem can be derived as follows:

ẏks(t) = A0yks(t)− Ã01Â
−1
11 B11u1s(t) +

N
∑

i=2

C̃0iuis(t), k = 1. (19)

Based on the donations of parameters Ã0k, Â
−1
kk , Âk,k−1, Bkk, B̃0i, B̄k−1,i, and C̃0i in (18) and (19),

one can observe that the dynamics is the same dynamics regardless of the taken value of k. Thus, the
dynamics of the slow subsystem is as follows:















ẏs(t) = A0ys(t)− Ã01Â
−1
11 B11u1s(t) +

N
∑

i=2

C̃0iuis(t),

rs(t) = C0ys(t).

(20)

For the kth fast subsystem, the slow variable zks in the fast time scale sk is actually a constant, where
sk = t

εk
. As a result, it follows żks(t) = 0. By (16), the dynamics of the kth fast subsystem is given as

follows:

εkżk =
dzk(t)

dsk
=

d(zkf (t) + zks(t))

dsk
=

dzkf (t)

dsk

= Âkkzkf + Âk,k−1

k−1
∑

i=1

B̄k−1,iuif +Bkkukf , (21)

which is equivalent to the following form:

żkf (sk) = Âkkzkf (sk) + Âk,k−1

k−1
∑

i=1

B̄k−1,iuif (sk) +Bkkukf (sk). (22)

Remark 2. When compared to two-time scale systems [18–22], the complexity of (1) and (2) lies in
the inner coupling among subsystems except for more than two time scales. The above decomposition
method, combined with mathematical manipulations, results in the separation of fast and slow variables,
resulting in reduced-order subsystems.

3 Reinforcement learning for optimal tracking control

In this section, a linear command generator system is presented for generating a reference trajectory.
Then, we convert the OTC problem of multitime-scale large-scale systems to a dynamical game and the
linear quadratic tracker (LQT) problems of reduced-order subsystems. Furthermore, the performance of
the global system is explicitly analyzed by the composite controllers. Finally, an off-policy IRL algorithm
is developed to find the best composite controllers.

3.1 Formulation of the optimal tracking control problem

The reference trajectory is assumed to be described by a linear command generator as follows:

ṙ∗(t) = Fr∗(t), (23)

where r∗(t) ∈ R
nr is the dynamical trajectory vector and F is a constant square matrix of appropriate

dimension. We generally assume that Eq. (23) is unstable [26].
The goal of this paper is to design the optimal policies {u1, u2, . . . , uN} for the original system (1) and

(2) under which the operational index r can follow the prescribed value r∗ via an approximately optimal
approach. To this end, Problem 1 is formulated below.
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Problem 1. OTC problem: For the global system comprising (1) and (2), it is desirable to determine the
tuple of control policies u∗

k (k = 1, . . . , N) such that the following performance indices can be minimized
in a finite horizon, that is

Jk(y, r
∗, xk) = min

uk

∫ tf

t

[

(xk − xks)
TQkf (xk − xks) + (r − r∗)TQ0(r − r∗)

+

k−1
∑

i=1

uT
i Riui + uT

kRkuk +

N
∑

i=k+1

uT
isRisuis

]

dτ + Ψ(y(tf), r∗(tf), xk(tf)),

s.t. (1) and (2), (24)

where uk = [uT
kf uT

ks]
T, Rk = diag {Rkf , Rks}, Q0 > 0, and Qkf > 0 are all symmetric matrices,

Jk(y(tf), r
∗(tf), xk(tf)) = Ψ(y(tf), r∗(tf), xk(tf)) > 0 represents the terminal constraint, and tf repre-

sents the terminal time instant.
It is worth noting that Problem 1 is written using the global systems (1) and (2). Since the SP theory

is used and the fast and slow subsystems are derived (see (20) and (22)), Problems 2 and 3 are presented
such that solving Problem 1 can be replaced by solving Problems 2 and 3.

Problem 2. Game problem: For the kth (k = 1, 2, . . . , N) fast subsystem, it is desirable to identify the
control policy u∗

kf such that the following performance index can be minimized in a finite horizon; that
is

Jkf (zkf ) = min
ukf

∫ sktf

sk

(

zTkf Q̂kfzkf +

k−1
∑

i=1

uT
if R̂ifuif + uT

kf R̂kfukf

)

dτ ′kf

+ Ψkf (zkf (sktf )),

s.t. (22), (25)

where Q̂kf = ε3kQkf , R̂kf = εkRkf , R̂if = εiRif , τ
′
kf εk = τ , sktf = tf

εk
, and the terminal performance

Jkf (zkf (sktf )) = Ψkf (zkf (sktf )).

Problem 3. LQT problem: For the slow subsystem, it is desirable to find the control policies {u∗
1s, . . . ,

u∗
Ns}, such that the following performance index can be minimized in a finite horizon; that is

Js(ys, r
∗) = min

{u1s,u2s,...,uNs}

∫ tf

t

[

(C0ys − r∗)TQ0(C0ys − r∗) +

N
∑

i=1

uT
isRisuis

]

dτ

+ Ψs(ys(tf), r
∗(tf)),

s.t. (20), (26)

with the terminal performance constraint Js(ys(tf), r
∗(tf)) = Ψs(ys(tf), r

∗(tf)).
When Eqs. (20) and (23) are combined, one obtains the augmented dynamics of the reduced-order

slow subsystem given as follows:














˙̄Y (t) = AȲ (t) +

N
∑

i=1

Bisuis(t) = AȲ (t) +Bsus(t),

rs(t) = CsȲ (t),

(27)

where Ȳ = [yTs , r
∗T]T, Ȳ ∈ R

nȲ with nȲ = ny+nr, Cs = [C0 0], Bs = [B1s · · · BNs], us = [uT
1s · · · uT

Ns]
T,

A =

[

A0 0

0 F

]

, Bis =

[

∧is

0

]

, ∧is =

{

B̃0i − Ã01Â
−1
11 B̄0i, i = 1,

C̃0i, 2 6 i 6 N.

Thus, Eq. (26) can be rewritten as follows:

Js(Ȳ ) = min
{u1s,u2s,...,uNs}

∫ tf

t

[

Ȳ TQsȲ +

N
∑

i=1

uT
isRisuis

]

dτ + Ψ̄s(Ȳ (tf)),

s.t. (27),

(28)
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where the terminal performance Js(Ȳ (tf)) = Ψ̄s(Ȳ (tf)) and Qs = [C0 − I]TQ0[C0 − I] is a positive
semidefinite matrix.

Remark 3. Notice that Problem 2 is particularly a multiagent dynamical game problem with each fast
subsystem acting as an agent attempting to minimize its own performance. However, the performance of
each agent is affected by other agents due to their intercoupling relation. The optimization problem (28) is
specifically an LQT problem with multiple inputs, which means that all control policies {u1s, u2s, . . . , uNs}
aim to drive the operational index r to the desired value r∗. This is an extension of the LQT problem [27,
28] in which a single control policy works for tracking the desired trajectory.

The following result demonstrates that the solutions to Problems 2 and 3 provide the solution to
Problem 1 for the global system depicted in (1) and (2). Tikhonov’s theorem in [8] yields











zk(t) = zkf (sk) + zks(t) + o(εk),

uk(t) = uks(t) + ukf (sk) + o(εk),

y(t) = ys(t) + o(ε),

(29)

where zks(t) is defined in (17) and o(ε) is an infinitesimal of ε (ε = maxεk{ε1, ε2, . . . , εN}); then Eqs. (20),
(22), and (29) give

xk(t) =εkzkf (sk) + εkzks(t) + o(εk)

=xkf (sk) + xks(t) + o(εk), (30)

r(t) =C0ys(t) + o(ε)

=rs(t) + o(ε). (31)

Thus, when the slow (20) and fast subsystems (22) are stable, the global systems (1) and (2) are stable.
This indicates that the composite controllers ukc = uks+ukf can make the operational index r follow the
reference trajectory r∗, if uks and ukf can track the target and stabilize the reduced-order subsystems,
respectively.

Theorem 1. For the cost function (24) of the global system, the cost function (25) of the fast boundary
layer subsystem, and the cost function (28) of the reduced-order slow subsystem, the relation Jk =
Jkf + Js + o(ε) holds.
Proof. Considering skεk = t, τ ′kf εk = τ , and (29)–(31),

Jkf =

∫ tf

t

[

zkf (τ)
T Q̂kf

εk
zkf (τ) +

k−1
∑

i=1

uT
if (τ)Rifuif (τ)

+ uT
kf (τ)Rkfukf (τ)

]

dτ + Ψkf (zkf (τ))

=

∫ tf

t

[

(xk − xks)
TQkf (xk − xks) +

k−1
∑

i=1

uT
ifRifuif

+ uT
kfRkfukf

]

dτ + Ψkf (xkf (tf))− o(ε). (32)

Then, one has

Js =

∫ tf

t

[

Ȳ (τ)TQsȲ (τ) +

N
∑

i=1

uT
is(τ)Risuis(τ)

]

dτ + Ψ̄s(Ȳ (tf))

=

∫ tf

t

[

(C0y(τ)− r∗)TQ0(C0y(τ) − r∗) +

N
∑

i=1

uT
isRisuis

]

dτ

+ Ψs(y(tf), r
∗(tf))− o(ε), (33)

where Ψkf (xkf (tf)) + Ψs(y(tf), r
∗(tf)) = Ψ(y(tf), r∗(tf), xi(tf)). Thus, it follows

Jkf + Js = Jk − o(ε), (34)

which gives Jk = Jkf + Js + o(ε). This completes the proof.
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3.2 Algorithm design of off-policy minmax reinforcement learning

Now, we are going to solve Problems 2 and 3. To solve Problem 2, the value functions are defined in
terms of (25) as follows:

Vkf (zkf , sk) =

∫ sktf

sk

[

zTkf Q̂kfzkf + uT
kf R̂kfukf

+

k−1
∑

i=1

uT
if R̂ifuif

]

dτ ′kf + Ψkf (zkf (sktf )). (35)

An infinitesimal comparable to (35) is given by depicting [29] as follows:

∂Vkf

∂sk
+

∂V T
kf

∂zkf

(

Âkkzkf + Âk,k−1

k−1
∑

i=1

B̄k−1,iuif +Bkkukf

)

+ rkf = 0, (36)

where rkf = zTkf Q̂kf zkf + uT
kf R̂kfukf +

∑k−1
i=1 uT

if R̂ifuif .
Subsequently, the following Hamiltonian functions are given:

Hkf =rkf +
∂V T

kf

∂zkf

dzkf
dsk

+
∂Vkf

∂sk

=rkf +
∂V T

kf

∂zkf

(

Âkkzkf + Âk,k−1

k−1
∑

i=1

B̄k−1,iuif +Bkkukf

)

+
∂Vkf

∂sk
. (37)

Implementing
∂Hkf

∂ukf
= 0 yields

u∗
kf = −

1

2
R̂−1

kf B
T
kk

∂V ∗
kf

∂zkf
. (38)

Substituting (38) into (36) yields the coupled Hamilton-Jacobi-Bellman (HJB) equations as follows:

(

∂V ∗
kf

∂zkf

)T

Âkkzkf −
1

2

(

∂V ∗
kf

∂zkf

)T

Âk,k−1

k−1
∑

i=1

B̄k−1,iR̂
−1
if BT

ii

∂V ∗
if

∂zif
+ zTkf Q̂kfzkf

+
1

4

k−1
∑

i=1

(

∂V ∗
if

∂zif

)T

BiiR̂
−1
if BT

ii

∂V ∗
if

∂zif
−

1

4

(

∂V ∗
kf

∂zkf

)T

BkkR̂
−1
kf B

T
kk

∂V ∗
kf

∂zkf
+

∂V ∗
kf

∂sk
= 0,

V ∗
kf (zkf , sktf ) = Ψkf (zkf (sktf )). (39)

Note that the coupled HJB equations are partial differential equations (PDE), and there exists a mutual
coupling between V ∗

kf and V ∗
if . Notably, there may not exist solutions V ∗

kf to the coupled HJB equations
(39), because agent k cannot make its best response without the information zif (i = 1, 2, . . . , k − 1) of
its neighbors [30].

To solve Problem 2 using a model-free approach, a novel off-policy minmax-based RL algorithm is
developed. To achieve this, the performance index (25) is modified for formulating a zero-sum game in
which agent k pretends its neighbors to be adverse.

Jkf (zkf ) =min
ukf

max
{u1f ,...,uk−1f}

∫ sktf

sk

[

zTkf Q̂kf zkf + uT
kf R̂kfukf

− γ2
k

k−1
∑

i=1

uT
if R̂ifuif

]

dτ ′kf + Ψkf (zkf (sktf )), (40)

where γk is a positive scalar.
Based on (40), consider the value function of a fast subsystem as follows:

Vkf (zkf , sk) =min
ukf

max
{u1f ,...,uk−1f}

∫ sktf

sk

[

zTkf Q̂kfzkf + uT
kf R̂kfukf
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− γ2
k

k−1
∑

i=1

uT
if R̂ifuif

]

dτ ′kf + Ψkf (zkf (sktf )). (41)

The Hamiltonian function related to the cost index (41) is defined as follows:

Ĥkf =r̂kf +
∂V T

kf

∂zkf

dzkf
dsk

+
∂Vkf

∂sk

=r̂kf +
∂V T

kf

∂zkf

(

Âkkzkf + Âk,k−1

k−1
∑

i=1

B̄k−1,iuif +Bkkukf

)

+
∂Vkf

∂sk
, (42)

where r̂kf = zTkf Q̂kf zkf + uT
kf R̂kfukf − γ2

k

∑k−1
i=1 uT

if R̂ifuif .
The worst-case policy of the neighbors of agent k can be calculated using the stationary condition

∂Ĥkf

∂uif
= 0 as follows:

v∗if =
1

2γ2
k

R̂−1
if B̄T

k−1,iÂ
T
k,k−1

∂V ∗
kf

∂zkf
. (43)

Note that v∗if is not always the actual control policy uif used by agent i.
Substituting policies (38) and (43) into (42) yields the new HJB equations as follows:

(

∂V ∗
kf

∂zkf

)T

Âkkzkf +
1

4γ2
k

(

∂V ∗
kf

∂zkf

)T

Âk,k−1

k−1
∑

i=1

B̄k−1,iR̂
−1
if BT

k−1,iÂ
T
k,k−1

∂V ∗
kf

∂zkf

+ zTkf Q̂kf zkf −
1

4

(

∂V ∗
kf

∂zkf

)T

BkkR̂
−1
kf B

T
kk

∂V ∗
kf

∂zkf
+

∂V ∗
kf

∂sk
= 0,

Vkf (zkf , sktf ) = Ψkf (zkf (sktf )). (44)

Remark 4. Equations in the form of (44) are known to have positive definite solutions V ∗
kf , where

(Akk, Bkk) are assumed to be stabilizable, (Akk,

√

Q̂kk) are observable, and γk are large enough. Notably,

the subsystems (22) are L2 stable under minmax policies (38) if V ∗
kf satisfy the HJB equations (44), as

demonstrated in [30].

Then, we present the auxiliary variables v
(jf )
if (i = 1, 2, . . . , k−1) and u

(jf )
kf into the kth fast subsystem

(22) and the following is obtained:

żkf =Âkkzkf +
k−1
∑

i=1

Âk,k−1B̄k−1,iv
(jf )
if +Bkku

(jf )
kf

+

k−1
∑

i=1

Âk,k−1B̄k−1,i(uif − v
(jf )
if ) +Bkk(ukf − u

(jf )
kf ), (45)

where uif and ukf are the behavior policies used to generate data and v
(jf )
if and u

(jf )
kf are viewed as

the target policies that need to be updated. By separating V
(jf+1)
kf from the dynamics of the kth fast

subsystem (22) and considering (36), one obtains

V̇
(jf+1)
kf =

(

∂V
(jf+1)
kf

∂zkf

)T

dzkf
dsk

+
∂V

(jf+1)
kf

∂sk

=

(

∂V
(jf+1)
kf

∂zkf

)T(

Âkkzkf + Âk,k−1

k−1
∑

i=1

B̄k−1,iv
(jf )
if +Bkku

(jf )
kf

)

+
∂V

(jf+1)
kf

∂sk

=− r
(jf )
kf . (46)

Furthermore, integrating both sides of (46) from t
εk

to t+T
εk

yields the following equality based on (45):

∫
t+T
εk

t
εk

V̇
(jf+1)
kf dτ ′kf =

∫
t+T
εk

t
εk

[(

∂V
(jf+1)
kf

∂zkf

)T(

dzkf
dsk

−
k−1
∑

i=1

Âk,k−1B̄k−1,i(uif − v
(jf )
if )
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−Bkk(ukf − u
(jf )
kf )

)

+
∂V

(jf+1)
kf

∂sk

]

dτ ′kf . (47)

Then, one obtains

V
(jf+1)
kf

(

zkf ,
t+ T

εk

)

− V
(jf+1)
kf

(

zkf ,
t

εk

)

= −

∫
t+T
εk

t
εk

r
(jf )
kf dτ ′kf −

∫
t+T
εk

t
εk

(

∂V
(jf+1)
kf

∂zkf

)T

Bkk(ukf − u
(jf )
kf )dτ ′kf

−

∫
t+T
εk

t
εk

(

∂V
(jf+1)
kf

∂zkf

)T
k−1
∑

i=1

Âk,k−1B̄k−1,i(uif − v
(jf )
if )dτ ′kf ,

V
(jf+1)
kf (zkf , sktf ) = Ψkf (zkf (sktf )). (48)

Here, solving the Bellman equations (48) requires knowledge of system matrices. We will use the
minmax strategy of multiplayer games [30, 31] to eliminate this requirement. The virtual control inputs
v∗if satisfy the below equation:

∂V ∗
kf

T

∂zkf
Âk,k−1B̄k−1,i = 2γ2

kv
∗
if

TR̂if . (49)

Thus, a model-free off-policy IRL Algorithm 1 is created by substituting (49) into the Bellman equations
(48).

Algorithm 1 Model-free off-policy IRL algorithm for Problem 2

1: Start with arbitrary stabilizing behavior control policies ukf and uif which are used to collect data, and select initial admissible

control policies u
(0)
kf

and v
(0)
if

(i = 1, 2, . . . , k − 1), where the iteration index jf = 0;

2: Solve the Bellman equations for (V
(jf+1)

kf
, u

(jf +1)

kf
, v

(jf+1)

if
):

V
(jf +1)

kf

(

zkf ,
t + T

εk

)

− V
(jf +1)

kf

(

zkf ,
t

εk

)

= −

∫ t+T
εk

t
εk

r̄
(jf )

kf
dτ

′

kf + 2

∫ t+T
εk

t
εk

(

u
(jf +1)

kf

)T

R̂kf

(

ukf − u
(jf )

kf

)

dτ
′

kf

− 2γ2
k

k−1
∑

i=1

∫ t+T
εk

t
εk

(

v
(jf +1)

if

)T

R̂if

(

uif − v
(jf )

if

)

dτ ′

kf ,

V
(jf +1)

kf
(zkf , sktf ) = Ψkf (zkf (sktf )), (50)

where r̄
(jf )

kf
= zT

kf Q̂kfzkf + (u
(jf )

kf
)TR̂kfu

(jf )

kf
− γ2

k

∑k−1
i=1 (v

(jf )

if
)TR̂ifv

(jf )

if
;

3: Stop when ‖ V
(jf +1)

kf
− V

(jf )

kf
‖6 εf for all k with a small constant εf (εf > 0); otherwise set jf = jf + 1 and go back to

step 2.

The convergence of Algorithm 1 can be demonstrated in similar ways to [29, 31]. In Algorithm 1, the
virtual control policies vif (i = 1, 2, . . . , k − 1) are not the actual policies used by agent i. They only
serve to assist agent k in learning its control policy. Furthermore, the truth is that while learned control
policies {u1f , u2f , . . . , uNf} cannot force agents to reach the Nash equilibrium, all agents can prepare
themselves for the worst-case behavior of their individual neighbors when each agent strives to minimize
its cost [30, 31]. The highlight of Algorithm 1 is that no model parameters of systems (1) and (2) are
required, resulting in a completely data-driven off-policy RL approach. However, the data of zkf is not
available, which makes it difficult to implement Algorithm 1. Section 4 will present a solution to this
problem.

For Problem 3, we will find {u1s, u2s, . . . , uNs} for minimizing (28) subject to (27) using the off-policy
IRL method. The value function of the slow subsystem is defined as follows:

Vs(Ȳ , t) =

∫ tf

t

[

Ȳ TQsȲ +
N
∑

i=1

uT
isRisuis

]

dτ + Ψ̄s(Ȳ (tf)). (51)
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Comparably, an infinitesimal that corresponds to (51) is presented as follows:

∂Vs

∂t
+

∂V T
s

∂Ȳ

(

AȲ +

N
∑

i=1

Bisuis

)

+ rs = 0, (52)

where rs = Ȳ TQsȲ +
∑N

i=1 u
T
isRisuis. Then the Hamiltonian is

Hs =rs +
∂V T

s

∂Ȳ

dȲ

dt
+

∂Vs

∂t

=rs +
∂V T

s

∂Ȳ

(

AȲ +

N
∑

i=1

Bisuis

)

+
∂Vs

∂t
. (53)

Implementing ∂Hs

∂uis
= 0 yields

u∗
is = −

1

2
R−1

is BT
is

∂V ∗
s

∂Ȳ
. (54)

Substituting (54) into (52) yields the HJB equation as follows:

(

∂V ∗
s

∂Ȳ

)T

AȲ + Ȳ TQsȲ −
1

4

(

∂V ∗
s

∂Ȳ

)T

BisR
−1
is BT

is

∂V ∗
s

∂Ȳ
+

∂V ∗
s

∂t
= 0,

Vs(Ȳ , tf) = Ψ̄s(Ȳ (tf)). (55)

Similarly, the HJB equation (55) is a PDE. To address (55), the classical Algorithm 2 can be developed
by (52) and (54). However, it requires slow subsystem (27) information, which is currently unknown.

Algorithm 2 Model-based PI RL algorithm for Problem 3

1: Choose initial admissible control policies u
(0)
is

(i = 1, . . . , k, . . . , N), js = 0;

2: Solve the following Bellman equation for V (js+1)
s :

∂V (js+1)
s

∂t
+

(

∂V (js+1)
s

∂Ȳ

)T(

AȲ +

N
∑

i=1

Bisu
(js)
is

)

+ r
(js)
s = 0,

V
(js+1)
s (Ȳ , tf) = Ψ̄s(Ȳ (tf)), (56)

where r(js)
s = Ȳ TQsȲ +

∑N
i=1(u

(js)
is

)TRisu
(js)
is

;

3: Update the control policies as

u
(js+1)
is

= −
1

2
R

−1
is B

T
is

∂V (js+1)
s

∂Ȳ
; (57)

4: Stop when ‖ V (js+1)
s −V (js)

s ‖6 εf for all k with a small constant εs (εs > 0); otherwise set js = js +1 and go back to step 2.

To derive a model-free RL algorithm, we present the auxiliary variables u
(js)
is into the reduced-order

slow subsystem (27). Thus, one has

˙̄Y = AȲ +

N
∑

i=1

Bisu
(js)
is +

N
∑

i=1

Bis

(

uis − u
(js)
is

)

. (58)

Differentiating V
(js+1)
s in combination with the augmented dynamics of the reduced-order slow sub-

system (27) and considering (52), one obtains

V̇ (js+1)
s =

(

∂V
(js+1)
s

∂Ȳ

)T
dȲ

dt
+

∂V
(js+1)
s

∂t

=

(

∂V
(js+1)
s

∂Ȳ

)T(

AȲ +

N
∑

i=1

Bisu
(js)
is

)

+
∂V

(js+1)
s

∂t

= −r(js)s . (59)
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Furthermore, integrating both sides of (59) from t to t+ T yields the following equality based on (58):

∫ t+T

t

V̇ (js+1)
s dτ =

∫ t+T

t





(

∂V
(js+1)
s

∂Ȳ

)T(

AȲ +
N
∑

i=1

Bisu
(js)
is

)

+
∂V

(js+1)
s

∂t



dτ

=

∫ t+T

t





(

∂V
(js+1)
s

∂Ȳ

)T(

dȲ

dt
−

N
∑

i=1

Bis(uis − u
(js)
is )

)

+
∂V

(js+1)
s

∂t



 dτ. (60)

Therefore, one has



































V (js+1)
s (Ȳ (t+ T ), t+ T )− V (js+1)

s (Ȳ (t), t) =−

∫ t+T

t

r(js)s dτ

−

∫ t+T

t





(

∂V
(js+1)
s

∂Ȳ

)T N
∑

i=1

Bis(uis − u
(js)
is )



 dτ,

V (js+1)
s (Ȳ , tf) = Ψ̄s(Ȳ (tf)).

(61)
Substituting (57) into the second term of the right-hand sides of the Bellman equation (61) yields

−

∫ t+T

t





(

∂V
(js+1)
s

∂Ȳ

)T N
∑

i=1

Bis(uis − u
(js)
is )



dτ = 2

∫ t+T

t

N
∑

i=1

(u
(js+1)
is )TRis(uis − u

(js)
is )dτ. (62)

Algorithm 3 is designed to solve Problem 3 by solving the Bellman equation (63).

Algorithm 3 Model-free off-policy IRL algorithm for Problem 3

1: Start with arbitrary stabilizing behavior control policies uis to collect data, and select initial control policies u
(0)
is

, where the

iteration index js = 0;

2: Solve the Bellman equation for (V (js+1)
s , u

(js+1)
is

):

V
(js+1)
s (Ȳ (t + T ), t + T ) − V

(js+1)
s (Ȳ (t), t) = −

∫

t+T

t

r
(js)
s dτ

+ 2

∫

t+T

t

N
∑

i=1

(u
(js+1)
is

)
T
Ris(uis − u

(js)
is

)dτ (63)

with V (js+1)
s (Ȳ , tf) = Ψ̄s(Ȳ (tf));

3: Stop when ‖ V (js+1)
s − V (js)

s ‖6 εs with a small constant εs (εs > 0); otherwise set js = js + 1 and go back to step 2.

Remark 5. u
(js)
is in Algorithm 3 can converge to u∗

is that drives the output of the slow subsystem
to the reference trajectory r∗, and it can be easily proven like [26]. Thus, the composite controllers

uk = u
(jf )
kf + u

(js)
ks converge to u∗

kc = u∗
kf + u∗

ks when jf → ∞ and js → ∞. Additionally, one can find

that the control policies u
(jf )
if and u

(js)
is are distributed in the sense that they rely upon their individual

value functions during the learning.

4 Data-driven RL for multitime scales

In this section, we focus on developing data-driven algorithms to learn the optimal control policies by
combining Algorithms 1 and 3.

4.1 Data-driven IRL algorithm design

It should be noted that zkf in (22) should be replaced by other variables because they cannot be directly
measured from the global system (1).

Given (17), (29), and xk = εkzk, the unmeasurable zkf can be approximated by ẑkf as follows:

ẑkf = zk − zks = Mkfηkf , (64)
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whereMkf = [ 1
εk
I B̃k−1 Â

−1
kk Bkk], B̃k−1 = [Â−1

kk Âk,k−1B̄k−1,1 Â
−1
kk Âk,k−1B̄k−1,2 · · · Â−1

kk Âk,k−1B̄k−1,k−1],

ηkf = [xT
k ũT

k−1,s uT
ks]

T, and ũk−1,s = [uT
1s uT

2s · · · uT
k−1,s]

T.
For the kth fast subsystem, the off-policy Bellman equations (50) in Algorithm 1 can be rewritten as

follows:

V
(jf+1)
kf (zkf , t+ T )− V

(jf+1)
kf (zkf , t)

= 2

∫ t+T

t

(u
(jf+1)
kf )TRkf (ukf − u

(jf )
kf )dτ−

∫ t+T

t

r̄
′(jf )
kf dτ

− 2γ2
k

k−1
∑

i=1

∫ t+T

t

(v
(jf+1)
if )TRif (uif − v

(jf )
if )dτ,

V
(jf+1)
kf (zkf , . . . , z1f , tf) = Ψkf (ηkf (tf)), (65)

where r̄
′(jf )
kf =

1

εk
ηTkfM

T
kf Q̂kfMkfηkf + (u

(jf )
kf )TRkfu

(jf )
kf − γ2

k

∑k−1
i=1 (v

(jf )
if )TRifv

(jf )
if .

Remark 6. Following variable substitution, one discovers that r̄
′(jf )
kf in (65) requires prior knowledge

of the system model of (1). Taking (17) and (29) into consideration, the term [B̃k−1 Â−1
kk Bkk] can be

approximated using
1

εk
xk = −Â−1

kk (Âk,k−1

∑k−1
i=1 B̄k−1,iuis + Bkkuks). Thus, Mkf can be estimated as

follows:

Mkf :=
1

εk
[I − xk[ũ

T
k−1,s uT

ks]([ũ
T
k−1,s uT

ks]
T[ũT

k−1,s uT
ks])

−1]. (66)

This estimation method appears to be feasible if and only if the fast behavior strategies ukf are sufficiently
small, and ωk = ([ũT

k−1,s u
T
ks]

T[ũT
k−1,s u

T
ks]) are invertible while the global system reaches steady state [19].

As such, r̄
′(jf )
kf are estimated as follows:

r̄
′(jf )
kf := ηTkf ξ

TQkfξηkf + (u
(jf )
kf )TRkfu

(jf )
kf − γ2

k

k−1
∑

i=1

(v
(jf )
if )TRifv

(jf )
if , (67)

where ξ = [I − xk[ũ
T
k−1,s uT

ks]ω
−1
k ]. As shown in (65) and (67), it is not necessary to know the system

model (1) or the time-scale parameters εk (k = 1, 2, . . . , N) when calculating V
(jf+1)
kf . Furthermore, y is

actually ys in the slow subsystem. Thus, Ŷ = [yT r∗T]T is obtained. As a result, the off-policy Bellman
equation (63) of Algorithm 3 can be rewritten as follows:



































V (js+1)
s (Ŷ , t+ T )− V (js+1)

s (Ŷ , t) = −

∫ t+T

t

r
′(js)
s dτ

+ 2

N
∑

i=1

∫ t+T

t

(u
(js+1)
is )TRis(uis − u

(js)
is )dτ,

V (js+1)
s (Ŷ , tf) = Ψ̄s(Ŷ (tf)),

(68)

where r
′(js)
s = Ŷ TQsŶ +

∑N
i=1(u

(js)
is )TRisu

(js)
is .

Algorithm 4 is designed to find the approximately optimal composite control policies ukc, such that
the solution to Problem 1, the primary research objective, can be found without requiring the knowledge
of the global system (1) and (2).

4.2 NN-based approximation

Now, we will use the actor-critic structure with the NN estimation to find the composite controllers u∗
kc

using only data.
For Problem 2, when zkf is approximated by (64), the value functions and the control policies can be

represented by [29]

Vkf (ηkf , t) = WT
ckfϕckf (ηkf , t) + ǫckf (ηkf , t), (69)
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Algorithm 4 Data-driven off-policy IRL algorithm for Problem 1

1: Choose an admissible behavior control policy u(t) to collect data, give initial admissible control policies u
(0)
kf

and u
(0)
ks

, and set

the iteration indices with jf = 0 and js = 0;

Fast subsystems learning:

2: Solve the HJB equations (65) for (V
(jf +1)

kf
, u

(jf +1)

kf
) using collected data;

3: Make jf = jf + 1 and go back to step 2; stop when ‖ V
(jf+1)

kf
− V

(jf )

kf
‖6 εf with a small constant εf > 0;

Slow subsystems learning:

4: Solve the HJB equations (68) for (V (js+1)
s , u

(js+1)
ks

) using collected data;

5: Make js = js + 1 and go back to step 4; stop when ‖ V (js+1)
s − V (js)

s ‖6 εs with a small constant εs > 0;

6: Compute the composite control inputs ukc = u
(jf +1)

kf
+ u

(js+1)
ks

as the best control inputs.

ukf (ηkf , t) = WT
akfφakf (ηkf , t) + ǫakf (ηkf , t), (70)

vif (ηkf , t) = WT
aifφaif (ηkf , t) + ǫaif (ηkf , t), (71)

where Wckf ∈ R
l1 , Wakf ∈ R

m×l2 , and Waif ∈ R
m×l2 are the appropriate weight for the kth fast critic

NN, the kth fast actor NN, and the virtual actor NN, respectively. l1 and l2 are the numbers of hidden-
layer neurons, ϕckf ∈ R

l1 , φakf ∈ R
l2 , and φaif ∈ R

l2 represent the time-varying activation functions for
the kth fast critic NN, the kth fast actor NN, and the virtual actor NN, respectively. ǫckf , ǫakf , and ǫaif
are NN reconstruction errors.

Let the estimations of the kth fast value functions Vkf , the kth fast control inputs ukf , and the virtual
control inputs vif be

V̂kf (ηkf , t) = ŴT
ckfϕckf (ηkf , t), (72)

ûkf (ηkf , t) = ŴT
akfφakf (ηkf , t), (73)

v̂if (ηkf , t) = ŴT
aifφaif (ηkf , t), (74)

where Ŵckf , Ŵakf , and Ŵaif are the estimated values of the suitable weights Wckf , Wakf , and Waif .
The terminal estimations of the fast value functions become

V̂kf (ηkf , tf) = ŴT
ckfϕckf (ηkf , tf). (75)

Putting the estimations of Vkf , ukf , and vif described as (72)–(74) into (65) in Algorithm 4 produces
the fast residual errors as follows:

erkf =ŴT
ckf (ϕckf (ηkf , t)− ϕckf (ηkf , t+ T ))

− 2γ2
k

k−1
∑

i=1

∫ t+T

t

(ŴT
aifφaif )

TRif (uif − v̂
(jf )
if )dτ

+ 2

∫ t+T

t

(ŴT
akfφakf )

TRkf (ukf − û
(jf )
kf )dτ −

∫ t+T

t

r̄
′(jf )
kf dτ. (76)

Note that
Vkf (ηkf , tf) = Ψkf (ηkf (tf)). (77)

For the finite-horizon control issue, both the time-varying property of the fast value functions and the
terminal condition must be considered. Therefore, it is reasonable to design NN weight update laws that
minimize both the residual errors (76) and the following terminal term’s errors:

eckf = ŴT
ckfϕckf (ηkf , tf)− Ψkf (ηkf (tf)). (78)

Then, the fast residual errors erkf are rewritten as follows:

erkf = −M1kfŴckf +
k−1
∑

i=1

M2ifvec(Ŵaif ) +M2kfvec(Ŵakf )−Nkf , (79)

where

M1kf = ∆ϕT
ckf ⊗ I,
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∆ϕckf = ϕckf (ηkf , t+ T )− ϕckf (ηkf , t),

M2if = −2γ2
k

∫ t+T

t

((uif − v̂
(jf )
if )TRif ⊗ φT

aif )dτ,

M2kf = 2

∫ t+T

t

((ukf − û
(jf )
kf )TRkf ⊗ φT

akf )dτ,

Nkf =

∫ t+T

t

r̄
′(jf )
kf dτ. (80)

The NN weights are tuned by the gradient descent algorithm [32],

˙̂
Wckf = −α1f (erkf · −MT

1kf + eckf · ϕckf (ηkf , tf)),

vec(
˙̂
Waif ) = −α2f (erkf ·MT

2if ),

vec(
˙̂
Wakf ) = −α3f (erkf ·MT

2kf ), (81)

where α1f , α2f , and α3f are the learning rate.
For Problem 3, the slow value functions and the slow control policies can be defined as follows:

Vs(Ŷ (t), t) = WT
csϕcs(Ŷ (t), t) + ǫcs(Ŷ (t), t), (82)

uis(Ŷ (t), t) = WT
aisφais(Ŷ (t), t) + ǫais(Ŷ (t), t), (83)

where Wcs ∈ R
l3 and Wais ∈ R

n×l4 are the optimum weights for the slow critic NN and the slow actor
NN, respectively. l3 and l4 are the numbers of hidden-layer neurons, and ϕcs ∈ R

l3 and φais ∈ R
l4 are

the time-varying activation functions for the slow critic NN and the slow actor NN, respectively. ǫcs and
ǫais are NN reconstruction errors.

Let the estimation of the function Vs and uis be

V̂s(Ŷ (t), t) = ŴT
csϕcs(Ŷ (t), t), (84)

ûis(Ŷ (t), t) = ŴT
aisφais(Ŷ (t), t), (85)

where Ŵcs and Ŵais are the estimated values of the optimum weights Wcs and Wais, respectively.
The terminal estimation of the value function changes to

V̂s(Ŷ (tf), tf) = ŴT
csϕcs(Ŷ (tf), tf). (86)

Inserting (85) into the second term of the right-hand sides of (68) produces

N
∑

i=1

ûT
is(t)Ris(uis(t)− û

(js)
is (t)) =

N
∑

i=1

(ŴT
ais(t)φais)

TRis(uis(t)− û
(js)
is (t))

=

N
∑

i=1

(((uis(t)− û
(js)
is (t))TRis)⊗ φT

ais)vec(Ŵais). (87)

Let ∆ϕcs = ϕcs(Ŷ (t+ T ), t+ T )− ϕcs(Ŷ (t), t); then the left-hand sides of (68) is defined as follows:

V̂s(Ŷ , t+ T )− V̂s(Ŷ , t) = ŴT
cs∆ϕcs = (∆ϕT

cs ⊗ I)Ŵcs. (88)

Substituting (84) and (85) into the Bellman equation (68) generates the slow residual errors as follows:

eris =2

N
∑

i=1

(

∫ t+T

t

((uis − û
(js)
is )TRis)⊗ φT

aisdτvec(Ŵais)

)

−

∫ t+T

t

r
′(js)
s dτ − (∆ϕT

cs ⊗ I)Ŵcs. (89)
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Note that

Vs(Ŷ (tf), tf) = Ψ̄s(Ŷ (tf)). (90)

One has the terminal term’s error as follows:

ecs = ŴT
csϕcs(Ŷ (tf), tf)− Ψ̄s(Ŷ (tf)). (91)

Then, the slow residual errors eris are rewritten as follows:

eris = −M1sŴcs +
N
∑

i=1

M2isvec(Ŵais)−Ns, (92)

where

M1s = ∆ϕT
cs ⊗ I,

M2is = 2

∫ t+T

t

((uis(τ)− û
(js)
is (τ))TRis)⊗ φT

aisdτ,

Ns =

∫ t+T

t

r
′(js)
s dτ. (93)

According to the gradient descent method, the NN weights are tuned below:

˙̂
Wcs = −α1s(eris · −MT

1s + ecs · ϕcs(Ŷ (tf), tf)),

vec(
˙̂
Wais) = −α2s(eris ·M

T
2is), (94)

where α1s and α2s are the learning rate.
Algorithm 4 will be implemented using the actor-critic NN framework, and Eqs. (81) and (94) will be

used in order to find the solutions of (65) and (68) in Steps 2 and 4, such that the composite control
inputs ukc can be learned. Figure 2 depicts the detailed SP-based RL scheme for designing the composite
control inputs.

Similar to [29, 33], the following general assumption is presented.

Assumption 2. Assume that the initial NN weights, learning rate, and number of hidden-layer neurons
are chosen properly, which implies that ǫckf , ǫakf , ǫaif , ǫcs, and ǫais can be bounded.

Theorem 2. The NN weights estimation errors W̃
(jf )
ckf = Ŵ

(jf )
ckf − Wckf , W̃

(jf )
akf = Ŵ

(jf )
akf − Wakf ,

W̃
(jf )
aif = Ŵ

(jf )
aif −Waif , W̃

(js)
cs = Ŵ

(js)
cs −Wcs, and W̃

(js)
ais = Ŵ

(js)
ais −Wais can be bounded; i.e., the NN

weight estimation errors are uniformly ultimately bounded (UUB).
Proof. (a) For the estimation error of NN weight update in (81), consider the Lyapunov candidate
function, which is defined as follows:

Lf(t) ≡
1

2
tr(W̃T

ckfα
−1
1f W̃ckf ) +

1

2

k−1
∑

i=1

tr(vec(W̃aif )
Tα−1

2f vec(W̃aif ))

+
1

2
tr(vec(W̃akf )

Tα−1
3f vec(W̃akf )). (95)

Let L1f (t) = 1
2 tr(W̃

T
ckfα

−1
1f W̃ckf ), L2f (t) = 1

2

∑k−1
i=1 tr(vec(W̃aif )

Tα−1
2f vec(W̃aif )), L3f (t) = 1

2 tr(vec

(W̃akf )
T · α−1

3f vec(W̃akf )). It follows

L̇f ≡ L̇1f (t) + L̇2f(t) + L̇3f (t). (96)

The first term of (96) is

L̇1f =W̃T
ckfα

−1
1f

˙̃Wckf

=− W̃T
ckfM

T
1kf∆ϕT

ckfW̃ckf + W̃T
ckfM1kfM2kfvec(W̃akf )
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Figure 2 (Color online) Singular perturbation-based RL scheme for designing the composite control inputs.

+ W̃T
ckf

k−1
∑

i=1

M1kfM2ifvec(W̃aif ) + W̃T
ckf ξkfM

T
1kf

− W̃T
ckfϕckf (ηkf , tf)ϕckf (ηkf , tf)

TW̃ckf − W̃T
ckf ǫckfϕckf (ηkf , tf), (97)

where ξkf = ǫckf (ηkf , t)− ǫckf(ηkf , t+T )+2
∫ t+T

t
ǫTakfRkf (ukf − û

(jf )
kf )dτ−2γ2

k

∑k−1
i=1

∫ t+T

t
ǫTaifRif (υif −

υ̂
(jf )
if )dτ .
The second term of (96) is

L̇2f =

k−1
∑

i=1

vec(W̃aif )
Tα−1

2f vec(
˙̃Waif )

=

k−1
∑

i=1

vec(W̃aif )
TMT

2if∆ϕT
ckfW̃ckf −

k−1
∑

i=1

vec(W̃aif )
TM2ifM2kfvec(W̃akf )

−

k−1
∑

i=1

vec(W̃aif )
TMT

2if

k−1
∑

i=1

M2ifvec(W̃aif )−

k−1
∑

i=1

vec(W̃aif )
TξkfM

T
2if . (98)

The third term of (96) is

L̇3f =vec(W̃akf )
Tα−1

3f vec(
˙̃Wakf )

=vec(W̃akf )
TMT

2kf∆ϕT
ckfW̃ckf − vec(W̃akf )

TMT
2kfM2kfvec(W̃akf )

− vec(W̃akf )
T

k−1
∑

i=1

M2kfM2ifvec(W̃aif )− vec(W̃akf )
TξkfM

T
2kf . (99)

Letting Z̄f = [W̃ckf , vec(W̃a1f ), . . . , vec(W̃akf )]
T, Eq. (96) becomes

L̇f = −Z̄T
f Mf Z̄f + Z̄T

f Nf . (100)
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Define

Mf =



















∆ϕckf∆ϕT
ckf + ϕckfϕ

T
ckf −∆ϕT

ckfM21f · · · −∆ϕT
ckfM2k−1f −∆ϕT

ckfM2kf

−MT
21f∆ϕckf MT

21fM21f · · · MT
21fM2,k−1,f MT

21fM2kf

...
... · · ·

...
...

−MT
2k−1f∆ϕckf MT

2k−1fM21f · · · MT
2k−1fM2k−1f MT

2k−1fM2kf

−MT
2kf∆ϕckf MT

2kfM21f · · · MT
2kfM2,k−1,f MT

2kfM2kf



















(101)

and

Nf =



















ξkf∆ϕT
ckf − ǫckf (ηkf , tf)ϕ

T
ckf (ηkf , tf)

−ξkfM
T
21f

...

−ξkfM
T
2k−1f

−ξkfM
T
2kf



















.

One has
L̇f < − ‖ Z̄f ‖2 λmin(Mf )+ ‖ Nf ‖‖ Z̄f ‖, (102)

where Mf is a positive definite matrix by calculating all leading principal minors of it. Completing the
squares yields that the Lyapunov derivative is negative if

‖ Z̄f ‖>
‖ Nf ‖

λmin(Mf )
. (103)

As a result, we concluded that L̇f is negative outside the compact residual set,

Ωf =

{

‖ Z̄f ‖: Z̄f 6
‖ Nf ‖

λmin(Mf )

}

. (104)

(b) For the estimation error of NN weight update in (94), consider the Lyapunov candidate function
defined as follows:

Ls(t) ≡
1

2
tr(W̃T

csα
−1
1s W̃cs) +

1

2

N
∑

i=1

tr(vec(W̃ais)
Tα−1

2s vec(W̃ais)). (105)

Letting L1s(t) =
1
2 tr(W̃

T
csα

−1
1s W̃cs), L2s(t) =

1
2

∑N
i=1 tr(vec(W̃ais)

Tα−1
2s vec(W̃ais)), the derivative of Ls is

derived as follows:
L̇s ≡ L̇1s(t) + L̇2s(t). (106)

Then, it follows

L̇1s =W̃T
csα

−1
1s

˙̃Wcs

=− W̃T
csM

T
1s∆ϕT

csW̃cs + W̃T
cs

N
∑

i=1

M1sM2isvec(W̃ais) + W̃T
csξksM

T
1s

− W̃T
csϕcs(Ŷ (tf), tf)ϕcs(Ŷ (tf), tf)TW̃cs − W̃T

csǫcs(Ŷ (tf), tf)ϕcs(Ŷ (tf), tf), (107)

where ξks = ǫcs(Ŷ (t), t)− ǫcs(Ŷ (t+ T ), t+ T ) + 2
∑N

i=1

∫ t+T

t
ǫTaisRis(uis − û

(js)
is )dτ .

The second term of (106) is

L̇2s =

N
∑

i=1

vec(W̃ais)
Tα−1

2s vec(
˙̃Wais)

=
N
∑

i=1

vec(W̃ais)
TMT

2is∆ϕT
csW̃cs −

N
∑

i=1

vec(W̃ais)
TMT

2is

N
∑

i=1

M2isvec(W̃ais)
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−

N
∑

i=1

vec(W̃ais)
TξksM

T
2is. (108)

Letting Z̄s = [W̃cs, vec(W̃a1s), . . . , vec(W̃aNs)]
T, Eq. (106) becomes

L̇s = −Z̄T
s MsZ̄s + Z̄T

s Ns. (109)

Define

Ms =















∆ϕcs∆ϕT
cs + ϕcs(Ŷ (tf), tf)ϕT

cs(Ŷ (tf), tf) −∆ϕT
csM21s · · · −∆ϕT

csM2Ns

−MT
21s∆ϕcs MT

21sM21s · · · MT
21sM2Ns

...
... · · ·

...

−MT
2Ns∆ϕcs MT

2NsM21s · · · MT
2NsM2Ns















(110)

and

Ns =















ξks∆ϕT
cs − ǫcs(Ŷ (tf), tf)ϕT

cs(Ŷ (tf), tf)

−ξksM
T
21s

...

−ξksM
T
2Ns















.

Then, one has
L̇s < − ‖ Z̄s ‖

2 λmin(Ms)+ ‖ Ns ‖‖ Z̄s ‖, (111)

where Ms is a positive definite matrix obtained by calculating all of its leading principal minors. Com-
pleting the squares yields that the Lyapunov derivative is negative if

‖ Z̄s ‖>
‖ Ns ‖

λmin(Ms)
. (112)

As a result, we concluded that L̇s is negative outside the compact residual set,

Ωs =

{

‖ Z̄s ‖: Z̄s 6
‖ Ns ‖

λmin(Ms)

}

. (113)

Therefore, the estimation errors of NN weights are UUB. The proof is finished.

Remark 7. In [21,22], the developed RL method for finding the composite controller for tracking prob-
lems of large-scale systems is not a fully model-free approach, since the model parameters of fast unit
processes must be known. Furthermore, only one unit device process is in [18–20], and the coupling rela-
tionship between fast unit processes is ignored when designing OTCs in [21,22]. However, the developed
SP-based RL algorithm (Algorithm 4) can find the composite controller that drives the output r(t) of the
slow operational process to the reference trajectory r∗ via an approximately optimal approach. Using
Algorithm 4 combined and the NN-based approximation, only the measured data, including the state of

the system (1) and the iterative control inputs u
(jf+1)
kf and u

(js+1)
ks as well as the behavior control inputs

u(t), are required to learn the approximate optimal tracking composite control policies. Moreover, an-
other advantage of this paper is that the time-scale parameters εk do not need to be known. In this sense,
the developed method is indeed a completely data-driven approach that does not require the information
of model parameters of the entire system even though it runs with more than multitime scales.

5 Simulation results

5.1 Numerical example of two subsystems

A numerical example comprising multiple subsystems is presented to show the efficiency of the proposed
method. The fast dynamics of the two subsystems at the bottom are given by

ẋ1(t) =

[

−500 400

−300 − 200

]

x1(t) +

[

2

−2

]

u1(t), (114)
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Figure 3 (Color online) Fast actor NN weights for (a) subsystem 1 and (b) subsystem 2.

ẋ2(t) =

[

−300 − 100

0 − 200

]

x2(t) +

[

−100 100

0 − 100

]

x1(t) +

[

−100

100

]

u2(t). (115)

The slow dynamics of the top operational process is as follows:

ẏ(t) =

[

−2 0

0 − 3

]

y(t) +

[

100 − 100

−100 − 300

]

x1(t) +

[

−300 200

−400 − 200

]

x2(t), (116)

r(t) =

[

1 0

0 0.5

]

y(t). (117)

Let r∗ = [6, 2]T, Q1f = Q2f = 0.01I, Q0 = 10I, R1f = R2f = 0.1, and R1s = R2s = 0.1, tf = 10. The
time-varying activation functions for the fast critic NN and the slow critic NN are respectively presented
as follows:

ϕc1f (η1f , t) = [η21f1 (1− 0.1e−τ)/(1 + 0.1e−τ ), η1f1η1f2 , η1f1η1f3 , η
2
1f2 , η1f2η1f3 , η

2
1f3 ], (118)

ϕc2f (η2f , η1f , t) =[η22f1(1− 0.1e−τ )/(1 + 0.1e−τ), η2f1η2f2 , η2f1η2f3 , η2f1η2f4 , η
2
2f2 ,

η2f2η2f3 , η2f2η2f4 , η
2
2f3 , η2f3η2f4 , η

2
2f4 ], (119)

ϕcs(Ŷ (t), t) =[Ŷ 2
1 (1− 0.1e−τ)/(1 + 0.1e−τ), Ŷ1Ŷ2, Ŷ1Ŷ3, Ŷ1Ŷ4, Ŷ

2
2 ,

Ŷ2Ŷ3, Ŷ2Ŷ4, Ŷ
2
3 , Ŷ3Ŷ4, Ŷ

2
4 ], (120)

where τ = tf − t. The time-varying activation functions for the fast actor NN and the slow actor NN are
respectively expressed as follows:

ϕa1f (η1f , t) = [η1f1(1 − 0.1e−τ)/(1 + 0.1e−τ), η1f2 , η1f3 ], (121a)

ϕa2f (η2f , η1f , t) = [η2f1 (1− 0.1e−τ)/(1 + 0.1e−τ ), η2f2 , η2f3 , η2f4 ], (121b)

ϕa1s(Ŷ (t), t) = ϕa2s(Ŷ (t), t) = [Ŷ1(1− 0.1e−τ )/(1 + 0.1e−τ), Ŷ2, Ŷ3, Ŷ4]. (121c)

Set the initial values x1(0) = [−1,−3]T, x2(0) = [−4, 3]T, y(0) = [50,−50]T. The initial values of the
NN weights of the slow and fast subsystems are presented below:

Wa1f =[0.3968, 0.4754, 0.7447]T, Wa2f = [0.9072, 0.1979, 0.6001, 0.2465]T,

Wa1s =[0.4873, 0.5344, 0.4144, 0.3438]T, Wa2s = [0.0858, 0.2648, 0.3992, 0.3628]T. (122)

Figures 3–6 show the simulation results after implementing Algorithm 4 and the NN approximation.
Figures 3(a) and (b) depict the evolution of the actor NN weights Wa1f and Wa2f of the fast processes.
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Figure 4 (Color online) Slow actor NN weights for (a) subsystem 1 and (b) subsystem 2.
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Figure 5 (Color online) Trajectories of (a) the composite control policy u1c and its slow u1s and fast u1f components and (b)

the composite control policy u2c and its slow u2s and fast u2f components.
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Figure 6 (Color online) System outputs and reference trajec-

tories.

Figure 7 (Color online) System outputs and reference trajec-

tories without coupling consideration.

Figures 4(a) and (b) depict the evolution of the actor NN weights Wa1s and Wa2s of dynamics of the
operational indicators. Figures 5(a) and (b) show the trajectories of composite controllers u1c(t) =
u1f (t) + u1s(t), u2c(t) = u2f (t) + u2s(t), and Figure 6 shows the tracking results of operation indices.
Figure 6 shows that the operational indices r1, r2 successfully track the desired operational indices r∗1 , r

∗
2 .

The simulation results show that the proposed approach in Algorithm 4 is capable of achieving satisfactory
tracking performance of the system with multitime scales and bringing the system to a steady state in a
completely model-free manner.
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Figure 8 (Color online) (a) Fast and (b) slow actor NN weights for the underflow slurry pump frequency.

Assume that this numerical example does account for global system coupling. We suppose that

ẋ1(t) =

[

−500 400

−300 − 200

]

x1(t) +

[

2

−2

]

u1(t), (123)

ẋ2(t) =

[

−300 − 100

0 − 200

]

x2(t) +

[

−1

1

]

u2(t). (124)

For comparison, the method in [22] is used to find the composite controllers for the system composed
by (123)–(124). Then, these controllers actually act the system (114)–(117) with a coupling relationship
between x1(t) and x2(t). As a result, the tracking results are shown in Figure 7. When Figures 6 and 7
are compared, it is clear that the tracking results obtained using the developed Algorithm 4 in this paper
outperform those obtained without taking into account subsystem coupling.

5.2 A practical system example

5.2.1 Application to the mixed separation thickening process

The mixed separation thickening process (MSTP) is a fast and slow scale industrial system that operates
near its operating point. Consider the linear dynamics of MSTP

{

ẏ(t) = −0.68y(t) + 2.6u(t),

ṙ(t) = −0.057r(t) + 0.055y(t),
(125)

where y(t) represents the underflow slurry flow rate, r(t) represents the underflow concentration, and
u(t) represents the underflow slurry pump frequency. Furthermore, y(t) operates on a fast time scale,
whereas r(t) operates on a slow time scale.

To achieve the tracking control goal, we choose the desired underflow concentration value as r∗ = 33.
Set the values of the parameters Qf = 120, Q0 = 105, Rf = Rs = 1, and τ = tf − t. The initial NN
weights of the fast and slow subsystems are chosen as Waf (0) = [0.753, 0.134]T and Was(0) = [−10.4, 6]T,
respectively. Next, Algorithm 4 with the NN approximation is utilized to learn the NN weights in the fast
and slow subsystems. Figures 8(a) and (b) depict the evolution of the NN weights in the fast and slow
subsystems, respectively. Figure 9 depicts the learned composite control strategy uc(t) = uf(t) + us(t).
Figure 10 demonstrates that the desired operational index r∗ can be obtained using the learned uc(t) =
uf (t) + us(t) in Figure 9.

5.2.2 Comparison

Using the method [34] for Problem 1, in which system (125) is not decomposed by the SP technique,
Figure 11 plots the tracking results. When Figure 11 is compared with Figure 10, it is clear that the
composite controller learned by the developed method in this paper produces a faster tracking result.
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Figure 9 (Color online) Trajectories of the underflow slurry

pump frequency uc and its slow us and fast uf components.

Figure 10 (Color online) Underflow concentration r tracks

the desired value r∗.
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Figure 11 (Color online) Concentration value r tracks the desired value r∗ using the method [34].

Table 1 Data comparison of simulation results where k∗ = 600, n = 200

IAE MSE Convergence time (s)

Algorithm 4 12.14 0.004 13.865

The method [34] 19.86 0.009 108.2

To specifically evaluate the control performance, the integral absolute error (IAE) and the mean square
error (MSE) [35] are used below:

IAE =

k∗+n
∑

i=k∗

|r(i)− r∗(i)|, MSE =

√

√

√

√

1

n

k∗+n
∑

i=k∗

|r(i) − r∗(i)|2. (126)

Table 1 shows the comparative data. According to Table 1, the developed method in this paper produces
satisfactory IAE and MSE, implying that the developed method in this paper outperforms the method
without fast and slow mode decomposition, since ill-condition could be caused by the different time scales
without using the SP decomposition.

6 Conclusion

In this paper, we present a novel data-driven RL-based method combined with SP theory for achieving
the OTC of large-scale systems with multitime scales using only measured data. A global optimization
problem is decomposed into the reduced-order fast game and reduced-order slow LQT subproblems, such
that the sum of separate subproblem performances is roughly equal to the global performance, which is
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rigorously proven. The actor-critic NN structure is established, resulting in the development of a dis-
tributed off-policy IRL algorithm to learn the optimal control protocols for reaching global optimization.
Finally, simulation results are used to demonstrate the efficacy of the proposed algorithm using an MSTP
and a numerical example.
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