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Abstract This article studies mobile edge computing technologies enabled by unmanned aerial vehicles

(UAVs) in disasters. First, considering that the ground servers may be damaged in emergency scenarios, we

proposed an air-ground cooperation architecture based on ad-hoc UAV networks. We defined the system cost

as the weighted sum of task delay and energy consumption because of different delay sensitivity and energy

sensitivity tasks in emergency communication networks. Then, we formulated the system cost-minimization

problem of task scheduling and multi-UAV deployments. To solve the proposed mixed integer nonlinear

programming problem, we decomposed it to two sub-problems that were solved by proposing a swap matching-

based task scheduling sub-algorithm and a successive convex approximation-based multi-UAV deployment

sub-algorithm. Accordingly, we propose a joint optimization algorithm by iterating the two sub-algorithms

to obtain a low complexity sub-optimal solution. Finally, the simulation results show that (i) the proposed

algorithm converges in several iterations, and (ii) compared with the benchmark algorithms, the proposed

algorithm has better performance of reducing task delay and energy consumption and achieves a good trade-

off between them for diverse tasks.
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1 Introduction

Nowadays, various natural disasters, such as tsunamis, earthquakes, hurricanes, wildfires, and floods,
have caused great damage. In the past 30 years, material losses caused by disasters worldwide have
increased by about 100%–150% [1]. When disasters happen, communication infrastructures, such as the
base stations (BSs) in cellular networks, fail to provide communication services in emergency scenarios.

An unmanned aerial vehicle (UAV) is a self-contained device that is controlled by specific control
and non-payload communications (CNPC) links [2]. As a popular aircraft, UAVs are currently used in
many fields [3–5] and have played an important role in emergency scenarios [6]. Given the flexibility of
UAVs, they are widely used in disaster relief in the field such as communication recovery, rescue target
identification, and aerial mapping of the affected terrain [7, 8].

Ground terminals including various sensor devices generally have limited computing power, which will
take a long task execution delay when the computing task burden is heavy. Mobile edge computing
(MEC) is a promising technology to solve this problem [9]. MEC is an emerging technology that pro-
vides information technology service environment and cloud computing capability at the edge of mobile
networks [10]. Accordingly, terminal devices can offload the computing task to the edge server, thereby
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reducing service delays for users and alleviating network congestion [11]. This will allow tasks with high
real-time requirements to be finished quickly, including some specific tasks such as augmented reality
and target recognition [12, 13]. However, in traditional MEC networks, the edge server is usually em-
bedded in the ground BS. Damage in ground communication infrastructure makes the traditional MEC
networks invalid in emergency scenarios. Thus, aerial computing has drawn extensive attention. It is a
new technology that further integrates air radio access network and edge computing through UAVs and
other flight equipment [14]. Aerial computing is a part of the UAV-enabled MEC system. Unlike the
UAV-assisted MEC system, it generally does not have ground infrastructure. By using the computing
ability of edge servers carried by UAVs, aerial computing uses UAV as effective edge nodes to help ground
terminals perform task uninstallation calculations [15]. Authors [16] proposed an air-ground collabora-
tive architecture based on UAV, where ground terminals can offload their computing tasks to UAV nodes
according to the input data of different tasks.

In emergency relief, better services are necessary for some specific tasks that need assistance of aerial
computing. When disasters occur, sensors and cameras carried by the ground terminal are usually used
to perform search and rescue tasks. In this case, ground terminals can upload target-area information to
the UAV node through MEC networks. It will make more accurate and quick decisions by the high-speed
computational capability of UAVs. However, to provide better services, each UAV in emergency scenarios
should hover over with suitable velocity and distance [17]. Moreover, owing to the diversity of applications
in emergency scenarios, we should further consider tasks with different requirements, including delay-
sensitive and energy-sensitive tasks. Therefore, designing a cooperation mechanism between multiple
UAVs considering task diversity in emergency scenarios is an urgent problem.

1.1 Motivations and related work

At present, different contributions have been carried out on the task-completion strategies of UAV net-
works from single UAV to multiple UAV collaboration. First, in emergency scenarios, most studies focus
on how to use the UAV as a BS to achieve fast recovery of communications [18, 19]. These studies do
not consider the task computing requirements of ground terminals in emergency scenarios. Second, ex-
isting contributions mainly solve the UAV edge computing-task scheduling and offloading under cloud
edge collaboration architectures [20–24]. Gu et al. [20] presented an innovative task-completion strat-
egy for multiple UAVs by combining animal group perception with edge resource scheduling and task
assignment. The authors in [22] proposed an UAV-enabled MEC system involving interactions among
Internet of Things (IoT) devices, UAVs, and ground macro BSs. In [23], the UAV plays the role of an
MEC server in the IoT, so that computing tasks can be performed on local devices, UAV, or ground BSs.
To minimize the weighted system cost of delay and energy consumption, the authors in [24] proposed a
scheme based on game theory to find the optimal solution under the constraints of offloading decision and
resource competition. In the above studies, the aerial computing architecture is based on the cloud edge
collaboration architecture. Moreover, it relies on the high-speed computing capacity of the ground cloud
server. Therefore, a good communication link between ground cloud servers and UAV nodes is necessary.
However, in the post-earthquake relief or other emergency scenarios, the communication infrastructure
maybe damaged, resulting in the inability to transmit task information from the UAVs to the ground
cloud servers.

In addition, some studies examined trajectory optimization in air-ground cooperation architecture [25–
30]. Under task constraints and information causality constraints, Hu et al. [25] proposed an alternating
optimization algorithm to minimize the weighted total energy consumption of UAVs and terminals. A
multi-agent deep reinforcement learning-based trajectory control algorithm was also proposed to manage
task scheduling and the trajectory of each UAV [26]. Ning et al. [27] considered trajectory and task-
scheduling optimization for 5G-enabled UAV-to-community offloading system. They developed an average
throughput maximization-based auction algorithm and a dynamic task admission algorithm to maximize
the throughput. Sun et al. [28] examined the joint design of the 3D aerial trajectory and wireless resource
allocation in solar-powered MC-UAV communication systems. Cai et al. [29] investigated the trajectory
and resource-allocation design for downlink energy-efficient secure UAV communication systems. By
jointly optimizing the trajectory of UAV, transmit beamforming, and phase shift of intelligent reflecting
surface (IRS), Pang et al. [30] investigated a secure transmission design for an IRS-assisted UAV network
in the presence of an eavesdropper. In these contributions of aerial computing, the trajectory optimization
of UAVs is generally determined in advance by task information and will not be adjusted with the change
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in user mobility. Besides, considering some energy-sensitive applications in emergency communications,
the energy is quite valuable for UAV nodes and ground terminals. However, most optimization problems
in existing task scheduling strategies rarely consider the current energy state of UAV nodes and ignore
the network lifetime of UAV node formation.

1.2 Contributions and organization

Gaps in previous studies reflect the need for a distributed air-ground cooperation mechanism for diverse
task requirements in emergency communications. In this study, we propose an air-ground cooperation
architecture based on the ad-hoc network to jointly optimize task scheduling and UAV node deployment,
which can minimize the weighted sum of task delay and energy consumption for mixed time-sensitive and
energy-sensitive tasks. The main contributions are as follows.

• We proposed an air-ground cooperation architecture based on the ad-hoc network. In the proposed
architecture, we defined the weighted sum of task delay and energy consumption as system cost. Specifi-
cally, the total task delay and energy consumption consist of three parts: the task execution consumption
in ground terminals and UAV nodes and flight consumption in UAV nodes. On this basis, the system
cost-minimization problem of task scheduling and multi-UAV deployment was proposed, in which the
multi-UAV deployment included the optimization of the position and velocity of UAV nodes.

• Owing to the intractability of the formulated problem, we transformed the optimization problem into
two subproblems: the task scheduling strategy sub-problem and the multi-UAV deployment sub-problem.
Since the essence of the two sub-problems was the many-to-many matching problem and continuous
nonconvex problem, we used the swap-matching algorithm and the successive convex approximation
(SCA) algorithm to solve them. Accordingly, we proposed a joint optimization algorithm by iterating
the two sub-algorithms.

• We demonstrated the convergence and effectiveness of the algorithm by numerical simulations. The
simulation results showed that in the air-ground cooperation architecture based on the ad-hoc network,
the proposed algorithm can greatly reduce task delay and energy consumption compared with benchmark
algorithms. Furthermore, it prolonged the survival time of the network and achieved a good trade-off
between task delay and energy consumption in diverse task scenarios.

The rest of this paper is organized as follows. Section 2 presents the system model and formulates the
optimization problem. In Section 3, we decompose the problem into two subproblems and propose a joint
optimization algorithm. In Section 4, the simulation results are provided. Finally, Section 5 presents the
summary.

2 System model and problem formulation

To further reduce task delay and energy consumption, studies should focus on task scheduling and
offloading technology of air-ground collaborative computing in emergency scenarios. Compared with the
literature, we have made the following improvements to the system model: (1) we proposed an air-ground
cooperation architecture based on the ad-hoc network to solve the problem of ground communication
infrastructure damage and (2) the remaining energy weight was set in the system cost to solve the
problem of uneven energy consumption of UAV nodes. The main notations in this paper are summarized
in Table 1.

2.1 Design of air-ground cooperation architecture

As shown in Figure 1, in the air-ground coordination scenario with UAV nodes for emergency com-
munications, multiple tasks are required from the ground terminals. To speed up task execution, task
offloading will be provided by air computing. The UAV node network should further consider flight
position, communication interference, and other factors in the air-ground cooperation architecture. Con-
sidering the damaged ground traditional communication link in the emergency scenario, UAV nodes must
communicate with each other according to their computing power and cache resources. The mobile edge
cloud system based on the ad-hoc network is a suitable MEC architecture for distributed collaborative
computing. The virtual cloud based on the ad-hoc network does not need to rely on remote servers but
can calculate and be completed by a group of mobile devices. A recent study showed that the MEC
architecture based on the ad-hoc network can use the resources of adjacent mobile devices to achieve
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Table 1 Notation descriptions

Description Notation

Period time (s) of task collaboration strategy update Ts

Number of UAV nodes M

Number of ground terminal K

Number of tasks N

Amount of the input data (bits) of task n In

Ground terminal generating task n Hn

Cycles of computation required for task ξn

Whether task n is offloaded to the UAV node m xmn

Whether task n is computed locally xM+1,n

Whether the ground terminal Hn is associated with the UAV node m Θ(m, k)

Computation capability (GHz) of the ground terminal k fk

Computation delay (s) for the local execution of task n tln

Energy consumption (J) of local execution of task n eln

Local task execution cost of task n Zl
n

Weight of task delay α

Weight of energy consumption β

Position vector of the UAV node m um

Position vector of the ground terminal k uk

Whether ground terminal k′ has communication interaction with other UAVs Γ(m, k′)

Transmission rate (Mbps) between the UAV node m and the ground terminal k rm,k

Transmission delay (s) of task n for offloading tc,trn

Computing task capability (GHz) of the UAV node m fm

Computing delay (s) of task n executed at the UAV node m tc,exn

Task delay (s) of task n for offloading tcn

Energy consumption (J) of offloading task n ecn

Cost of task n executed in the UAV node m Zc
n

Flight velocity (m/s) of the UAV node m vm

Flight time (s) of the UAV node m tFm

Flight power (W) of the UAV node m pF (vm)

Flight cost of the UAV node m ZF
m

Computing resources (G CPU cycles) of the UAV node m cm

better overall system performance [31]. It not only can complete the tasks with lower energy consump-
tion but can also significantly reduce the computation delay. Therefore, we chose to establish the ad-hoc
self-organizing network by the UAV nodes and built an air-ground cooperation architecture.

Based on the above design of air-ground cooperation architecture, the self-organizing network was as-
sumed to be composed of multiple middle-high-altitude and long-duration rotary-wing UAV nodes. In this
case, the UAV nodes will not be affected by the non-line-of-sight (NLoS) link and can provide communi-
cation and computing services for ground terminals. We adopted mobile ad-hoc network routing protocol,
such as the zone routing protocol (ZRP), to deal with the problem of controlling information overhead
and obstacles in communication [32]. Moreover, the UAV node was assumed to have two communication
modules: a module for communication with ground terminals and another for communication with other
UAVs. The spectral resources of these two communication modules were assumed to be orthogonal with
each other and do not have inter-frequency interference. Therefore, communications between UAV nodes
will not affect that between UAV nodes and ground terminals.

2.2 Task execution model

According to the characteristics of the air-ground cooperation architecture at the edge, we assume that
the period time of task collaboration strategy update is TS. There are M UAV nodes, the UAV node
set is denoted by M = {1, . . . ,M}. There are K ground terminals, and the set of which is denoted by
K = {1, . . . , K}. In the system, it has N tasks, the set of which is denoted by N = {1, . . . , N}. The
tasks can be executed locally at the ground terminal according to the task information, or offloaded to
the UAV nodes. The information of task n includes (In, ξn, Hn), where In represents the amount of input
data (in bits) of task n, Hn represents the ground terminal generating task n, i.e., Hn ∈ K. Assume that
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Figure 1 (Color online) Air-ground cooperation architecture based on the ad-hoc network.

the cycles of computation required for task, i.e., ξn, is proportional to the input data size. Thus, we have
ξn = κIn, where the coefficient κ represents required CPU cycles for executing one bit of task data.

Define the task scheduling variable matrix of the UAV nodes as x. The matrix element xmn,m ∈
M, n ∈ N , is a binary variable, which indicates whether task n is offloaded to UAV node m. When
xmn = 1, the ground terminal generating task n is offloaded to UAV node m, otherwise xmn = 0.
In particular, let XM+1 indicates whether the ground terminal performs computing tasks locally. If
XM+1,n = 1, task n will perform calculation locally, otherwiseXM+1,n = 0. On this basis, the association
function between the ground terminal and UAV node is set as Θ(m, k),

Θ(m, k) =

{

1, xmn = 1, Hn = k,

0, xmn = 0, Hn = k.
(1)

If task n is scheduled to the m-th UAV node, Θ(m, k) = 1 denotes the ground terminal Hn is associated
with UAV node m.

According to the scheduling of the tasks, the task execution can be divided into two types: local task
execution and UAV task execution. The two types of task execution models are as follows.

(1) Local task execution model. In the air-ground cooperation architecture, tasks can be executed
locally at the ground terminals. Suppose that task n is generated in ground terminal k. Define the
computation capability (in CPU cycles per second) of ground terminal k as fk. the computation delay
for local execution of task n is

tln =
ξn

fk
=

κIn

fk
. (2)

The energy consumption of local execution is described as eln = µkt
l
n, where µk is the computing

energy consumption per unit time of ground terminal k, denoted by µk = γf3
k , and γ > 0 is the effective

switched capacitance [33]. In order to cope with the diversity of task delay and energy consumption
requirements, the local execution cost of task n at ground terminal k is defined as

Z l
n = xM+1,n(αt

l
n + βwce

l
n), (4)

where α and β is the weight of task delay and energy consumption, and α + β = 1. The two weights
respectively represent the sensitivity of the task to the task delay and energy consumption. If the task
focuses more on reducing the task delay, the coefficient α can be increased appropriately. On the contrary,
if we focus more on reducing energy consumption, we could increase the coefficient β appropriately. wc

is the coefficient that adjusts the task delay and energy consumption to the same scale.
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(2) UAV task execution model. Let the position variable matrix of the UAV nodes be u, The
matrix element is the position vector um of UAV nodem, which is expressed as (xm, ym, zm) in rectangular
coordinates. The distance dm,k between UAV node m and ground terminal k is expressed as dm,k =
||um − uk||.

Because of the high-altitude advantage of the UAV, we only consider the line-of-sight (Los) channel [34],
so the channel fading is only related to the position of the UAV. Besides, the position of UAVs can
be obtained by means of Global positioning system (GPS) so that the channel gain can be obtained
accurately [35]. So the channel gain gm,k is

gm,k =
gD0

dm,k
2 , (3)

where gD0 denotes the channel gain with a distance of 1 m. Suppose that when multiple ground terminals
are associated with the same UAV node due to task offloading, the ground to air transmission link between
them adopts the statistical time multiplexing. Since there are multiple UAV nodes communicating with
the ground terminal at the same time, the same bandwidth is in common. As a result, the ground
terminal accessed by the same UAV node has complementary interference. For the interference of air-
ground communication channel, there is only inter cell co-frequency interference.

According to the free space propagation model, the signal to interference plus noise ratio (SINR) of
the ground terminal k associated with the UAV node m is

SINRm,k =
pDgm,k

∑K
k′ 6=k pDgm,k′Γ(m, k′) +BDσ2

, (4)

where σ2 denotes the Gaussian noise of the channel, pD denotes the signal transmission power from the
ground terminal to the UAV node, gm,k denotes the channel gain between ground terminal k and UAV
node m, BD denotes the bandwidth of UAV node for air-ground communication link. Γ(m, k′) indicates
whether the ground terminal k′ associates with other UAVs,

Γ(m, k′) =



























1,

M
∑

m′ 6=m

Θ(m′, k′) > 0,

0,
M
∑

m′ 6=m

Θ(m′, k′) = 0.

(5)

If Γ(m, k′) = 1, ground terminal k′ will interfere with the transmission link between UAV node m and
ground terminal k, otherwise not. Then, the transmission rate rm,k between UAV node m and ground
terminal k is

rm,k = BDlog2(1 + SINRm,k). (6)

The transmission delay of task n for offloading is

tc,trn =
In

rm,k
. (7)

The computing task capability of each UAV node is related to many internal factors, including CPU
core frequency, number of CPU cores, and memory space. Assume that the computation capability (in
CPU cycles per second) of UAV node m is fm, the computing delay of task n executed at UAV node
m is

tc,exn =
ξn

fm
=

κIn

fm
. (8)

Therefore, the task delay of task n for offloading is

tcn = tc,exn + tc,trn . (9)

Generally speaking, the output data of the task is much less than the input data [23], so the transmission
cost of task results is ignored. Similarly, suppose that µm is the computing energy consumption per unit
time of UAV node m, and µm = γf3

m. The energy consumption of offloading task n at UAV node m is

ecn = µmtc,exn + pDtc,trn . (10)
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In order to further prolong the survival time of the network and balance the workload, the remaining
energy of UAV node needs to be considered. Similar to the local task execution model, for different task
requirements, the cost of task n executed in UAV node m is defined as

Zc
n =

e0

em
(αtcn + βwce

c
n)xmn, (11)

where em and e0 denote the remaining energy and initial energy of UAV node m. That is, the less
energy left in UAV node m, the greater the cost of mobilizing UAV node m for offloaded task computing.
Parameter α, β, wc is consistent with the local task execution model.

2.3 Hovering and flying consumption model

Based on the design idea of combining multi-UAV deployment optimization with scheduling strategy,
UAV nodes need to optimize deployment according to task scheduling strategy. We need to further
consider the cost of UAV node position updating. Let um be the new position vector of UAV node m

after receiving the decision of deployment optimization strategy. Let u0
m be the original position vector

of the UAV node m. We assume that UAV m maintains a uniform motion in position updating and the
flight velocity is vm. Therefore, the flight time tFm is described as

tFm =
||um − u

0
m||

vm
. (12)

According to the emergency scenario assumption, the UAV nodes need to hover for task computing.
Let the flight power of UAV node m be pF (vm), then the flight energy consumption required in Ts is

eFm = eF,fly
m + eF,ho

m ,

eF,fly
m = tFmpF (vm),

eF,ho
m = pF (0)(Ts − tFm),

(13)

where eF,fly
m is the flying energy consumption with vm in flying state, eF,ho

m is the hovering energy con-
sumption, and pF (0) denotes the flight power consumed by UAV nodes in hovering state. According to
the flight power model of rotary-wing UAV [36], the relationship between pF (vm) and vm is

pF (vm) = P0

(

1 +
3v2m
U2
tip

)

+ Pi

(
√

1 +
v4m
4v20

−
v2m
2v20

)

1
2

+
1

2
d0ρsAv

3
m, (14)

where P0 and Pi two constants denote blade profile power and induced power respectively in hovering
state, Utip is the tip velocity of the rotor blade, v0 denotes the average rotor induced velocity in hover,
d0 and s denote the fuselage resistance ratio and rotor solids respectively, ρ and A denote air density and
rotor disk area respectively. So the hovering flight power of the UAV node pF (0) = P0 + Pi.

In order to balance the contradiction between delay and energy consumption during UAV movement
and achieve better cost saving effect, the flight cost of UAV task execution model is designed as

ZF
m = αtFm + βwF e

F
m, (15)

where parameter α, β is consistent with the execution model. Since the flight energy consumption far
exceeds the transmission and calculation losses, we use the different coefficient wF to adjust the flight
delay and flight energy consumption to the same scale.

2.4 Problem formulation

Based on the above system model, we take the sum of the local task execution cost of tasks in ground
terminals, the UAV task execution cost and the flight cost in UAV nodes as the total system cost, which
is composed of task execution delay and energy consumption of ground terminals and UAV nodes. In
the system cost, we can find that the task delay and energy consumption required for offloading are not
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only related to the task scheduling strategy xmn, but also related to the position um = (xm, ym, zm) and
velocity vm of UAV node m. Therefore, the optimization problems is formulated as follows:

P1 : min
x,u,v

f =
M
∑

m=1

N
∑

n=1

(Z l
n + Zc

n + ZF
m), (16)

s.t.

M
∑

m

xmn + xM+1,n = 1, ∀m,n, (16a)

eF,fly
m < eflymax, ∀m, (16b)

N
∑

n

ξnxmn 6 cm, ∀m, (16c)

hmin < zm < hmax, ∀m, (16d)

xmn, xM+1,n ∈ {0, 1}, ∀m,n, (16e)

vm 6 vmax, ∀m. (16f)

Constraint (16a) indicates that the task can be offloaded at most once; constraint (16b) represents
that the flight energy of UAV node needs to be limited, where eflymax is the maximum flying energy of the
UAV nodes; constraint (16c) indicates that the offloading task received by the UAV node cannot exceed
its remaining computing resources; constraints (16d) and (16f) represents that the flight altitude of UAV
node needs to be in [hmin, hmax] and the velocity needs to be smaller than vmax; constraint (16e) indicates
that xmn and xM+1,n are binary.

The optimization problem P1 is a mixed integer nonlinear programming problem, which is also a non-
convex optimization problem. In order to solve this problem efficiently, we divide problem P1 into two
sub-problems, the task scheduling sub-problem and the UAVs’ deployment problem. On this basis, we
propose a joint optimization algorithm to solve problem P1.

3 Joint optimization algorithm

In order to solve the primal problem P1 proposed in Section 2, we propose an effective low complexity
algorithm in this section. Specifically, we first decompose the optimization problem to two sub-problems.
Then, we solved them by proposing a swap matching based task scheduling algorithm and a SCA based
multi-UAV deployment algorithm. On this basis, the joint optimization algorithm is proposed by iterating
these two algorithms.

3.1 Swap matching based task scheduling algorithm

Given the location variable u and velocity variable v, problem P1 becomes a scheduling strategy sub-
problem, given by

P2 : min
x

N
∑

n=1

M
∑

m=1

xM+1,n(αt
l
n + βwce

l
n) +

e0

em
(αtcn + βwce

c
n)xmn,

s.t. (16a), (16c), (16e).

(17)

According to the system model, one UAV node can accept multiple tasks offloading, but one task can
only be offloaded to one UAV node. It is necessary to develop a multi-task scheduling algorithm in the
case of different computing ability and real-time energy consumption of UAV nodes with the amount of
different tasks. Based on the fact that the swap matching algorithm can not only ensure the stability
of a pairing but also have low complexity and fast convergence [37], we choose it to optimize the task
scheduling.

Let computing device set M = {1, . . . ,M + 1} and task set N = {1, . . . , N} be finite and disjoint.
When the UAV node m is assigned to task n, a matching pair (m,n) is formed. We take the system cost
as the basis for establishing the preference list. Preference list records the system cost of one party to
the other in the match. The matching exchange between the two sides is based on the preference list.
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As a result, for the sub-problem, each UAV node has its own preference list of each task, and each task
has its own preference list for each UAV node similarly. If the ranking position of UAV node m in the
preference list of task n is higher than UAV node m′, it indicates that the system cost of offloading task
n at UAV node m is less than UAV node m′, expressed as m≻nm

′. During the iteration, the preference
lists of both agents meet the following conditions:

• Both agents can compare and select the matching selection through their own preference list without
being unable to select.

• Preference selection is transitive, that is, if m≻nm
′, m′≻nm

′′, then m≻nm
′′.

Since the UAV node can accept the offloading of multiple tasks, but the tasks can only be offloaded to
one UAV node at most, the task scheduling strategy is optimized as a one to many matching problem.
Set the matching function denotes as ϕ, it is defined as follows [37]:

Definition 1. • |ϕ(n)| = 1, ∀n ∈ N ;
• |ϕ(m)| 6 IV , ∀m ∈ M, where IV is the maximum number of tasks that UAV nodes can perform

under the constraints of computing resources and energy consumption;
• ϕ(n) = m ⇔ ϕ(m) = n.
According to the Definition 1, some UAV nodes may not be assigned tasks, but the tasks must be

executed. Since there is communication interference between tasks during task scheduling, sub-problem
P2 is a one-to-many matching problem with external characteristics. Since the income of one matching
pair will be affected by other matching pairs, the concept of stability cannot be defined directly. We give
the definition of swap matching ϕm′n′

mn as

ϕm′n′

mn = {ϕ\{(m,n), (m′, n′)} ∪ {(m,n′), (m′, n)}}, (18)

where ϕ(n) = m ⇔ ϕ(m) = n.
Based on the above definition of swap matching, the definition of bilateral swap stable matching is

given below.

Definition 2. If and only if there is no blocking pair, the matching ϕ is a bilateral stable matching
state, where the blocking pair (m,m′) is defined as

• ϕ(m) = n, ϕ(m′) = n′;
• ∀x ∈ {m,n,m′, n′}, Ux(ϕ

m′n′

mn ) 6 Ux(ϕ);
• ∃x ∈ {m,n,m′, n′}, Ux(ϕ

m′n′

mn ) < Ux(ϕ).

Ux(ϕ) is the system cost of element x under the matching ϕ, The characteristics of (n, n′) shows that
if the swap matching is successful, the system cost of all elements will not increase, and the system cost
of at least one element will decrease. With the success of swap matching, when there is no blocking
pair in the system, it indicates that the bilateral matching has reached stability. For either agent, it is
impossible to find a matching agent that can make the preference cost smaller from the optional list.

In order to describe the external characteristics, the preference cost function U is established according
to the task delay and energy consumption of the optimization problem P2, given as

U(m,n) =







αtln + βwce
l
n, m = M + 1,

e0

em
(αtcn + βwce

c
n), m 6= M + 1.

(19)

The specific steps of the algorithm are described as follows:

• During initialization, since the matching state between UAV nodes and ground terminals is not
established, we use signal to noise ratio (SNR) instead of SINR in the preference cost function U for
initialization assignment, where SNRm,k =

pDgm,k

BDσ2 . Namely, the cost of interference between ground
terminals is not considered. The deferred acceptance algorithm (DAA) is used to establish the initial
matching state between the UAV node and the task. Each task sends a request to the UAV node with
the highest priority in the preference list, and each UAV node receives the task with the highest priority
in the requested task according to the preference list. When the computing resources of each UAV node
are full or unmatched tasks are rejected by all UAV nodes, the DAA algorithm ends.

• Update the preference cost list according to (19). Based on the initialized matching state, for any
task n, if there is another task n′ ∈ N (n′ 6= n) that will make the system cost decrease, the swapping
will happen. It will stop until the system cost stabilizes.
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Therefore, the swap matching based task scheduling algorithm is summarized in Algorithm 1.

Algorithm 1 Swap matching based task scheduling algorithm

Require: The SINR in the preference cost U is replaced by SNR for initialization assignment. And we initialize the matching

state S0 between UAV nodes and ground terminalS based on DAA algorithm, let S = S0, number of iterations t = 1.

1: repeat

2: for n ∈ {1, . . . , N} do

3: Find a task n′ ∈ N(n′ 6= n);

4: if (n, n′) is a blocking pair, after the swap, the UAV nodes still meets the resource constraints then

5: Swap (n, n′);

6: else

7: Keep existing matching status;

8: end if

9: Update the preference cost list according to (19);

10: end for

11: until No blocking pair in the matching;

12: return The task scheduling variable matrix x.

In the following, we present the complexity and convergence analysis of Algorithm 1.

(1) Complexity. According to the system model, the number of UAV nodes is M . Considering the
local execution model, the equipment available for task execution is M + 1 and the number of tasks is
N . Hence, the algorithm complexity of DAA algorithm during initialization is O(IV (M + 1)N). We
assume that the swap matching algorithm can converge in L1. In the worst case, the complexity of the
algorithm is O(IV (M +1)N +L1C

2
M+1N), i.e., the number of swaps is 1+ 2+ · · ·+M in each iteration.

Therefore, compared with exhaustive search, this sub-algorithm achieves better performance due to the
low complexity of exchange matching for the many to many matching problem.

(2) Convergence. In the final stable matching state, according to the definition, for any task n, there
will be no n′ that (n, n′) is a blocking pair. In the process of matching swap, the total preferred cost of
matching continues to decrease. Since the total scheduling cost is always non-negative, the value of the
total scheduling cost has a lower bound. As thus, after a limited numbers of swap matching, the swap
matching based task scheduling algorithm can converge to a stable matching state.

3.2 SCA based multi-UAV deployment algorithm

Given the scheduling strategy variable x, problem P1 becomes a sub-problem of position and velocity of
the UAV nodes, given by

P3 : min
u,v

N
∑

n=1

M
∑

m=1

e0

em
(αtcn + βwce

c
n)xmn+αtFm + βwF e

F
m,

s.t. (16b), (16d), (16f).

(20)

It can be found that when the scheduling strategy variable x is determined, the execution time tc,exn of
task n is independent of the multi-UAV deployment. Therefore, the problem is equivalent to solving the
minimum value of communication cost and flight cost when the UAV nodes position and velocity change,
i.e.,

P3′ : min
u,v

N
∑

n=1

M
∑

m=1

e0

em
[(α+ βwcpD)tc,trn ]xmn+αtFm + βwF e

F
m,

s.t. (16b), (16d), (16f).

(21)

When the scheduling strategy variable x is given, the position and velocity variables between UAV
nodes can be considered separately. Thus problem P3′ can be equivalent to the following problem:

P3′′ : min
um,vm

Ωm(um, vm)

=

N
∑

n=1

e0

em
[(α + βwcpD)tc,trn ]xmn + αtFm + βwF e

F
m,

s.t. (16b), (16d), (16f).

(22)
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The problem P3′′ is non-convex function, and constraints (16d) and (16f) are linear. Since P3′′ contains
multiple second-order terms about ||um−uk||2 and cannot be replaced in a holistic manner, we consider
using block coordinate descent to lower um and vm respectively. In the constraint (16b), we can transform
constraint (16b) to

eF,fly
m − eflymax < 0. (23)

We give the following lemma.

Lemma 1. lm(xm, ym, zm, vm) = eF,fly
m − eflymax is a convex function with regard to variable xm, ym, zm,

vm when only one of them is considered.

Proof. Because eflymax is a constant, it only needs to prove that eF,fly
m is a convex function. To this end,

we rewrite eF,fly
m as

eF,fly
m = tFmpFm(vm) = δ(xm, ym, zm)χ(vm), (24)

where δ(xm, ym, zm) = ||um −u
0
m|| =

√

(xm − x0
m)

2
+ (ym − y0m)

2
+ (zm − z0m)

2
, χ(vm) =

pF
m

vm
= P0

vm
(1 +

3v2
m

U2
tip

) + Pi

vm
(
√

1 +
v4
m

4v2
0

− v2
m

2v2
0

)
1
2 + 1

2d0ρsAv
2
m.

We can calculate the second-order partial derivatives of four variables in (24) separately. When only
considering the position variable xm, ym, zm separately, we simplify (24) as eF,fly

m = C1δ(xm, ym, zm),
where C1 is a non-negative coefficient that they will not affect the concave-convex of (24). When only one
of the position variables is considered, δ(xm, ym, zm) is a composite function of monotonically increasing

convex function x
1
2 and convex function (x− x0)

2
+ a, where x0, a is a constant. Thus, it is a convex

function.
When only considering the velocity variable vm, we simplify (24) as eF,fly

m = C2χ(vm), where C2 is a
non-negative coefficient, which will not affect the concave-convex of (24). By calculating the second-order
partial derivative of vm in χ(vm), we can find that it is greater than 0 easily. In conclusion, when only one
of the four variables is considered, the second-order partial derivatives of lm under simulation conditions
is non-negative. Therefore, Lemma 1 is proved.

In sub-problem P3′′, we need to transform Ωm(um, vm) to a convex form. To this end, we adopt the
SCA algorithm [38,39] to solve the optimization problem P3′′.

In order to develop the SCA based multi-UAV deployment algorithm, Lemma 2 is given [28].

Lemma 2. For any continuous first-order differentiable non-convex function Γ(x), there will be a convex
function g(x;xt), which at the point of xt, ∇Γ(xt) = ∇g(x;xt)|x=xt . The general form of g(x;xt) is

g(x;xt) = Γ(xt) +∇Γ(xt)(x− xt) + τ ||x− xt||2, (25)

where τ > 0, t is the number of iterations. So the problem of minimizing Γ(x) can be converted to
minimizing g(x;xt) and the xt is updated iteratively according to the minimum yt of g(x;xt) under
constraints,

xt = xt−1 + αt(yt − xt−1), (26)

where αt is the moving step weight, dynamically adjusted αt can avoid the phenomenon of crossing the
optimal value x∗ of Γ(x) due to too long step length. αt is generally adjusted by the Armijo criteria.

Based on Lemma 2, we optimize the position variable xm, ym, zm and the velocity variable vm sep-
arately. And the optimized variables are combined into a new vectors variable ηm = (xm, ym, zm, vm).
Let ηmi represents ith element of ηm, the optimization problem P3′′ can be converted to

P3′′′ : min
ηmi

gm(ηmi) = Ωm(ηt
mi) +∇Ωm(ηt

mi)(ηmi − η
t
mi) + τ ||ηmi − η

t
mi||

2,

s.t. (16b), (16d), (16f).
(27)

where η
t
mi is the given feasible points at the tth iteration.

For the convex optimization problem P3′′′, the standard convex optimization tool CVX can be used to
solve it, which generally uses the built-in interior point method (IPM) to solve the convex optimization
problem. The SCA based multi-UAV deployment algorithm is summarized in Algorithm 2.

In the following, we present the complexity and convergence analysis of Algorithm 2.
(1) Complexity. The algorithm complexity analysis of the sub-problem is based on the algorithm

complexity of the IPM [40]. The total number of variables is 4M , and there are 3M linear constraints,
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Algorithm 2 SCA based multi-UAV deployment algorithm

Require: Initialize the UAV nodes position matrix u0 according to the scheduling variable matrix x and UAV nodes velocity

matrix v0. Let number of external iterations r = 0.

1: repeat

2: for m ∈ {1, . . . ,M} do

3: for i ∈ {1, . . . , 4} do

4: Initialize t = 0, ηr+1,0
mi

= η
r
mi

;

5: repeat

6: t = t + 1;

7: Use IPM to solve the convex optimization problem P3′′′, and get yt;

8: Solve αt using the Armijo criteria;

9: Update η
r+1,t
mi

according to (26);

10: until ηr+1,t
mi

is a stable convergent solution;

11: end for

12: r = r + 1;

13: end for

14: until ηm
r is a stable convergent solution;

15: return The UAV nodes position matrix ur and UAV nodes velocity matrix vr.

including 1 variable; M second-order cone-constraints, including 4 variables. Assuming that the total
number of external iterations is L2, the total complexity of the algorithm is O(L2M

2.5). So compared with
exhaustive search, this sub-algorithm achieves better performance for the good use of gradient descent
by SCA algorithm.

(2) Convergence. Since the problem solved in each internal iteration is a convex problem about ηmi,
the global optimal solution of problem P3′′′ can always be found by the IPM in each internal iteration
so that the internal iteration can always converge. The external iteration is about the block coordinate
descent of ηmi. Since Ωm(um, vm) is a smooth continuous function, there is always Ωm(ηr−1

m ) > Ωm(ηr
m).

At the same time, because of Ωm(ηm) > 0, Ωm(ηm) must have a lower bound. Therefore, the proposed
Algorithm 2 is guaranteed to converge.

3.3 Joint optimization algorithm

Based on the above analysis, the optimization problem is divided into two sub-problems, and the cor-
responding algorithms are proposed. Now, we propose a joint optimization algorithm by combining the
aforementioned two algorithms in an iterative manner to obtain the solution to the primal problem P1,
which is summarized in Algorithm 3.

The convergence and complexity of the joint optimization algorithm are analyzed as follows.

Algorithm 3 Joint optimization algorithm

Require: Initialize the task scheduling matrix x0, the UAV nodes position matrix u0, the UAV nodes velocity matrix v0. And

input the system parameters, set the number of iterations l = 0, give the convergence accuracy ε.

1: repeat

2: l = l + 1;

3: Update the task scheduling matrix xl according to the swap matching based task scheduling algorithm;

4: Update the UAV nodes position matrix ul and the UAV nodes velocity matrix vl according to the SCA based multi-UAV

deployment algorithm;

5: until |f(xl,ul,vl) − f(xl−1,ul−1,vl−1)| < ε;

6: return The task scheduling matrix x, the UAV nodes position matrix u and the UAV nodes velocity matrix v.

(1) Complexity. In each iteration, Algorithms 1 and 2 are used to solve problem P2 and P3 in
turn. According to the analysis of the sub-problems in the above two subsections, we can get the
algorithm complexity of the two sub-algorithms. We assume that the proposed optimization algorithm
can converge in G iterations. Then the complexity of the joint optimization algorithm is O(G(IV (M +
1)N + L1C

2
M+1N +M2.5L2)).

(2) Convergence. According to the convergence analysis of the the swap matching based task
scheduling algorithm in the above subsection, we can obtain the following conclusions:

f(xl−1,ul−1,vl−1) > f(xl,ul−1,vl−1). (28)

And according to the convergence analysis of the SCA based multi-UAV deployment algorithm,

f(xl,ul−1,vl−1) > f(xl,ul,vl). (29)
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Figure 2 Application flow chart of the strategy.

Since the system cost f(x,u,v) > 0, the optimization objective function has a lower bound. So the
the proposed joint optimization algorithm can converge and obtain an sub-optimal solution.

Due to the need for higher network control efficiency, and without considering the security and scal-
ability of data, we have adopted a centralized control method to implement the joint algorithm. Since
there is no cloud server in the air-ground collaboration architecture based on ad-hoc, it is necessary to
select a suitable core node in the UAV nodes that can collects the resource information of other UAV
nodes and task information sent by ground terminals in period Ts. And it can also compute the proposed
joint optimization algorithm, which is used to assign tasks, and optimize the deployment of each UAV
node. Therefore, we design the application flow as follows.

• The UAV nodes form an ad-hoc network, and then the appropriate core node can be selected
according to the distributed Raft election algorithm [41], which is very suitable for the election problem
of distributed networks.

• Ground terminals send task information to the nearest UAV nodes. The core node collects task
information and then computes the joint optimization algorithm to reduce the system cost of offloading.

• The core node broadcasts the task scheduling strategy, deployment optimization policies to other
UAV nodes. Each node updates its position and velocity according to the results of joint optimization
algorithm and performs task assistance.

The specific steps is also shown in Figure 2.

4 Simulation results

This section demonstrates the performance of the proposed algorithm.
Consider a square task area with a length of 500 m in which M UAV nodes and K ground terminals

are distributed randomly. The UAV nodes form a self-organizing network based on the ad-hoc network
architecture, and their service coverage can cover the entire task area. Considering the limitations in
reality, we set the range of UAV node deployment height between 120 and 500 m [36]. According to the
parameters in reality and literature [42], the specific simulation parameters are presented in Table 2.

To verify the effectiveness of the proposed joint optimization algorithm, the performance must be
compared with benchmark algorithms. Benchmark algorithms should have the characteristics of most
of the existing algorithms and have a certain degree of optimization performance for the proposed prob-
lem. Based on these principles, the following two algorithms are used as the benchmark algorithms for
performance comparison:
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Table 2 Simulation parameters

Parameter Value

Task area size 500 m

Number of UAV nodes M = 5

Deployment height range of UAV nodes [120, 500] m

Flight velocity range of UAV nodes [0, 20] m/s

Maximum flight energy of the UAV node eflymax = 8 × 104 J

Number of computing tasks per ground terminal [1, 3]

Computing resources of UAV nodes cm = [16, 48] G CPU cycles

Ground terminal signal transmission power pD = 0.5 W

Communication bandwidth between the UAV and the ground terminal 30 Mbps

Computing rate of UAV nodes fm = [3, 5] GHz

Computing rate of the ground terminal fk = 1 GHz

Amount of task input data In = [5, 10] Mbits

Coefficient of the relationship between the cycles of computation required for the

task and its amount of input data
κ = 1000

CPU capacitance coefficient of UAV nodes and ground terminal γ = 10−27

Noise power spectral density σ2 = −174 dBm/Hz

Channel gain with a distance of 1 m gD
0 = −50 dB

Blade profile power in the hovering state P0 = 158.76 W

Induced power in the hovering state Pi = 88.63 W

Tip velocity of the rotor blade Utip = 120 m/s

Average rotor-induced velocity in hover v0 = 4.03 m/s

Fuselage resistance ratio d0 = 0.3

Rotor solids s = 0.05 kg/m3

Air density ρ = 1.225 kg/m3

Rotor disk area A = 0.503 m2

Task collaboration policy update cycle Ts = 300 s

Initial energy of the UAV node e0 = 4 × 105 J

(1) Heuristic algorithm (HA). Each task selects the UAV node for offloading according to the
lowest system cost composed of task delay and energy consumption. When the computing resource of
the selected UAV node is insufficient, the task will select the next lowest UAV node for offloading, and
so on, until it is left locally. Moreover, the coordinate center point, which indicates the center position
of all matched ground terminal coordinates, is taken as the optimal position of the UAV node under
the condition that the flight altitude remains unchanged. Consequently, in most cases, it will reduce the
transmission delay. The velocity is set to a constant of 15 m/s.

(2) Random-access and fixed position algorithm (RFA). The tasks and UAV nodes were ran-
domly matched under the constraint. The coordinate center point of the matched ground terminal was
taken as the optimal position of the UAV node under the condition that the flight altitude remains
unchanged, and the velocity was set to a constant of 15 m/s.

(3) Swap matching-based task scheduling and UAV deployment algorithm (SMTDA).
In map discretization, the problem of UAV node location deployment is transformed into a one-to-one
matching problem. Finally, the swap-matching method was used to simultaneously iteratively optimize
the task scheduling and UAV node location deployment strategy [43]. In the simulation, altitude and
velocity were set as constant of 200 m and 15 m/s, respectively.

In HA, since the ground terminal can access the UAV node with the lowest system cost, the partici-
pation of an ad-hoc network can be avoided. On the contrary, because of the need for global information
exchange, the proposed algorithm and SMTDA must work in the proposed self-organizing architecture
using the proposed strategy. Therefore, the following comparative experiments can also further illustrate
the effectiveness of our proposed architecture and algorithm:

Initially, we demonstrated the convergence of the proposed algorithm where the number of UAV nodes
M = 5, number of ground terminals K = 20, and computing resources of UAV nodes cm = 40 G CPU
cycles. In the simulation results, the system cost is defined as the objective function in the optimization
problem P1. In Figure 3, the proposed algorithm can converge within four iterations under different
weights, which shows that the proposed algorithm has fast convergence and is conducive to the scheduling
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Figure 4 (Color online) Deployment of UAV nodes in different cases. (a) Delay-sensitive case; (b) energy-sensitive case.

strategy computation of UAV nodes in the distributed architecture.

Then, we demonstrated the deployment of the UAV nodes with different task requirements. Figure 4
demonstrates the deployment of UAV nodes in the delay-sensitive case (α = 0.9) and the energy-sensitive
case (β = 0.9), where the computing resources of UAV nodes cm = 40 G CPU cycles and the number
of ground terminals K = 10. The simulation results in Figures 4(a) and (b) show that most UAV
nodes will choose to fly in the direction of the ground terminal concentration area after the position of
ground terminals changes. Figure 4(a) also shows that to save task delay as much as possible, the flight
distance of most UAV nodes is short in the delay-sensitive case. Conversely, Figure 4(b) shows that the
flight distance of most UAV nodes is long in the energy-sensitive case because in the flight power model,
when the flight velocity is < 20 m/s, hovering energy consumption is always greater than flight energy
consumption. Thus, energy consumption should be reduced, and most UAV nodes tend to prolong flight
time.

To verify the effectiveness of the proposed algorithm, we randomly set the initial positions of UAV nodes
and ground terminals many times according to the Monte Carlo method. Furthermore, the performance of
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Figure 5 (Color online) Comparison with different number of ground terminals in delay-sensitive case. (a) Comparison of task
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Figure 6 (Color online) Comparison with different numbers of ground terminals in the energy-sensitive case. (a) Comparison of

energy consumption; (b) comparison of system cost.

the proposed algorithm was observed when the number of ground terminals and the computing resources
of UAV nodes were changed.

Initially, we demonstrated the effectiveness of the proposed algorithm by varying the number of ground
terminals in different delay-sensitive cases (α = 0.9, 0.7) and energy-sensitive cases (β = 0.9, 0.7) in
Figures 5–7, where the computing resources of UAV nodes cm = 40 G CPU cycles.

Figure 5 shows the system performance in the delay-sensitive case. We compared the proposed al-
gorithm and the two benchmark algorithms in the delay-sensitive case. Compared with HA and RFA,
the task delay and system cost of the proposed algorithm were significantly reduced. However, with the
increase of ground terminals, the task load becomes increasingly heavy, and the system cost increases
gradually toward the system cost without cooperation because the computing resources and communica-
tion bandwidth of the UAV node are limited in the system.

Then, we compared the system performance by varying the number of ground terminals in the energy-
sensitive case. The simulation result in Figure 6 shows that compared with HA and RFA, the energy
consumption and system cost of the proposed algorithm are greatly reduced. However, by increasing the
ground terminals, the task load gradually became heavy, and the system cost gradually increased.

To verify the system performance of the energy-consumption weight optimization proposed in this
paper, the survival time of the UAV network was also simulated. The UAV network survival time is defined
as the total execution time when the first UAV node exits the network because of insufficient energy.
In addition, we added the performance of the proposed algorithm without weight optimization in the
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energy-sensitive case.
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Figure 8 (Color online) Comparison with different computing resources of UAV nodes in the delay-sensitive case. (a) Comparison

of task delay; (b) comparison of system cost.

simulation, which is named PAWWO in Figure 7. In the energy-sensitive case, compared with HA, RFA,
and PAWWO, the UAV network survival time of the proposed algorithm has greatly improved, which
shows the effectiveness of the proposed algorithm. When the number of ground terminals is small, most
tasks will be offloaded to UAV nodes. Therefore, with the increase in the number of ground terminals,
the survival time of the UAV network decreases rapidly. Otherwise, when there is task overloading, some
tasks will be computed locally at the ground terminal without increasing the execution cost of UAV
nodes. As a result, the decreasing trend of the survival time of the UAV network becomes slower.

Furthermore, we demonstrated the effectiveness of the proposed algorithm by varying the computing
resources of UAV nodes in different cases in Figures 8–10, where the number of ground terminals K = 15.

Figure 8 compares the system performance in the delay-sensitive case. The simulation result shows that
compared with HA and RFA, the task delay and system cost of the proposed algorithm are significantly
reduced when the task is delay sensitive. With the increase in computing resources, the offloaded tasks
gradually increased; thus, the system cost gradually decreased.
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Figure 9 (Color online) Comparison with different computing resources of UAV nodes in the energy-sensitive case. (a) Comparison

of energy consumption; (b) comparison of system cost.
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Figure 10 (Color online) Comparison of the survival time of
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energy-sensitive case.

Figure 11 (Color online) Influence of different weights on sys-

tem performance.

Then, we illustrated the system performance by varying the computing resources of UAV nodes in
the energy-sensitive case. The simulation result Figure 9 shows that compared with HA and RFA, the
energy consumption and system cost of the proposed algorithm are greatly reduced. Since the energy
consumption required for task offloading to the UAV nodes is generally greater than that required for
local computing, with the increase in computing resources, more and more tasks are offloaded to UAV
nodes to assist in computing, resulting in the gradual increasing of the system cost. Similarly, when the
computing resources change, the effectiveness of the energy-consumption weight optimization is verified
in Figure 10.

Finally, we explored the effect of task delay weight α and energy weight β on system performance under
different numbers of ground terminals. The simulation results in Figure 11 show that for the proposed
algorithm, the task delay weight α and energy weight β can effectively control the optimization of task
delay and energy consumption. It further illustrates the contradictory relationship between task delay
and energy consumption, in which maximum optimization is difficult to obtain at the same time.



Zhang T K, et al. Sci China Inf Sci September 2023 Vol. 66 192303:19

5 Conclusion

Owing to the broken link with the ground BS, aerial computing effectively accelerates task execution.
Therefore, we studied the problem of task scheduling and multi-UAV deployment in emergency commu-
nication networks. To minimize task delay and energy consumption, we proposed a joint optimization
algorithm based on task scheduling, position, and velocity optimization. The simulation results showed
that compared with the benchmark algorithms, the proposed joint optimization algorithm performed
better in reducing task delay and energy consumption, and prolonging network lifetime.

Acknowledgements This work was supported in part by Beijing Natural Science Foundation (Grant No. 4222010), National

Key Research and Development Program of China (Grant No. 2019YFC1511302), and Key Technology Research Project of Jiangxi

Province (Grant No. 2013AAE01007).

References

1 Munich R. Natcatservice Loss Events Worldwide 1980–2014. Munich: Munich Reinsurance, 2015

2 Stanford D K. Unmanned aircraft systems. 2009. https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470664797.fmatter

3 Zeng Y, Zhang R, Lim T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE

Commun Mag, 2016, 54: 36–42

4 Wang H, Wang J, Ding G, et al. Completion time minimization with path planning for fixed-wing UAV communications.

IEEE Trans Wireless Commun, 2019, 18: 3485–3499

5 Xu Y, Zhang T, Liu Y, et al. UAV-assisted MEC networks with aerial and ground cooperation. IEEE Trans Wireless Commun,

2021, 20: 7712–7727

6 Zhao N, Lu W, Sheng M, et al. UAV-assisted emergency networks in disasters. IEEE Wireless Commun, 2019, 26: 45–51

7 Sun Y, Wang T, Wang S. Location optimization and user association for unmanned aerial vehicles assisted mobile networks.

IEEE Trans Veh Technol, 2019, 68: 10056–10065

8 Ueyama J, Freitas H, Faical B S, et al. Exploiting the use of unmanned aerial vehicles to provide resilience in wireless sensor

networks. IEEE Commun Mag, 2014, 52: 81–87

9 Sabella D, Vaillant A, Kuure P, et al. Mobile-edge computing architecture: the role of MEC in the Internet of Things. IEEE

Consumer Electron Mag, 2016, 5: 84–91

10 Du J, Cheng W, Lu G, et al. Resource pricing and allocation in MEC enabled blockchain systems: an A3C deep reinforcement

learning approach. IEEE Trans Netw Sci Eng, 2022, 9: 33–44

11 Messaoudi F, Ksentini A, Bertin P. On using edge computing for computation offloading in mobile network. In: Proceedings

of IEEE Global Communications Conference (GLOBECOM), 2017

12 Du J, Yu F R, Lu G, et al. MEC-assisted immersive VR video streaming over terahertz wireless networks: a deep reinforcement

learning approach. IEEE Int Things J, 2020, 7: 9517–9529

13 Liao Z, Peng J, Huang J, et al. Distributed probabilistic offloading in edge computing for 6G-enabled massive Internet of

Things. IEEE Int Things J, 2021, 8: 5298–5308

14 Pham Q V, Ruby R, Fang F, et al. Aerial computing: a new computing paradigm, applications, and challenges. IEEE Int

Things J, 2022, 9: 8339–8363

15 Zheng J, Anpalagan A, Guizani M, et al. Guest editorial: aerial computing: drones for multi-access edge computing. IEEE

Wireless Commun, 2021, 28: 10–12

16 Cheng N, Xu W, Shi W, et al. Air-ground integrated mobile edge networks: architecture, challenges, and opportunities. IEEE

Commun Mag, 2018, 56: 26–32

17 Liao Z, Ma Y, Huang J, et al. HOTSPOT: a UAV-assisted dynamic mobility-aware offloading for mobile-edge computing in

3-D space. IEEE Internet Things J, 2021, 8: 10940–10952

18 Erdelj M, Natalizio E, Chowdhury K R, et al. Help from the sky: leveraging UAVs for disaster management. IEEE Pervasive

Comput, 2017, 16: 24–32

19 Zhang S, Cheng W. Statistical QoS provisioning for UAV-enabled emergency communication networks. In: Proceedings of

IEEE Globecom Workshops (GC Wkshps), 2019. 1–6

20 Gu J, Su T, Wang Q, et al. Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE

Commun Mag, 2018, 56: 82–89

21 Budaev D, Amelin K, Voschuk G, et al. Real-time task scheduling for multi-agent control system of UAV’s group based on

network-centric technology. In: Proceedings of International Conference on Control, Decision and Information Technologies

(CoDIT), 2016. 378–381

22 Zhang L, Chakareski J. UAV-assisted edge computing and streaming for wireless virtual reality: analysis, algorithm design,

and performance guarantees. IEEE Trans Veh Technol, 2022, 71: 3267–3275

23 Zhang T, Xu Y, Loo J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT.

IEEE Trans Ind Inf, 2020, 16: 5505–5516

24 Zhang K, Gui X, Ren D, et al. Energy-latency tradeoff for computation offloading in UAV-assisted multiaccess edge computing

system. IEEE Int Things J, 2021, 8: 6709–6719

25 Hu X, Wong K K, Yang K, et al. UAV-assisted relaying and edge computing: scheduling and trajectory optimization. IEEE

Trans Wireless Commun, 2019, 18: 4738–4752

26 Wang L, Wang K, Pan C, et al. Deep reinforcement learning based dynamic trajectory control for UAV-assisted mobile edge

computing. IEEE Trans Mobile Comput, 2022, 21: 3536–3550

27 Ning Z, Dong P, Wen M, et al. 5G-enabled UAV-to-community offloading: joint trajectory design and task scheduling. IEEE

J Sel Areas Commun, 2021, 39: 3306–3320

28 Sun Y, Xu D, Ng D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication

systems. IEEE Trans Commun, 2019, 67: 4281–4298

29 Cai Y, Wei Z, Li R, et al. Joint trajectory and resource allocation design for energy-efficient secure UAV communication

systems. IEEE Trans Commun, 2020, 68: 4536–4553

30 Pang X, Zhao N, Tang J, et al. IRS-assisted secure UAV transmission via joint trajectory and beamforming design. IEEE

Trans Commun, 2022, 70: 1140–1152

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470664797.fmatter
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1109/TWC.2019.2914203
https://doi.org/10.1109/TWC.2021.3086521
https://doi.org/10.1109/MWC.2018.1800160
https://doi.org/10.1109/TVT.2019.2933560
https://doi.org/10.1109/MCOM.2014.6979956
https://doi.org/10.1109/MCE.2016.2590118
https://doi.org/10.1109/TNSE.2021.3068340
https://doi.org/10.1109/JIOT.2020.3003449
https://doi.org/10.1109/JIOT.2020.3033298
https://doi.org/10.1109/JIOT.2022.3160691
https://doi.org/10.1109/MWC.2021.9615123
https://doi.org/10.1109/MCOM.2018.1701092
https://doi.org/10.1109/JIOT.2021.3051214
https://doi.org/10.1109/MPRV.2017.11
https://doi.org/10.1109/MCOM.2018.1700422
https://doi.org/10.1109/TVT.2022.3142169
https://doi.org/10.1109/TII.2019.2948406
https://doi.org/10.1109/JIOT.2020.2999063
https://doi.org/10.1109/TWC.2019.2928539
https://doi.org/10.1109/TMC.2021.3059691
https://doi.org/10.1109/JSAC.2021.3088663
https://doi.org/10.1109/TCOMM.2019.2900630
https://doi.org/10.1109/TCOMM.2020.2982152
https://doi.org/10.1109/TCOMM.2021.3136563


Zhang T K, et al. Sci China Inf Sci September 2023 Vol. 66 192303:20

31 Tianze L, Muqing W, Min Z, et al. An overhead-optimizing task scheduling strategy for ad-hoc based mobile edge computing.

IEEE Access, 2017, 5: 5609–5622

32 Haas Z J, Pearlman M R. The performance of query control schemes for the zone routing protocol. IEEE ACM Trans Netw,

2001, 9: 427–438

33 Yang Z, Pan C, Wang K, et al. Energy efficient resource allocation in UAV-enabled mobile edge computing networks. IEEE

Trans Wireless Commun, 2019, 18: 4576–4589

34 Wang H, Wang J, Ding G, et al. Completion time minimization for turning angle-constrained UAV-to-UAV communications.

IEEE Trans Veh Technol, 2020, 69: 4569–4574

35 Simon E P, Ros L, Hijazi H, et al. Joint carrier frequency offset and channel estimation for OFDM systems via the EM

algorithm in the presence of very high mobility. IEEE Trans Signal Process, 2012, 60: 754–765

36 Zeng Y, Xu J, Zhang R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans Wireless

Commun, 2019, 18: 2329–2345

37 Bodine-Baron E, Lee C, Chong A, et al. Peer effects and stability in matching markets. In: Proceedings of the 4th International

Conference on Algorithmic Game Theory, 2011

38 Scutari G, Facchinei F, Lampariello L. Parallel and distributed methods for constrained nonconvex optimization-part I: theory.

IEEE Trans Signal Process, 2017, 65: 1929–1944

39 Scutari G, Facchinei F, Lampariello L, et al. Parallel and distributed methods for constrained nonconvex optimization-part

II: applications in communications and machine learning. IEEE Trans Signal Process, 2017, 65: 1945–1960

40 Wang K Y, So A M C, Chang T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks:

tractable approximations by conic optimization. IEEE Trans Signal Process, 2014, 62: 5690–5705

41 Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In: Proceedings of USENIX Annual Technical

Conference (USENIX ATC 14), 2014. 305–319

42 Zhou Y, Pan C, Yeoh P L, et al. Communication-and-computing latency minimization for UAV-enabled virtual reality delivery

systems. IEEE Trans Commun, 2021, 69: 1723–1735

43 Zhang T, Wang Y, Liu Y, et al. Cache-enabling UAV communications: network deployment and resource allocation. IEEE

Trans Wireless Commun, 2020, 19: 7470–7483

https://doi.org/10.1109/ACCESS.2017.2678102
https://doi.org/10.1109/90.944341
https://doi.org/10.1109/TWC.2019.2927313
https://doi.org/10.1109/TVT.2020.2976938
https://doi.org/10.1109/TSP.2011.2174053
https://doi.org/10.1109/TWC.2019.2902559
https://doi.org/10.1109/TSP.2016.2637317
https://doi.org/10.1109/TSP.2016.2637314
https://doi.org/10.1109/TSP.2014.2354312
https://doi.org/10.1109/TCOMM.2020.3040283
https://doi.org/10.1109/TWC.2020.3011881

	Introduction
	Motivations and related work
	Contributions and organization

	System model and problem formulation
	Design of air-ground cooperation architecture
	Task execution model
	Hovering and flying consumption model
	Problem formulation

	Joint optimization algorithm
	Swap matching based task scheduling algorithm
	SCA based multi-UAV deployment algorithm
	Joint optimization algorithm

	Simulation results
	Conclusion

