
SCIENCE CHINA
Information Sciences

March 2023, Vol. 66 130301:1–130301:19

https://doi.org/10.1007/s11432-022-3652-2

c© Science China Press 2023 info.scichina.com link.springer.com

. REVIEW .
Special Topic: Spectrum, Coverage, and Enabling Technologies for Intelligent 6G

Pushing AI to wireless network edge: an overview on
integrated sensing, communication, and computation

towards 6G

Guangxu ZHU1, Zhonghao LYU2,3,1, Xiang JIAO4,1, Peixi LIU4,1, Mingzhe CHEN5,

Jie XU3,2*, Shuguang CUI3,2,1,7* & Ping ZHANG6,7

1Shenzhen Research Institute of Big Data, Shenzhen 518172, China;
2Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China;

3School of Science and Engineering (SSE), The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China;
4State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics,

Peking University, Beijing 100871, China;
5Department of Electrical and Computer Engineering and Institute for Data Science and Computing,

University of Miami, Coral Gables FL 33146, USA;
6State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,

Beijing 100876, China;
7Peng Cheng Laboratory, Shenzhen 518066, China

Received 31 August 2022/Revised 2 November 2022/Accepted 13 December 2022/Published online 14 February 2023

Abstract Pushing artificial intelligence (AI) from central cloud to network edge has reached board con-

sensus in both industry and academia for materializing the vision of artificial intelligence of things (AIoT) in

the sixth-generation (6G) era. This gives rise to an emerging research area known as edge intelligence, which

concerns the distillation of human-like intelligence from the vast amount of data scattered at the wireless

network edge. Typically, realizing edge intelligence corresponds to the processes of sensing, communication,

and computation, which are coupled ingredients for data generation, exchanging, and processing, respectively.

However, conventional wireless networks design the three mentioned ingredients separately in a task-agnostic

manner, which leads to difficulties in accommodating the stringent demands of ultra-low latency, ultra-high

reliability, and high capacity in emerging AI applications like auto-driving and metaverse. This thus prompts

a new design paradigm of seamlessly integrated sensing, communication, and computation (ISCC) in a task-

oriented manner, which comprehensively accounts for the use of the data in downstream AI tasks. In view

of its growing interest, this study provides a timely overview of ISCC for edge intelligence by introducing its

basic concept, design challenges, and enabling techniques, surveying the state-of-the-art advancements, and

shedding light on the road ahead.
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Citation Zhu G X, Lyu Z H, Jiao X, et al. Pushing AI to wireless network edge: an overview on integrated

sensing, communication, and computation towards 6G. Sci China Inf Sci, 2023, 66(3): 130301, https://doi.org/10.

1007/s11432-022-3652-2

1 Introduction

With the commercialization of fifth-generation (5G) wireless networks, we are moving toward a new era
where everything is connected. The convergence of modern information and communications technologies,
such as the internet of things (IoT), cloud computing, mobile edge computing (MEC), and big data
analytics, is prompting a huge leap in social productivity and management efficiency. Moreover, artificial
intelligence (AI) is achieving great success in various applications and continues its explosive growth and
penetration into all walks of life, driving the ongoing convergence of communication networks with AI
technology. Specifically, in the current 5G network, AI has been used as an add-on module to boost
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Figure 1 (Color online) Edge AI connections and data growth. (a) Number of mobile and IoT connections [7]; (b) global data

traffic growth [9].

network performance, while in the future 6G era, it will be deeply integrated into the network design
to achieve the so-called AI-native network. As foreseen, the future 6G wireless communication networks
will go beyond a pure data delivery pipeline and become a comprehensive platform integrating sensing,
communication, computation, and intelligence to deliver pervasive AI services [1–3].

1.1 Edge AI

The interplay between wireless communication networks and AI technology can be generally classified
into two categories: AI-assisted communication [4] and communication-assisted AI [5]. AI-assisted com-
munication, which refers to the use of AI to help existing communication systems (e.g., channel estimation
and signal detection [6]), boosts the end-to-end performance of communication links to achieve higher
rates, lower latency, and better connectivity. Conversely, communication-assisted AI, which refers to the
use of communication networks to help AI acquisition, allows for distributed AI training and inference
across the entire network, as well as the delivery of pervasive AI services.

The current study focuses on communication-assisted AI, which has received increasing attention from
academia and industry in recent years, as various AI applications such as industrial Internet, smart
cities, virtual reality (VR), augmented reality (AR), smart health, metaverse, and auto-driving, continue
to mature and gain popularity. Traditional communication-assisted AI based on cloud data processing,
which requires the delivery of a large amount of data collected by the edge devices to the cloud for AI
distillation, cannot support the emerging mission-critical AI applications mentioned above due to the
following challenges.

• Massive data and network connectivity. According to Cisco, global business volumes increased
at a rate of nearly 42% per year between 2018 and 2020. As shown in Figure 1(a), the total number of
connected devices worldwide is expected to reach 29.3 billion by 2023, with 5.7 billion mobile connections
and 14.7 billion IoT connections [7]. Furthermore, according to Huawei [8], the total number of global
network connections will reach 200 billion by 2030, with wireless and passive connections constituting
approximately half of the total. Moreover, besides the massive number of temperature, humidity, pressure,
and photoelectric sensors in the industrial sector, the network will also include a large number of smart
vehicles, robots, and drones. The ever-growing amounts of data and network connections increase the
demand for communication capacity and computing power.

• Data sinking. Previously, big data, such as online shopping records, social media content, and
business information, was primarily generated and stored in hyperscale data centers. However, with the
proliferation of mobile and IoT devices, this trend is now being reversed. Till 2021, all people, machines,
and things have generated nearly 85 zettabytes of usable data at the network edge. In contrast, as shown
in Figure 1(b), global data center traffic had only reached 21 zettabytes by 2021 [9]. In the traditional
cloud computing design, the massive data sinking to the network edge need to be transferred to a central
cloud server far away from the edge for analysis and processing, which will undoubtedly result in an
unacceptable communication cost and delay.

• Ultra-low latency requirements. Most new AI services require high-demand network connec-
tions with ultra-low latency and ultra-high reliability. For example, smart industrial Internet requires
real-time state feedback, data analysis, and highly accurate control [1]. Similarly, VR and AR applications
request real-time aggregation, analysis, and reconstruction on three-dimensional images for complex con-
trol feedback. In such cases, the required closed-loop sensing-communication-computation latency must



Zhu G X, et al. Sci China Inf Sci March 2023 Vol. 66 130301:3

Figure 2 (Color online) The concept of edge AI and three related scenarios. (a) Centralized edge learning; (b) federated edge

learning; (c) edge inference.

be within approximately one millisecond, which poses formidable challenges to the current communication
networks.

To address these issues, industry and academia have agreed on bringing computing power and AI
functionality close to data, leading to a new technical breakthrough called “edge computing” or “fog
computing” [10]. As its name implies, edge computing aims to relocate some of the data processing
and storage for specific services from the central cloud to the distributed edge network nodes, which are
physically and logically closer to the data provider, so as to achieve the desired low latency. Moreover, AI
seeks to emulate human intelligence in a machine by learning from the data. Naturally, the convergence
of edge computing and AI gives rise to a new domain called edge AI [9], which aims to provide mobile
terminals with low-latency AI services by exploiting both the computing resources and data scattered
at the network edge. Due to its promising performance gain, edge AI has received increasing attention
from both academia and industry and has become a popular area in the field of communication-assisted
AI [2, 11, 12].

As shown in Figure 2, edge AI can include two types of learning, depending on where the data is
processed: centralized edge learning and distributed edge learning. After the AI model is well-trained,
it can be deployed for edge inference. In the early stage of edge AI, the AI model is attained via
centralized edge learning in many large AI companies (e.g., Google, Facebook, and Microsoft) [11].
However, centralized edge learning requires uploading the private raw data (e.g., personal photos in
smart phones) from edge devices to an edge server, which may pose a huge challenge to user data privacy.
However, owing to the Moore’s law, the power of computing chips, such as central processing units
(CPUs) and graphics processing units (GPUs), has continuously been upgraded with decreasing costs
and size. Particularly, with the emergence of dedicated AI chipsets, the computing power of edge devices
has increased tremendously and can now support the running of machine learning (ML) tasks, driving the
rapid development of distributed edge learning, such as federated edge learning (FEEL), to exploit the
rich distributed computing resources at the network edge. Moreover, in FEEL, data privacy is preserved
because the need to upload raw data is waived in favor of sharing the less privacy-sensitive gradient or
model updates.
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Figure 3 (Color online) Sensing, communication, and computation in edge AI.

1.2 Integrated sensing, communication, and computation (ISCC)

In practice, a complex system (e.g., the edge AI system) generally consists of three coupled processes,
namely sensing, communication, and computation, as shown in Figure 3. However, in traditional wire-
less networks, these three processes are designed separately for different goals: sensing for obtaining
high-quality environmental data, communication for data delivery, and computation for executing the
downstream task within a certain deadline. Such a separate design principle encounters difficulty in
accommodating the stringent demands of ultra-low latency, ultra-high reliability, and high capacity in
emerging 6G applications such as auto-driving and metaverse. This thus prompts a new wireless design
paradigm of ISCC [13] in a task-oriented manner, which comprehensively accounts for the use of the
data in the downstream tasks (e.g., AI applications) in 6G. In the literature, there have been some prior
studies on the integration of two of the above three entities. Some examples include joint communication
and computation resource management, over-the-air computation (AirComp), and integrated sensing and
communication (ISAC), which are elaborated in the following.

1.2.1 Joint communication and computation resource management

Data acquisition and model computation are typically separate processes in traditional complex commu-
nication systems. With the rapid increase in data volumes in MEC, the communication and computation
capabilities at the network edge become the bottleneck. Particularly, the limited wireless resources make
it challenging for the edge server to receive significant amounts of data from edge devices swiftly through
wireless links. Hence, many researches have focused on joint communication and computation resource
management to tackle this issue in MEC. For example, in [14], in order to minimize the energy and
delay cost of the multi-user multi-task MEC system, the authors used a separable semidefinite relaxation
method to jointly optimize the offloading decision and communication resource allocation. In [15], in
order to solve the resource allocation problem for MEC, the authors proposed an effective solution to
maximize the quality of service (QoS) of all mobile devices, by transforming the problem into a linear
programming model. Besides, in [16], by using an online algorithm based on Lyapunov optimization,
the energy-latency trade-off problem of multi-user MEC systems is studied, where the computation tasks
arrive at the mobile devices in a stochastic manner. In addition, Ref. [17] solved the problem of reducing
the total energy consumption at the edge server in wireless-powered multi-user MEC systems, by jointly
optimizing the AP’s energy transmit beamforming, the user’s CPU frequency, the number of offloaded
bits, and the time allocation among users to improve MEC performance. Furthermore, joint communi-
cation and computation cooperation was exploited in MEC in [18], where a neighboring user node serves
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as not only a relay node for helping task offloading of a user, but also a computation helper to help re-
motely execute some of tasks of that user. Joint communication and computation resource management
is essential to ensure the information security, mobile energy saving, and so on.

1.2.2 AirComp

AirComp has emerged as a promising technology in recent years. As opposed to “communication then
computing”, AirComp integrates computing into communication, resulting in a new technique featuring
“communication while computing”. In contrast to traditional wireless communication over a multi-access
channel (MAC), which requires separate transmission and decoding of information, AirComp allows edge
devices to simultaneously transmit their respective signals on the same frequency band with proper
processing, such that the functional computation of the distributed data is accomplished directly over
the air. This thus significantly improves the communication and computing efficiency, and considerably
reduces the latency required for multiple access and data fusion.

Ref. [19] provided a comprehensive overview of AirComp by introducing the basic principles, discussing
the advanced techniques and promising applications, and identifying promising research opportunities.
In order to achieve reliable AirComp in practice, Ref. [20] focused on the power control problem in
AirComp, and the optimal power allocation under both deterministic and fading channels was derived
by minimizing the mean-squared error (MSE) of the aggregated signals. Similarly, Ref. [21] minimized
the computation MSE at the receiver by optimizing the transmitting and receiving policy under the
maximum power constraint of each sensor. While only a single cell was considered in [20, 21], the power
control problem of AirComp in the multi-cell scenario was considered in [22]. To quantify the fundamental
AirComp performance trade-off among different cells, in [22], the Pareto boundary of the multi-cell MSE
region was characterized by minimizing the MSE subject to a set of constraints on individual MSE.
Note that the work in [20–22] only considered the scenario with a single antenna. Ref. [23] generalized
AirComp to the multiple-input-multiple-output (MIMO) setup to support multi-modal sensing with high
mobility, where MIMO-AirComp equalization and efficient channel feedback were designed for spatially
multiplexing multi-function computation. Subsequently, AirComp in more complex systems has been also
considered in the literatures. For example, Ref. [24] considered to use reconfigurable intelligent surface
(RIS) to assist AirComp. Besides, under imperfect channel state information, Ref. [25] investigated
the joint optimization of transceiver and RIS phase design for AirComp systems. In [26], when the
ground receiver is unavailable, unmanned aerial vehicles (UAVs) are utilized to establish line-of-sight
(LoS) connections by tracking mobile sensors, and thus improving the performance of AirComp.

1.2.3 ISAC

ISAC generally refers to the integration of sensing and communication into a unified design in wireless
networks to enhance the efficiency of spectrum use allowing a mutual benefit via sensing-assisted commu-
nication and communication-assisted sensing [27]. In comparison to traditional wireless networks, ISAC
can use the wireless infrastructure as well as limited spectrum and power resources for both communica-
tion and sensing, which can potentially improve the system performance at a lower cost.

ISAC is one of the potential key technologies in 6G networks that have received a lot of attention in the
literature. Many studies have focused on joint sensing and communication in [28]. For example, Ref. [29]
proposed a dual-functional MIMO radar communication system that consists of a transmitter with mul-
tiple antennas that can communicate with downlink cellular users and detect radar targets at the same
time. In [30], a joint transmit beamforming model for a dual-function MIMO radar and multiuser MIMO
communication transmitter was proposed and the weighting coefficients of the radar beamforming were
designed. Ref. [31] also considered the beamforming optimization problem in ISAC system, and the radar
sensing performance is maximized subject to the communication users’ minimum signal-to-interference-
plus-noise ratio (SINR) requirements and the transmit power constraint of the base station (BS). Ref. [32]
employed the Cramér-Rao bound (CRB) as a performance metric of target estimation, and the CRB of
radar sensing is minimized while guaranteeing a pre-defined level of SINR for each communication user.
Ref. [33] considered a UAV-enabled ISAC system, where UAV trajectory/deployment and beamforming
design are jointly considered to balance the sensing-communication performance trade-off under quasi-
stationary and mobile UAV scenarios, respectively. Furthermore, using RIS to facilitate radar sensing
and ISAC has attracted growing research interests (see [34–38]). For instance, Ref. [34] derived the fun-
damental CRB for RIS-enabled non-line-of-sight (NLoS) sensing. Ref. [35] jointly designed the transmit
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beamforming and the RIS reflective beamforming for ensuring both sensing and communication perfor-
mance. Ref. [36] used RIS for a joint design of constant-modulus waveform and discrete phase shift to
mitigate multi-user interference in ISAC. In addition, Ref. [37] elaborated the benefits of RIS in wireless
communication, sensing, and security, and envisioned that the RIS-assisted communication and sensing
will mutually benefit each other. Ref. [38] considered the combination of ISAC and AirComp to improve
the spectral efficiency and sensing performance, and the beamformers for sensing, communication, and
computation were jointly optimized. Ref. [39] used ISAC in smart homes to provide inconspicuous sensing
and ubiquitous connectivity. Besides joint sensing and communication, there is also a line of research on
sensing-assisted communication. For example, a radar-assisted predictive beamforming design for vehicle-
to-infrastructure communication was investigated in [40], and it was found that the communication beam
tracking overheads can be drastically reduced by exploiting the radar functionality of the road side unit.

1.2.4 Task-oriented ISCC towards edge AI

As previously stated, sensing, computation, and communication have a symbiotic relationship, especially
in the context of edge AI. Specifically, the ultimate performance of edge AI depends on the input feature
vector’s distortion level arising from three processes, i.e., data acquisition (sensing), feature extraction
(computation), and feature uploading to the edge server (communication). Particularly, sensing and
communication compete for radio resources, and the allowed communication resource further determines
the required quantization (distortion) level such that the quantized features can be transmitted reliably
to the edge server under a delay constraint. Thereby the three processes are highly coupled and need
to be jointly considered. Furthermore, the implementation of ISCC should be designed under a new
task-oriented principle that concerns the successful completion of the subsequent AI task. Different from
conventional communication system design aiming at maximizing the data-rate throughput, the ultimate
performance metrics of interest for the system become the inference/training accuracy, latency, energy
efficiency, etc. For instance, an edge AI task-oriented ISCC scheme can be designed to maximize the
inference/training accuracy under constraints on low latency and on-device resources. This is in sharp
contrast to the classic separation-based design approach that considers the sensing, communication, and
computation processes in isolation.

1.3 Structure of the survey

Different from prior studies considering the integration of sensing and communication or computation and
communication in generic wireless networks, we focus on their integration towards edge AI applications.
As a result, we classify them based on three application scenarios, i.e., centralized edge learning, FEEL,
and edge inference. The remaining of the survey is organized as shown in Figure 4. In Section 2, we
first review the joint communication and computation resource management, mixup data augmentation
with AirComp, and ISAC, respectively, in centralized edge learning, and then discuss the related research
opportunities. In Section 3, we discuss the joint communication and computation resource management
in federated learning, the application of AirComp into FEEL, and the combination of ISAC and FEEL, as
well as the related research opportunities. In Section 4, we first discuss the joint source and channel coding
(JSCC), then present joint communication and computation resource management in edge inference,
over-the-air edge inference, and co-inference with ISAC, respectively, and highlight several key research
opportunities. Finally, Section 5 concludes the article.

2 Centralized edge learning

With the continuing development of deep learning (DL) in recent years, the increasing DL model complex-
ity has posed a grand challenge in training due to the demand for computation power and storage capacity.
There are two basic strategies to accommodate the increasing demands for the resources required by DL
at the centralized cloud: scaling-up, which involves adding extra processing and storage resources to a
single central server, and scaling-out [41], which involves forming a server cluster by networking multiple
servers each with certain computing and storage capacity. The recent rapid development of MEC makes
it possible to deploy the mentioned two strategies at the network edge so as to “bring the computation
power close to the data”, leading to an emerging research area known as centralized edge learning.
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Figure 4 (Color online) The structure of this article.

In the centralized edge learning, the data are first collected on the client side and then transferred
through the wireless channel to a central edge server. The central server then stores and processes the
data, and finally returns the learned model back to the client. This architecture is simple to deploy
and manage, particularly in circumstances where the data are scattered across geographically dispersed
nodes. However, due to the need for centralized data processing, long delays and high transmission
costs accompany when the communication channel between the devices and the central server is poor.
Furthermore, due to the central edge server’s limited computational power and storage resources, it is
difficult to enable the construction of complicated models based on massive datasets using centralized
edge learning. Therefore, in order to improve the efficiency of centralized edge learning, the sensing,
communication, and computation processes need to be jointly designed and the associated resources
should be judiciously managed as described in the sequel.

2.1 Joint communication and computation resource management in centralized
edge learning

As previously stated, centralized edge learning may introduce a significant delay, which will be catas-
trophic in delay-sensitive applications such as autonomous driving and VR games. Furthermore, the
massive data communication places a significant strain on the backbone network, resulting in significant
computation overhead for the central server. Thus, centralized edge learning exists at the crossroads of
two domains: communication and computing. This thus brings many interdisciplinary research oppor-
tunities, and joint design is required to manage the resource in two domains in order to overcome the
challenges to accomplish fast and efficient intelligence acquisition. Different from the goal of traditional
communication systems in throughput maximization, centralized edge learning systems aim to maximize
learning performance. With that said, classic resource management strategies in wireless communication
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Figure 5 (Color online) Transmitting procedure in AirMixML.

literatures may not lead to the optimal learning performance as the key learning factors such as model
and data complexity are not taken into account. For example, considering a support vector machine
(SVM) and a convolutional neural network (CNN), they can achieve different learning accuracies with
the same size of training data set. Furthermore, the communication cost of transferring a data sample in
various ML tasks can vary significantly. As a result, new resource allocation algorithms are required for
centralized edge learning.

There have been several prior studies proposing optimized resource allocation schemes for centralized
edge learning in recent years. One efficient design is to schedule the joint communication and computation
processes based on the data importance. Ref. [42] proposed a data-importance-aware user scheduling
scheme for edge ML systems targeting SVMmodels, where the data are classified into different importance
levels according to a derived data importance measure, so that more resources can be allocated to the
data with higher importance. Furthermore, the design based on SVM in [42] was then extended to CNN,
in which the authors considered the retransmission decision problem featuring quantity-quality tradeoff
in training data in the presence of transmission data errors. Unlike the traditional automatic-repeat-
request which focuses solely on reliability, the proposed scheme in [42] selectively retransmitted data
samples based on their importance in order to accelerate the convergence speed of the training process.
The other line of research focuses on the learning-centric wireless resource allocation. Ref. [43] proposed a
nonlinear classification error model via data fitting for ML tasks. Based on this, a learning-centric power
allocation scheme was proposed. Furthermore, Ref. [44] employed statistical learning to forecast the
relationship between the learning accuracy of various tasks and the amount of training data. This thus
yields a tractable learning performance to be maximized by using differential convex programming (DCP)
and the derived optimal solution shows that the optimal transmission time is inversely proportional to
the generalization error.

2.2 Mixup data augmentation with AirComp

AirComp is another integrated communication-and-computation design that can be exploited to enhance
the efficiency of centralized edge learning, and particularly combined with the mixup data augmentation.
Mixup is a well-known data augmentation technology [45], which in essence trains neural networks using
convex combinations of data and labels, thus regularizing neural networks to make it easier to learn
simple linear behaviors between training samples.

As shown in Figure 5, Ref. [46] combined mixup and AirComp, in which an ML framework called over-
the-air mixup ML (AirMixML) is proposed to take advantage of the natural distortions and superpositions
properties of wireless channels. Multiple users in AirMixML send analog modulated signals of their private
data samples to a central server, which uses the received aggregated noisy samples to train ML models,
while protecting the user’s privacy. AirMixML was shown to achieve the same accuracy as the learning
using raw data samples, but with much stronger privacy protection. Specifically, AirMixML adjusts the
privacy disclosure level of the transmitted signal by controlling the user’s transmit power, and the Dirichlet
dispersion ratio controls the local power contribution of each worker to the superimposed signal. Despite
the pioneering contribution of AirMixML as the first privacy-preserving centralized edge ML framework
exploiting over-the-air signal superposition and additional channel noise, there is still much room for
improvement before practical application.
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2.3 Centralized edge learning with ISAC

Sensing and communication are carried out sequentially in traditional communication systems. Neverthe-
less, in ISAC systems, the sensing and communication are implemented with a shared signal waveform.
This thus motivates many prior studies that proposed to accelerate the centralized edge learning by ISAC.
In particular, ISAC allows a highly efficient use of wireless signals for simultaneous dataset generation
and transmission. Nevertheless, additional interference between sensing and communication is introduced
by ISAC, which needs to be dealt with before practical use.

As a pioneering work in this direction, Ref. [47] proposed a classification error minimization method
for joint beamforming design and time allocation. After that, several follow-up studies appear. For
example, in [48], the user conducted sensing and communication on the same spectrum using an MIMO
array. In this work, the authors proposed a multi-objective optimization problem for jointly optimizing
transmit precoding for sensing, communication, and allocating computation resources, by considering
both beampattern design and energy consumption in multi-user MIMO radar processing. As another
example, Ref. [49] studied the throughput maximization in a multi-user MEC system using a sense-then-
offload protocol. Furthermore, Ref. [50] investigated a traffic-aware task offloading scheme in a vehicular
network and proposed an offloading mechanism based on the sensed environment data. Ref. [51] proposed
a brandnew sensory system with ISAC based on analog spike signal processing.

2.4 Research opportunities

Despite the research efforts discussed above for efficient centralized edge learning, there are still many
unexplored territories yet, which are discussed as follows.

• Secure data uploading. The centralized edge learning architecture may suffer from the single
point of failure issue, that is, the central server is prone to attack by malicious users who may upload
forged or poisoned data to mislead the entire training process. Therefore, how to build a trustworthy
mechanism to guard against the potential attack in the data uploading process is a critical issue that
warrants further study.

• Data-importance aware systems. Due to the limited communication resources in a real com-
munication system, it is often not possible to transmit all of the datasets, so it is necessary to selectively
transmit the data in order to train the network more efficiently. Furthermore, the importance of data
changes during the transmission process (for example, a certain large category of data is important until
it is transmitted, but after a certain amount of data have been transmitted, the same large category of
data has little impact on the training), and this aspect has not been considered in previous studies.

• Task-oriented ISCC in centralized edge learning. The various learning tasks in centralized
edge learning frequently require the simultaneous support of sensing, communication, and computation
functions. As a result, joint resource management for ISCC is required to improve the performance of
centralized edge learning. There is still an unexplored territory for task-oriented ISCC targeting edge
inference, warranting further investigation.

3 FEEL

FEEL is a machine learning paradigm where multiple edge devices collaborate in training a shared ML
model, and each device’s raw data is stored locally and not exchanged or transferred. From the networking
perspective, FEEL can be divided into two classes, including centralized FEEL and decentralized FELL.
Centralized FEEL is the most popular FEEL architecture, in which an edge server coordinates the ML
model training among the edge devices. Unlike centralized FEEL, decentralized FELL is a network
topology without any central server to coordinate the training process, in which all edge devices are
connected in a peer-to-peer manner to perform the model training. In FEEL, the sensing, communication,
and computation are three coupled processes for training an ML model. To begin with, the edge devices
must sense the environment (e.g., by using the equipped radio sensors) in order to obtain data for training
ML models. Second, the edge devices compute model updates using local computing power. Finally, the
edge devices upload local model updates to the edge server via the uplink channel, and the edge server
broadcasts the global model to each edge device via the downlink channel. Wireless communication,
sensing, and computation all have different effects on FEEL. This thus prompts the necessity for a joint
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design of the three processes especially under the stringent constraints on the on-device resources (e.g.,
bandwidth and energy), as surveyed in the sequel.

3.1 Joint communication and computation resource management in FEEL

In FEEL, the heterogeneity of edge devices in terms of radio sources, channel status, and computational
capabilities is a common issue that has a direct impact on the ultimate learning performance such as
accuracy and latency. This thus calls for joint communication and computation resource allocation for
FEEL performance optimization. Specifically, the mentioned device heterogeneity essentially leads to
distinct uploading time between different devices and edge servers. As a result, if the edge server uses
synchronized aggregation of the model updates of the edge devices, the edge device with the longest delay
dominates the communication time of a single round. To address this issue, Ref. [52] investigated the
optimal scheduling scheme for edge devices to minimize the training time of FEEL, but the communication
resource optimization is not involved. In [53], the heterogeneous channel conditions of edge devices are also
considered, in which the objective is to maximize the number of participating edge devices, by optimizing
the scheduling scheme of edge devices and the allocation of communication resources including transmit
power and bandwidth. In addition to the heterogeneity in channel conditions, the edge devices tend to
be heterogeneous in computing capabilities as well. For instance, both Refs. [54, 55] comprehensively
considered the heterogeneity of edge devices in terms of channel conditions and computing capabilities,
and studied the optimal scheduling scheme for edge devices and the optimal communication resource
allocation. The difference between [54,55] is that the considered problem in [54] only focuses on a single
communication round and each communication round is treated equally. In contrast, Ref. [55] explicitly
took the importance of different communication rounds into consideration and investigated the bandwidth
allocation and edge device scheduling problems under long-term energy constraints. Moreover, imperfect
wireless channel conditions are also investigated in [55].

On the other hand, edge devices need to utilize local computing resources for model updates. Research
on computing resource management mainly focuses on two directions: optimization of the CPU/GPU
frequency of edge devices [56,57] and optimization of the batch size used in model updates (e.g., stochas-
tic gradient descent) [58,59]. Since edge devices are usually heterogeneous in terms of computing power,
the time for completing training and the energy consumed by FEEL can be largely wasteful if the com-
puting power of different edge devices is not reasonably tuned. Both Refs. [56, 57] consider the total
energy consumption of the system and the required training time at the same time in the optimization
objectives to optimize the CPU frequency of different edge devices, as well as system variables such as
communication resources and device scheduling. For the case where the edge devices cannot effectively
adjust the computing frequency, Ref. [58] optimized the batch size of different devices to align the com-
munication delay between different edge devices and the edge server, thus reducing the training time for
FEEL. Unlike [58], which only considers the optimization within a single communication round, Ref. [59]
focused on the whole FEEL training process, where the authors considered a long-time dynamic resource
optimization problem, and a scheme based on Lyapunov optimization is proposed to jointly optimize the
computing frequency and the batch size of each edge device in different communication rounds.

Besides the heterogeneity of communication and computation, the data heterogeneity is also typical in
federated learning, as the data collected at different devices usually have different distributions depending
on, e.g., the application scenarios, locations, and user behaviors. Some prior studies tended to manage
the communication and computation resources in FEEL, by considering the effects of data heterogeneity.
For example, in [60], the optimal client sampling strategy that tackles both system and data heterogeneity
is designed to minimize the training time with convergence guarantee in a FEEL system with resource-
constrained devices. Ref. [61] considered quantized FEEL with data heterogeneity, and jointly optimized
the quantization level and the bandwidth allocation to minimize the training time.

3.2 Over-the-air FEEL (Air-FEEL)

Air-FEEL has emerged as a promising solution for communication-efficient edge AI [62]. As shown in
Figure 6, over-the-air model/gradient aggregation is used in Air-FEEL to improve spectral efficiency
of FEEL. It is shown in [63] that, compared with the conventional orthogonal multi-access, Air-FEEL
can reduce the communication latency by a factor approximately equal to the number of devices without
significant loss of the learning accuracy. Various research efforts have been spent on different directions in
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Figure 6 (Color online) Illustration of the Air-FEEL system.

Air-FEEL, such as resource management, device scheduling, and privacy preserving schemes as introduced
as follows.

In Air-FEEL, edge devices can control their transmit power adaptively to reduce aggregation error for
model/gradient aggregation, and thus improve learning accuracy or convergence rate. Ref. [64] developed
the optimized power control to minimize the AirComp MSE, which exhibits a threshold-based structure
depending on the channel conditions at different edge devices. Rather than minimizing the aggregation
MSE in each round independently, Ref. [20,65] optimized power allocation across multiple global rounds to
accelerate the convergence rate. Device scheduling is another efficient technique for improving Air-FEEL
performance via addressing resource heterogeneity by dropping edge devices with poor communication and
computation conditions. Ref. [66] presented a joint design of device scheduling and receiving beamforming
in which the edge devices with weak signal strengths after receiving beamforming were dropped from the
training process. Furthermore, Ref. [67] investigated device scheduling by taking into account their
diverse energy constraints and computation capabilities, and an energy-aware dynamic device scheduling
algorithm based on Lyapunov optimization was proposed. It is noteworthy that, in addition to the
benefit of reducing multiple-access latency, Air-FEEL offers an additional advantage in improving data
privacy. Although the original FEEL algorithm came with a certain level of privacy protection due to
the avoidance of raw data transmission, local training data can still be inferred, to some extent, from the
local model updates by modern model inversion techniques [68]. As a fix, Air-FEEL limits eavesdroppers’
access to the aggregated updates, hiding each individual local update in the sea of others. A further free
mask that can be used to safeguard the privacy of the data is the random disturbance that the channel
noise imposes on the aggregated updates [69]. A more comprehensive overview on Air-FEEL can refer
to [62].

Although AirComp is beneficial for model aggregation in Air-FEEL due to the inherent superposition
property of wireless channels, Air-FEEL also suffers from the straggler issue in which the device with the
weakest channel acts as a bottleneck of the model aggregation performance. To address this issue, Ref. [70]
leveraged the RIS technology in Air-FEEL, and a unified communication-learning optimization problem
is solved to jointly optimize device selection, over-the-air transceiver design, and RIS configuration. The
aforementioned studies all focused on the centralized FEEL, in which a central edge server is required to
orchestrate the training process. Ref. [71,72] considered decentralized FEEL in the scenario where an edge
server is not available or reliable, in which the authors considered the precoding and decoding strategies
for device-to-device communication-enabled model/gradient aggregation and proposed an AirComp-based
decentralized stochastic gradient decent with gradient tracking and variance reduction algorithm to reach
the consensus.
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Figure 7 (Color online) Illustration of the FEEL system with ISAC.

3.3 FEEL with ISAC

FEEL also be exploited to train AI models in wireless sensing networks, and in this case, ISAC can be
integrated to enhance the data acquisition and uploading processes, as shown in Figure 7. However, it is
still an open problem to design edge learning systems with sensing and communication coexistence [27].

In ISAC, sensing and communication can be integrated in three different levels. At the first level, the
sensing and communication signals may occupy orthogonal time-frequency resources, which do not inter-
fere with each other functionally but compete for time-frequency resources, so the reasonable resource
allocation between sensing and communication is a key issue when communication and sensing orthog-
onally coexist. For example, in [73], the sensing and communication work in a time-division manner,
so that sensing and communication jointly compete for time resources. Based on this, a mathematical
relationship between sensing time and learning performance is experimentally fitted and the trade-off
between learning performance and communication rate is analyzed in [73]. Ref. [74] considered hori-
zontal FEEL with ISAC and jointly optimized the sensing, communication, and computation resources,
where sensing and communication occupy the same frequency band and different time durations, similarly
in [73]. At the second integration level, sensing and communication may work on the same time-frequency
resources but use separated signal waveforms, and they will interfere with each other, so how to manage
interference becomes particularly important. In [75], the relationship between learning performance and
sensing/communication resources is obtained by considering sensing and communication working on the
same time-frequency resources and linking the learning performance to the quantity of sensed samples.
Since sensing and communication may interfere with each other spatially, in [75], the beam directions
of the perception and communication signals are optimized with the goal of maximizing the learning
performance. In the third level, sensing and communication functions are simultaneously implemented
using a shared signal waveform, which can effectively improve the system spectrum efficiency, hardware
efficiency, and information processing efficiency [27, 76, 77]. Ref. [78] was the first to combine level-three
ISAC with over-the-air analog aggregation technology and jointly designed beamforming for both sensing
and communication signals, laying the foundation for the subsequent application of ISAC to FEEL. Un-
leashing the full potential of FEEL by combining with ISAC has very significant application prospects. In
order to save frequency resources, the same ISAC signal is adopted for both sensing and communication
in [79], and a cooperative sensing scheme based on vertical FEEL is proposed to enhance the sensing
performance.

3.4 Research opportunities

Despite the research efforts discussed above for efficient FEEL, here lists some unexplored problems and
challenges to motivate future studies.



Zhu G X, et al. Sci China Inf Sci March 2023 Vol. 66 130301:13

• Multi-modal data sources. In real-world sensing systems, the edge devices involved in training
may have different types of sensors, such as radio sensors or cameras, and the sensed data may have
different modalities [80]. In such cases, a FEEL system with ISCC for multimodal data needs to be
designed and optimized.

• Dynamic sensing environments. Most of the current studies consider static sensing environ-
ments, but in real scenarios the sensing environment may keep changing over time and the distribution
of the sensed data samples will no longer be stationary. How to design a FEEL system with ISCC for
dynamic sensing environments is also a topic worthy of in-depth study.

• Task-oriented ISCC in FEEL. Few current studies on FEEL have considered specific sensing
processes, mostly focusing on resource optimization for communication and computation. Various types
of learning tasks in FEEL often require the support of sensing, communication, and computation functions
at the same time, resulting in a variety of complex relationships such as coupling, collaboration, and even
competition among the three mentioned modules. Therefore, in order to improve the performance limit
of FEEL, joint resource management of sensing, communication, and computation is required.

4 Edge inference

Apart from the training phase discussed above, edge inference is another important aspect for supporting
the successful implementation of AI technologies at wireless edge [81]. Specifically, for edge inference,
a well-trained ML model needs to be deployed at the network edge to run AI tasks in real time (such
as classification, recommendation, and regression), which is beneficial to computation/storage/power-
limited edge devices and delay-sensitive AI tasks [82]. Thus, edge inference has become an important
technique to enable various AI applications, such as metaverse, auto-driving, and smart cities in 6G
networks. For example, in auto-driving, the vehicles need to detect obstacles to avoid accidents under
stringent latency constraints. To guarantee high detection accuracy, more sophisticated deep neural
network (DNN) architectures are preferable for the detection, i.e., ResNet-50 [83]. However, ResNet-50
contains 50 convolutional layers, and demands nearly 100 megabytes of memory for storage. On one
hand, it is non-trivial to deploy such complicated DNN on edge devices with limited computation and
storage capacity. However, deploying it merely on the cloud server may induce intolerable delay and
increase the risk of accidents. To deal with such a dilemma, edge inference provides a promising solution
with a better trade-off among computation power, storage capacity, and communication latency.

There are three different methods to implement edge inference, namely, on-device inference [84], on-
server inference [85, 86], and split inference [87–100]. For on-device inference, the computation is ac-
complished merely on edge devices, which is non-trivial for recent increasingly complex AI models and
computation/storage/power-limited edge devices. To tackle such issue, the on-server inference is designed.
However, on-server inference suffers from the communication bottleneck due to the potential high-volume
data transmission over the band-limited wireless channels in the presence of uncertain channel fading,
under the stringent low-latency constraint. Also, the computation resources at edge servers may still
fall short when running some large-scale AI tasks. Nevertheless, potential information leakage during
data uploading from the edge devices to the edge server may lead to privacy issues in edge inference. To
tackle these problems, the split inference is proposed jointly considering techniques such as joint source
and channel coding (JSCC) [87–92, 101], joint communication and computation resource management
design [93–97], and AirComp [98, 99]. Furthermore, as a recently proposed technique, ISAC has drawn
increasing research interests [27]. Intuitively, ISAC can further reduce the latency of edge inference due
to the integrated data sensing and uploading processes [100]. The joint management of sensing, commu-
nication, and computation resources in this case is more difficult. In the following, we discuss the above
techniques in detail.

4.1 JSCC in edge inference

Generally, when uploading features from the devices to the server to perform inference, the fluctuating
wireless channels may introduce lossy transmission, which calls for proper design of JSCC for efficient
feature transmission. Moreover, in some sense, JSCC can be viewed as a novel design principle incorpo-
rating both communication and computation into a joint design. With the recent development of DL,
deep JSCC has been widely investigated to alleviate excessive signaling overhead as well as improve the
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robustness to channel distortion. For example, for classification tasks, Refs. [87,88] proposed a retrieval-
oriented wireless image transmission framework to maximize the classification accuracy, where the JSCC
framework is trained by the cross-entropy between the predictions and the ground-truth labels. More-
over, information bottleneck (IB) [101] was proposed to extract minimum features to fulfill certain tasks
sufficiently. Under the guidance of IB, an image classification task was considered in [89] by designing
a framework of task-oriented JSCC. By combining IB with stochastic optimization, the same task was
considered in [90] to minimize energy consumption as well as service latency simultaneously. Considering
edge inference with multiple edge devices, a task-oriented JSCC framework was designed in [91], where
a group of edge nodes performs the classification task coordinated by an edge server. Furthermore, some
initial exploration has been made in [92] to deal with the multi-modal data, where a task-oriented se-
mantic communication scheme was proposed and the cross-entropy objective with multiuser multi-modal
data fusion was considered.

4.2 Joint communication and computation resource management in edge inference

Edge inference typically involves local feature extraction and uploading to the edge server for further
processing, which may encounter both communication and computation bottlenecks. Specifically, on
one hand, transmitting data through wireless links naturally suffers from channel impairment, especially
when the AI services have stringent low-latency requirements. On the other hand, processing data at
devices and servers incurs computational delay, especially when a large number of devices require for AI
services simultaneously. Furthermore, there always exists a trade-off between the inference accuracy and
the computation-communication capability of the system in edge inference.

To address the above issues, joint management of communication and computation resources is con-
sidered in recent studies. For instance, in [93], the optimal control of inference accuracy and transmission
cost was modeled as a Markov decision process (MDP), and their trade-off is balanced via dynamically
selecting the optimal compression ratio with hard deadline requirements. By further considering the
proper split of AI models in multi-user edge inference systems, Ref. [94] jointly designed the model split
point selection and computational resource allocation to minimize the maximum inference latency. Also,
Ref. [95] studied the trade-off between the computational cost of the on-device model and the communi-
cation overhead of uploading the extracted features to the edge server. Then they propose a three-step
framework for inference, which contains model split point selection, communication-aware model compres-
sion, and task-oriented encoding mechanism for the extracted features. Due to the heavy computational
burden being offloaded on the server, it is also urgent to study the computation and inference accuracy
trade-off at the server side. Ref. [96] considered the early exiting technique, which allows a task exit from
certain layers of a DNN without traversing the whole network. In such a way, the joint management
of communication and computation resources could reduce the inference latency under various accuracy
requirements. Moreover, a progressive feature transmission protocol was proposed in [97], which contains
importance-aware feature selection and transmission-termination control. In such a protocol, the devices
transmit the extracted features progressively according to their importance, and once the inference ac-
curacy requirement is obtained, the transmission will stop. With such a design, the trade-off between
inference accuracy and communication-computation latency can be well balanced. Moreover, RIS has
recently emerged as a potential solution to provide a cost-effective way for enhancing the performance
of edge inference. For example, a RIS-aided green edge inference system was considered in [86], where
the set of tasks performed by each BS, uplink/downlink beamforming vectors of BSs, transmit power of
edge devices, and uplink/downlink phase-shift matrices at the RIS were jointly designed to minimize the
overall network power consumption.

4.3 Over-the-air edge inference

AirComp is also appealing for low-latency edge inference by seamlessly integrating communication and
computation, as shown in Figure 8. The research on over-the-air edge inference is still in its early stage.

An initial study of the AirComp-based multi-device edge inference system was made in [98], where
AirComp is utilized to aggregate multiple noisy feature observations of a common source to average out the
feature noise for boosting the inference accuracy. The authors first characterized the influence of sensing
and channel noise on inference accuracy by deriving a tractable surrogate performance metric called
discriminant gain. Then the authors maximized the inference accuracy by jointly optimizing the transmit
precoding and receiving beamforming. Besides the significantly enhanced spectrum efficiency, AirComp
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Figure 8 (Color online) Illustration of AirComp-based edge inference systems.

has additional benefit in privacy preservation. To exploit such property, Ref. [84] considered an ensemble
inference framework, where each device needs to transmit its predictions to the server for further fusion to
obtain final results. Apart from maximizing inference accuracy, the authors also considered maximizing
the privacy of the on-device models. To this end, AirComp is exploited for privacy-enhanced outcome
fusion as each individual predictive outcome is hidden in the crowd. Specifically, the authors introduced
different ensemble methods, such as belief summation and majority voting, and provided privacy analysis
for these AirComp-based fusion schemes. Finally, numerical results provided in [84] have shown that
the proposed AirComp-based solution significantly outperforms other orthogonal transmission schemes
in terms of the required communication overhead under the same target privacy guarantee. Moreover,
Ref. [99] also considered the privacy issues in edge inference. Specifically, they consider the distributed
inference of graph neural networks (GNNs). To deal with the possible privacy leakage problem arising
from the devices exchanging information with neighbors during decentralized inference, the authors first
characterized the privacy performance of the considered decentralized inference system. Then they design
privacy-preserving signals and the corresponding training algorithms in combination with AirComp to
further boost the privacy of the considered system.

4.4 Co-inference with ISAC

In future wireless networks, to support environment-aware intelligent applications, it is desirable to
process and upload the collected data from sensing devices for inference, where sensing, communication,
and computation are naturally coupled and need to be jointly designed. However, integrating ISAC with
edge inference introduces several issues. First, it is non-trivial to characterize the inference performance
in ISAC-enabled edge inference. Second, how to jointly design the resources for sensing, communication,
and computation to proper balance the trade-off among them is challenging. To deal with the above
issues, Ref. [100] studied a task-oriented ISCC-based edge inference system as shown in Figure 9, where
multiple ISAC devices collect sensing data, and then upload the quantized features to the server for
classification. The authors analyzed inference performance in such an ISCC-based system via deriving
the tractable measure for the inference accuracy called discriminant gain, based on which, the allocation of
sensing, transmit power, communication time, and quantization bits is jointly designed for the successful
completion of the subsequent classification task. Finally, some interesting design insights for balancing
the trade-off between sensing, communication, and computation were crystalized in [100]: the sensing
power and quantization bits should be enlarged as the number of classes increases in the classification
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task; otherwise, more communication power should be allocated if the channel conditions of the devices
are poor.

4.5 Research opportunities

Despite the research efforts discussed above for efficient edge inference, there are still many open problems
and challenges unexplored yet.

• Fundamental limits of JSCC. Similar to Shannon’s information theory, the fundamental limits of
semantic-based JSCC transmission for inference need to be characterized. Moreover, it is also interesting
to explore the number of optimized symbols for the successful completion of certain tasks via JSCC
transmission, which can balance the delay and accuracy trade-off in JSCC-based edge inference.

• Edge inference with multiple devices and/or multiple servers. For edge inference systems
with multiple devices and/or multiple servers, the device selection and server coordination need to be
further considered. On one hand, the selection of devices for inference needs to account for the trade-off
between delay and accuracy. On the other hand, a multi-server system requires flexible model deployment
for large-scale AI tasks, such as heterogeneous tasks with different models requirements.

• Task-oriented ISCC for edge inference. In edge inference, sensing, communication, and compu-
tation may compete for resources (such as radio and hardware). How to depict the relationship between
the inference performance and all the three mentioned processes is quite challenging, thus yielding the non-
trivial problem of joint management of sensing, communication, and computation resources. Although
Ref. [100] did an initial study in this direction, there still remain many uncharted issues warranting
further investigation. Moreover, to fully exploit edge intelligence, multi-modality sensors (such as laser
radar, millimeter-wave radar, and cameras) may be deployed at the wireless edge. How to process the
acquired multi-modal sensing data for efficient inference is also an interesting direction to pursue.

5 Concluding remarks

In the upcoming 6G era, we will witness a paradigm shift in network functions from connecting people
and things to connecting intelligence, driving the advancement of IoT in 5G to AIoT. Therefore, with the
help of 6G networks, AI is expected to spread from the cloud to the network edge to provide ubiquitous AI
services. However, traditional design principles of separating sensing, communication, and computation
cannot meet stringent requirements for latency, reliability, and capacity.

To tackle this issue, this study presents a timely literature survey on tasked-oriented ISCC for edge
intelligence. First, we introduce the motivation and basic principles of ISCC. Then, we introduce repre-
sentative studies on three different scenarios, i.e., centralized edge learning, FEEL, and edge inference,
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respectively, by focusing on joint communication and computing resource management, AirComp, and
ISAC in each scenario. Finally, interesting research directions are proposed to motivate future work.
We hope that this study can provide new insights into this interesting research topic and motivate more
interdisciplinary research connecting wireless sensing, wireless communication, machine learning, and
computing.
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