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Abstract Traditional energy-based sound source localization methods have the problems of the large so-

lution space and time-consuming calculation. Accordingly, this paper proposes to use the data collected by

each acoustic sensor and their corresponding weights to adaptively initialize the prior area of a target. In

this way, the potential existence range of the target is reduced and the location estimate can be determined

in a small area. Specifically, we first determine the initial search point based on the current sound data and

the set rules. Then, the prior location of the target is iteratively searched according to different sound energy

circles’ weights. Next, the prior area of the target is determined around the prior location. Finally, the precise

location of the target is further traversed to minimize the objective function, which is constructed by the

weighted nonlinear least squares location (WNLS) algorithm. A series of indoor experiments are performed.

The results show that our method can effectively improve the positioning accuracy by approximately 13%

and greatly reduce the calculation time.
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1 Introduction

Objects can be quickly located based on the sound they produce. Unlike visual signals [1], sound signals
can be used to locate targets in all directions and at all hours of the day. At present, sound information
and sound source localization techniques have been applied in various fields, such as target tracking [2–4],
acoustic fingerprint recognition [5], medical health monitoring [6], and visual-audio joint analysis [7].

Nowadays, many sound source localization methods have been proposed, such as multi-signal clas-
sification (MUSIC) algorithm [8], beamforming-based localization algorithm [9], cross-correlation-based
localization algorithm [10], and energy-based localization algorithm [11]. Among them, the MUSIC al-
gorithm can perform frequency estimation and radio direction finding. It achieves a high localization
performance with large parameters and data storage. An array of eight sound sensors was deployed
in [12], and then the MUSIC algorithm was used to locate the sound source. A novel method was
proposed in [13] to enhance the ability to distinguish noise signals from others for the MUSIC algorithm.

The beamforming-based localization algorithm [14] is widely used in the fields of unmanned aerial
vehicles and robots. Source localization and enhancement were studied in [15] using the beamforming-
based method. A robust adaptive beamforming-based method was proposed in [16] to estimate the
steering vectors. In the cross-correlation localization algorithms, the time difference of arrival (TDOA)-
based localization method was applied in [17] by estimating the time delay between two sensor nodes.
The localization problem for a moving object was considered in [18]. The sound direction of a mobile
robot interface was estimated in [19] with time delay information, and a cubic array was developed in [20]
to locate the sound source by combining the TDOA method.
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Generally, energy-based sound source localization methods have the advantages of simple calculation
form and low communication volume. Thus, they can be easily deployed on onboard platforms [21, 22].
Related energy-based methods can be classified into linear least squares (LLS) estimation, nonlinear least
squares (NLS) estimation, and maximum likelihood (ML) estimation. Among them, the LLS algorithm
eliminates the quadratic term of the sound source location by combining two sound energy circles, which
reduces the computational complexity at the cost of losing accuracy. Moreover, LLS needs more sensors to
locate targets in one measurement compared with NLS and ML. Objective functions built with a target’s
location in NLS and ML have complex nonlinear forms, which are difficult for computing analytical
solutions. RV-SRP [23] realized the balance between accuracy and speed by deploying sparse volumetric
grids. In [11], all feasible solutions were traversed to calculate the target location. A rough fine search
method was adopted in [24, 25] to reduce the computational complexity. However, a large search step in
the rough search stage may lead to the local minimum solution. In [26], a searching method based on the
event region was proposed. This method limited the feasible solution of a target’s location to the region
near the sensor node, which received the largest sound energy. However, this method is highly dependent
on the measurement data of a single sensor, so its positioning performance is sharply reduced when the
sensor faults.

To improve the calculation speed and localization accuracy of traditional energy-based sound source
localization methods, this paper proposes a prior area searching strategy, which adaptively initializes the
prior area of a target. Then, the target’s accurate position can be quickly found in the small prior area.
In our work, the target’s initial search point and prior area can be automatically determined. Moreover,
there are few hyperparameters in our work. We perform a series of indoor sound source localization
experiments on a rectangular sensor array. Experimental results demonstrate that compared with the
traditional method, we can achieve a better localization accuracy with a higher computation speed using
the proposed method. Moreover, the ablation studies further illustrate the effectiveness of our prior
searching strategy under different conditions.

Some related studies have emerged in source-seeking areas, which attempt to design feedback controllers
that guide movable onboard sensors to the source point in a limited time based on detected measurements.
In this context, a guidance strategy for autonomous robots was proposed in [27], where robots were
controlled to seek the odor source in an interactive way. The concentration measurement with a set of
distributed robots was studied in [28] under limited or all-to-all communication conditions. Each robot
could independently perform gradient estimation, which is the basis for its action. These studies can
effectively locate the target by measuring the emitted signal strength in real time. Moreover, in the area
of target localization based on the received signal strength, recurrent neural networks were used in [29]
to solve the nonlinear inequality-constrained optimization problem defined on a graph. In [29], the blind
sensor node localization was also successfully applied. By contrast, there are three differences between
our work and the aforementioned methods. First, different from the iterative searching strategy, the
global optimal position of a sound source target can be found in one measurement with our method.
Second, the sensor array applied in our experiments is fixed in place. Third, compared with the sensor
node networks in [29], targets can be located using fewer nodes (three or four) in our work.

The remainder of this paper is organized as follows. Section 2 models the sound source. Section 3
describes the sound source localization algorithm. Section 4 reports the prior area searching method.
Section 5 provides a series of related experiments and results. The detailed analyses are also presented.
Finally, Section 6 concludes this article.

2 Sound source modeling

In this section, we first present the definition of the near-field model of sound information and then
establish the energy attenuation model of sound information.

2.1 Near-field model

According to the distance between a sound sensor array and target, the sound field model can be divided
into the near-field model and the far-field model. The specific judgment condition is

r 6
2L2

γ
, (1)
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Figure 1 The diagram of the sound source’s near-field model.

where r represents the distance from the sound source to the sound sensor array, L is the distance between
sound sensor nodes, and γ is the wavelength of the sound source signal. As shown in Figure 1, we only
consider the near-field model, which satisfies the condition (1). Because the sound source is in a short
distance, the collected sound amplitude is different with different placements of sensor nodes.

2.2 Energy attenuation model

Generally, the signal produced by a sound source target will attenuate with the increase in distance. The
sound amplitude detected by the node i at time t is

ai(t) =
a(t)

‖ri − r(t)‖
+ vi(t), (2)

where ai(t) is the signal amplitude detected by the node i, a(t) is the amplitude of the sound source’s
signal, and vi(t) represents noise and follows the normal distribution. ri and r(t) are the positions of the
node i and sound source, respectively. The symbol ‖ · ‖ means calculating the Euclidean distance.

Non stationary sound signals can be considered stationary in a short time. Therefore, the energy E of
a continuous signal f(t) during a time interval T is

E =

∫ t0+T

t0

f2(t) · dt. (3)

The sound signal is sampled as a series of discrete values through the node i. Assuming that there
are M sampling points in a time period T around time t, based on (3), the short-time energy Si(t) of a
sound source at node i can be written as

Si(t) =
T

M

M
∑

n=1

a2i (n) =
T

M

M
∑

n=1

[

a(n)

‖ri − r(n)‖
+ vi(n)

]2

. (4)

Generally, noise is independent of the signal, so

M
∑

n=1

a(n)vi(n)

‖ri − r(n)‖
= 0, (5)

and according to (3), the energy S(t) of the sound source is

S(t) =
T

M

M
∑

n=1

a2(n). (6)
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Similarly, the energy εi(t) of noise vi can be written as

εi(t) =
T

M

M
∑

n=1

v2i (n). (7)

By substituting (5)–(7) into (4), we can obtain

Si(t) =
S(t)

‖ri − r(n)‖2
+ εi(t). (8)

In practice, the noise influence coefficient gi is added, and the expression of (8) becomes

Si(t) =
giS(t)

‖ri − r(n)‖2
+ εi(t). (9)

3 Sound source location reasoning

In this study, we use the weighted nonlinear least squares location (WNLS) algorithm [30] to solve the
position of a sound source. Let kij be the ratio between the distances of nodes i and j to the sound
source at time t. Then

kij =
‖ri − r(t)‖

‖rj − r(t)‖
=

[

Si(t)− εi(t)

Sj(t)− εj(t)

]− 1
2

. (10)

When the environmental signal-to-noise ratio is large, that is, S(t) ≫ ε(t), Eq. (10) can be simplified
as

kij =
‖ri − r(t)‖

‖rj − r(t)‖
=

[

Si(t)

Sj(t)

]− 1
2

, (11)

where the left term can be rewritten as

k2ij =
‖ri − r(t)‖2

‖rj − r(t)‖2
. (12)

In actual measurements, the sound energies collected by two sensors can hardly be the same. Therefore,
kij> 0 and kij 6= 1. Then, Eq. (12) can be transformed to

‖r(t) − Cij‖
2 = ρ2ij , (13)

where Cij =
ri−k2

ijrj

1−k2
ij

and ρij = |
kij‖ri−rj‖

1−k2
ij

|. For sensors i and j, the sound source target is located on

the circle with center of Cij and radius of ρij . This circle is called a sound energy circle in this paper.
Let the coordinates of the sound source target be O(x, y), which should meet the following requirements:

argmin
O(x,y)

n(n−1)
2

∑

m=1

|βm(‖O − Cm‖ − ρm)|, (14)

where n is the number of sensors, Cm is the center of the sound energy circle, ρm is the radius of the sound
energy circle, and βm is the weight of a sound energy circle. Three circles can determine the approximate
position of the sound source target. Therefore, the energy-based sound source location algorithm requires
at least three sound sensor nodes in one measurement.

4 Prior area searching

Based on the above analyses, solving the sound source target’s position is to search for the optimal
solution according to the function (14). To improve the localization accuracy and searching speed, we
propose a convex set-based algorithm for iteratively approaching the prior area of a target. In addition,
we propose a method for finding the initial search point of the target.
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Figure 2 (Color online) The search process of finding the

target’s prior area, which is drawn with a green box.

Figure 3 The influence of θm on the iterative process.

As shown in Figure 2, the convex set-based algorithm mainly includes two steps, which are simplified
as follows.

Step 1: Set the initial search point Ps, which is used as the initial point to iteratively find the prior
area of a target.

Step 2: Search for the optimal solution for the target’s position in a small range.
Let θm be the sound energy circle determined by sensors i and j. In the first step, the coordinate of

Ps is written as x0, and then the next position x1 is

x1 = x0 + δm(Pθm(x0)− x0), (15)

where δm is the size of the iterative step. The symbol θm represents the sound energy circle, which is the
closest to x0. A line segment can be obtained by connecting x0 and the center of θm, which intersects
with θm at point Pθm(x0).

Therefore, the iterative search process is

xt = xt−1 + δm(Pθm(xt−1)− xt−1). (16)

As shown in Figure 2, when there exist three sound energy circles θ1, θ2, and θ3, the prior location of
a target can be found through three iterations. In the second step, a small prior area is set around the
prior location. The prior location is close to Gt, which is the target’s actual position. In the small prior
area, positions are divided with a certain step and traversed to locate the target.

A series of experiments in Section 5 show that prior area searching can effectively simplify the calcu-
lation and improve localization accuracy. The following two key factors affect the algorithm.

• Value of δm. As shown in Figure 3, the current position is point a1, and the δm of position b2 is
larger than the δm of position b1. The findings show that the larger the δm is, the closer the next position
is to the sound energy circle. Therefore, δm represents the trust degree of the sound energy circle, which
has the same meaning as βm in (14). Thus, let δm = βm.

• Location of Ps. The selection of Ps affects the final positioning accuracy. A good Ps should be
close to the sound source target’s actual position. Here, we set Ps through the following steps.

Step 1: Select two sound sensor nodes i and j, which have the largest sum of the sound energy values
detected at time t.

Step 2: According to (13), the sound energy circle determined by sensors i and j is Cfirst.
Step 3: Select the two sound sensor nodes p and q, which have the second largest sum of sound energy

values detected at time t.
Step 4: According to (13), the sound energy circle determined by sensors p and q is Csecond.
Step 5: Solve the intersection points of Cfirst and Csecond. Three situations are considered.
(1) There are two intersections. Select any one of the two points as Ps.
(2) There is only one intersection. This point is chosen as Ps.
(3) There is no intersection. Draw a line segment by connecting the centers of two sound energy circles

Cfirst and Csecond. Then, the intersection of the line segment and Cfirst is chosen as Ps.
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Figure 4 (Color online) The location of initial search point. O1, O2, O3, and O4 are four sound sensors placed in a square array.

(a) The target is located at the position of (0, −0.5); (b) the target is located at the position of (0, −2.0).

The selected initial search points are shown in Figure 4, where Figures 4(a) and (b) are two situations
with targets at different positions. Sound energy circles determined by four sound sensor nodes are drawn
with different colors. It can be seen that Ps initialized by the above steps is close to the target’s actual
position Gt.

5 Experimental results

After the theoretical analyses, indoor sound source localization experiments and ablation studies are
performed to verify the accuracy and speed of our algorithm.

5.1 Experimental configurations

A series of experiments are conducted in a quiet room. As shown in Figure 5, we use four acoustic sensor
nodes, which are placed at O1, O2, O3, and O4 to receive sound signals. An Arduino board equipped
with an automatic voltage regulator (AVR) microcontroller is applied as the main controller to receive
signals, which are then sent to the computing platform for positioning targets. The coordinates of the
four sensor nodes are (−1.4,−3.3), (−1.4, 3.3), (1.4, 3.3), and (1.4,−3.3). We use 13-bit analog-to-digital
(AD) sampling, and the sampling frequency is 3 kHz. A car with horn is selected as the sound source
target. We conduct 14 sets of experiments (red horns 1–14 in Figure 5), where the sound source target
makes sound during a period of time. At each point, the sound information is measured nine times.
Finally, the average localization error is calculated.

For comparison, we choose the traditional method, which solves (14) by iterating over all points in the
sensor array’s coverage area. The loss exponent [11] in (9) is a variable, which is related to many terms,
such as temperature and wind speed. Here, we use the TDOA-based acoustic source localization method
to measure the loss exponent, and its value is 2.08, which is close to 2. There are six sound energy circles
that are produced by every two acoustic sensors. The weights of these sound energy circles are manually
set to 0.9, 0.85, 0.75, 0.65, 0.65, and 0.65. The prior area mentioned in Section 4 is a square area with a
length of 4 m. The step sizes in our proposed method and the traditional method are uniformly set to
0.1 m.

5.2 Indoor sound source localization experiments

The Euclidean distance between the estimated position and actual position is used as the localization
error to measure the quality of different methods. During the experiments, random noise is added to the
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Figure 5 (Color online) The related indoor experimental configurations.

Table 1 Experimental results of proposed method and traditional method

Number Target coordinate
Localization error of proposed method (m) Localization error of traditional method (m)

SNR∞ SNR30db SNR20db SNR10db SNR∞ SNR30db SNR20db SNR10db

1 (0, 3.3) 0.19 0.13 0.11 0.65 0.10 0.28 0.78 0.85

2 (−1.4, 2) 0.25 0.14 0.13 1.00 0.22 0.32 0.40 0.80

3 (0, 2) 0.33 0.35 0.05 1.32 0.36 0.36 0.36 1.30

4 (1.4, 2) 0.26 0.30 0.11 0.37 0.30 0.32 0.10 1.60

5 (−1.4, 0.5) 0.22 0.42 0.08 0.75 0.22 0.30 0.89 1.51

6 (0, 0.5) 0.26 0.26 0.45 0.74 0.20 0.22 0.32 1.00

7 (1.4, 0.5) 0.29 0.04 1.00 0.88 0.32 0.10 0.67 0.45

8 (−1.4, −0.5) 0.29 0.31 0.30 0.51 0.30 0.20 0.82 0.00

9 (0, −0.5) 0.35 0.39 0.91 0.45 0.30 0.40 0.78 1.43

10 (1.4, −0.5) 0.65 0.32 0.03 2.12 0.54 0.82 0.64 0.86

11 (−1.4, −2) 0.08 0.00 0.10 1.30 0.10 0.20 0.10 1.22

12 (0, −2) 0.59 0.54 0.63 1.32 0.61 0.58 0.71 1.00

13 (1.4, −2) 0.34 0.41 0.30 1.12 0.40 0.20 0.20 0.58

14 (0, −3.3) 0.80 1.01 0.63 0.00 0.80 0.81 0.51 1.24

Average error 0.35 0.33 0.35 0.89 0.34 0.37 0.52 0.99

collected sound signal to verify the performances of our method and the traditional method under different
signal-to-noise ratios (SNRs). The experimental results are shown in Table 1. Reasonably, the positioning
errors of different methods decrease with the increase in SNR. Moreover, the average localization error
of our method is approximately 0.48 m, whereas that of the traditional method is approximately 0.55 m.
The results show that our accuracy improves by 13% compared to that of the traditional method. In
addition, the advantage of our method becomes increasingly obvious as the SNR increases.

The processes of the sound source localization using the traditional method and our method are shown
in Figures 6 and 7. Among them, Pr in Figure 6 represents the estimated position of a target using the
traditional method. Ps and Pe in Figure 7 are the initial search point and final estimated position using
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Figure 6 (Color online) The sound source localization processes with the traditional method in an indoor environment.
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Figure 7 (Color online) The sound source localization processes with the proposed method in an indoor environment.

our method, respectively. In addition, the black line segments are the iterative processes from Ps to Pe.
The results show that our method gradually approaches the target’s ground-truth position from Ps to
Pe, and the results of our method are more accurate than those of the traditional method.
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Table 2 Experimental results with three acoustic sensors

Number Target coordinate
Localization error of proposed method (m) Localization error of traditional method (m)

SNR∞ SNR30db SNR20db SNR10db SNR∞ SNR30db SNR20db SNR10db

1 (0, 3.3) 0.14 0.15 0.49 0.19 0.14 0.15 0.05 1.22

2 (−1.4, 2) 0.21 0.30 0.42 1.25 0.22 0.19 0.12 1.03

3 (0, 2) 0.32 0.34 0.33 0.17 0.31 0.30 0.23 1.46

4 (1.4, 2) 0.45 0.68 0.11 0.61 0.44 0.23 0.04 0.56

5 (−1.4, 0.5) 0.26 0.10 1.39 0.12 0.26 0.55 0.84 0.19

6 (0, 0.5) 0.21 0.25 0.60 2.16 0.21 0.30 1.32 1.42

7 (1.4, 0.5) 0.63 0.74 1.09 2.81 0.63 0.49 0.03 1.44

8 (−1.4, −0.5) 0.31 0.25 0.62 1.60 0.31 0.34 1.63 0.21

9 (0, −0.5) 0.70 1.16 0.21 0.89 0.70 0.64 1.43 0.27

10 (1.4, −0.5) 1.00 0.53 1.44 1.23 1.00 1.50 0.13 1.67

11 (−1.4, −2) 0.12 0.13 0.13 0.07 0.12 0.15 0.38 0.28

12 (0, −2) 1.62 1.43 0.77 0.69 1.61 1.54 1.37 2.01

13 (1.4, −2) 1.19 1.14 1.61 2.35 1.19 1.13 1.18 3.03

14 (0, −3.3) 2.02 2.05 1.24 2.41 2.02 2.02 2.38 2.64

Average error 0.65 0.66 0.75 1.18 0.66 0.68 0.79 1.25

Table 3 Experimental results under SNR3db

Number Target coordinate
Localization error (m)

Our method Traditional method

1 (0, 3.3) 1.38 1.33

2 (−1.4, 2) 0.52 1.50

3 (0, 2) 2.08 1.50

4 (1.4, 2) 1.20 0.55

5 (−1.4, 0.5) 2.11 0.93

6 (0, 0.5) 0.26 2.06

7 (1.4, 0.5) 2.81 3.54

8 (−1.4, −0.5) 1.93 2.85

9 (0, −0.5) 1.11 3.14

10 (1.4, −0.5) 2.14 1.80

11 (−1.4, −2) 0.06 2.85

12 (0, −2) 1.17 0.90

13 (1.4, −2) 0.13 2.31

14 (0, −3.3) 1.95 0.78

Average error 1.35 1.86

5.3 Ablation studies

5.3.1 Influence of sensor faults

In practice, sensor faults may occur during measurements. In this part, we evaluate the performance
of our method when one sensor faults. Experiments are conducted by removing the measurement data
from one of the acoustic sensors (O4). The experimental results are shown in Table 2. When a sensor
faults, our method has a lower localization accuracy compared with those shown in Table 1. Moreover,
major errors exist in the measurements 12, 13, and 14, where targets are located near O4. This outcome
is reasonable because sound energy circles are sparse near O4. Furthermore, the average location errors
of our method under different SNRs are smaller than those of the traditional method, which shows the
effectiveness of our method.

5.3.2 Influence of noisy area

We conduct experiments under SNR3db to clarify the performance of our method in a highly noisy area.
The experimental results are shown in Table 3. The average positioning errors of our method and the
traditional method in the highly noisy area are 1.35 m and 1.86 m, respectively. This result shows that
our prior searching strategy brings an improvement of 0.51 m on the localization accuracy.
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Figure 8 (Color online) Visualization results of different methods in a noisy area.

Table 4 Experimental results with different step sizes and prior areas

Method
Average localization error (m)

Mean error (m)
SNR∞ SNR30db SNR20db SNR10db

Tra-0.1 0.34 0.37 0.52 0.99 0.55

Tra-0.05 0.36 0.37 0.49 0.91 0.53

PAS-s 0.36 0.34 0.43 0.96 0.52

PAS-l 0.35 0.33 0.35 0.89 0.48

We further visualize the positioning results of the two methods in Figure 8. The green circles represent
the confidence regions obtained by computing the standard deviations from Table 3 (0.86 m and 0.96 m
for our method and the traditional method). In Figure 8, the first and second rows show the positioning
results of the traditional method and our method, respectively. Compared with the traditional method,
the positioning result of our method is more accurate, and the confidence region covers the target’s
ground-truth location more easily. One reason that explains this phenomenon may be that Eq. (14)
contains many local minima under a noisy area, which confuses the traditional methods. Our method
avoids this problem to some extent by setting the prior area to bound the potential existence area of a
target in advance.

5.3.3 Influence of step size and prior area

We further analyze the influence of the step size and the size of prior area on the localization performance
of different algorithms. Traditional methods with step sizes of 0.1 m and 0.05 m are named Tra-0.1 and
Tra-0.05, respectively. Our proposed methods with prior area lengths of 2 m and 4 m are abbreviated as
PAS-s and PAS-l, respectively. In addition, the step sizes in PAS-s and PAS-l are 0.1 m. The experimental
results are shown in Table 4, where the mean localization errors of Tra-0.1 and Tra-0.05 are larger than
those of PAS-s and PAS-l. Moreover, PAS-l has the best accuracy of 0.48 m.

The traditional method can achieve a more accurate positioning result with a smaller step size and
larger search area but with a longer calculation time. For the traditional method, when the search area
is 10 m × 10 m and the step size is 0.05 m, the average positioning time is 0.42 s. When the search
area is 20 m × 20 m and the step size is 0.05 m, the average positioning time is 1.11 s. In this context,
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our proposed method does not need to manually set the search area, and the average positioning time is
0.33 s.

6 Conclusion

This paper proposes a method to adaptively determine the prior area of a sound source target to reduce
the solution space and calculation time. First, the initial search point is determined according to the
received signals. Then, the prior location of the target is iteratively found through a limited number
of steps. Next, a small prior area is set around the target’s prior location. Finally, the precise location
of the target is traversed in the small prior area using the WNLS method. A series of experiments are
carried out with a rectangular array of acoustic sensors. The extensive experimental results and analyses
show the superiority of our method compared with the traditional method. In the future, we will focus
on designing a sound source localization method under practical conditions, including highly noisy areas
and data loss.
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