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Abstract The incompleteness of multi-view data is a phenomenon associated with real-world data mining

applications, which brings a huge challenge for multi-view clustering. Although various types of clustering

methods, which try to obtain a complete and consensus clustering result from a latent subspace, have been

developed to overcome this problem, most methods excessively rely on views-public instances to bridge the

connection with view-private instances. When lacking sufficient views-public instances, existing methods fail

to transmit the information among incomplete views effectively. To overcome this limitation, we propose

an incomplete multi-view clustering algorithm via local and global co-regularization (IMVC-LG). In this

algorithm, we define a new objective function that is composed of two terms: local clustering from each

view and global clustering from multiple views, which constrain each other to exploit the local clustering

information from different incomplete views and determine a global consensus clustering result, respectively.

Furthermore, an iterative optimization method is proposed to minimize the objective function. Finally, we

compare the proposed algorithm with other state-of-the-art incomplete multi-view clustering methods on

several benchmark datasets to illustrate its effectiveness.
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1 Introduction

Clustering is a classical, unsupervised learning technique [1–4], which has been extensively studied in
several fields [5–8]. Clustering aims at grouping a set of unlabeled instances into meaningful clusters,
and it requires instances in the same cluster to be highly similar and be dissimilar in different clusters.
Recently, increasing attention has been given to clustering multi-view data with records made up of
multiple heterogeneous representations from different sources [9–12]. This task is of significant practical
relevance in several fields, such as scene recognition [13,14], natural language semantic segmentation [15],
biomedical analysis [16], and recommendation system [17].

However, in real-world applications, incompleteness is a phenomenon associated with multi-view
data [18–21]. Figure 1 shows topic detection and tracking (TDT) as an example. News reports can
be obtained in several different formats, such as text, pictures, or videos. It is obvious that different
media provide diverse aspects of news. However, in reality, agencies prefer partial presentations, which
may include some statements absent from views. In other words, not every instance in all the views is
sampled. Thus, multi-view data with missing instances of views is referred to as incomplete multi-view
data. The goal of traditional multi-view clustering methods is to reconcile the divergences by integrating
the knowledge among multiple views or adapting information from one view to another so that a coin-
cident clustering result is formed. Nevertheless, the presence of an incomplete setting generally disables
the traditional multi-view clustering methods. The missing instance patterns become even more complex
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Figure 1 An example of incomplete multi-view data.

for the data with more views. In such a situation, it is difficult to learn a hidden, common representation
for all of the incomplete views. Therefore, leveraging the complementary knowledge hidden in different
views and reducing the impact of missing instances are the most challenging problems for incomplete
multi-view clustering.

Recently, there has been an increasing interest in incomplete multi-view clustering. The related algo-
rithms can be roughly classified into three categories.

(1) Nonnegative matrix factorization (NMF)-based methods aim to learn a latent common subspace
in which views-public instances are enforced to have the same representations. As a pioneering work,
partial multi-view clustering (PVC) [22] has been introduced, which learns the representations of both
view-private instances and views-public instances simultaneously. All instances are uniformly represented
in a potential subspace. Incomplete multi-modality grouping (IMG) [23] can be seen as an extension of
PVC, which requires generated subspaces to conform to a global manifold structure. Multiple incomplete
view clustering (MIC) [24] uses weighted NMF with L2,1 regularization to obtain a more robust consensus
representation. NMF-based methods emphasize the consistency of latent subspace without considering
the local structure of each view; thus, the local cluster structure of each view may be destroyed in the
latent space.

(2) Graph-based methods aim to learn a complete graph (or similarity matrix) from different views
that reveals the relationships of all instances. Graph-based incomplete multi-view clustering (GIMC) [25]
is the first attempt at constructing a complete graph for partitioning incomplete multi-view data. First,
GIMC constructs a graph for each view. Subsequently, it fuses all the constructed graph matrices to
generate a consensus graph matrix. Finally, it transforms the clustering problem into a graph segmenta-
tion problem. Partial multi-view clustering via auto-weighting similarity completion (PMVC-ASC) [26]
jointly learns the consensus similarity matrix by exploring complementary information among multiple
distinct feature sets. The anchor-based partial multi-view clustering (APMC) [27] method utilizes an-
chors to reconstruct instance-to-instance relationships for clustering. Incomplete multi-view clustering
via structured graph learning (SGL) [28] combines the view-private instances and views-public instances
to excavate an ideal structured graph, and then SGL utilizes graph segmentation technology to divide
all the instances. Adaptive sample-level graph combination for partial multi-view clustering (ASGC-
PMVC) [29] learns a latent subspace using adaptive graph fusion, which can seamlessly integrate the
complementary and consistent information from multiple views and enhance the clustering performance
on incomplete multi-view data. Additionally, adaptive graph completion-based incomplete multi-view
clustering (AGCIMC) [30] develops a joint framework for graph completion and consensus representation
learning. Generalized incomplete multi-view clustering with flexible locality structure diffusion (GIMC-
FLSD) [31] proposes a graph-regularized framework for structure preserving and representation learning.
Incomplete multi-view spectral clustering with adaptive graph learning (IMSC-AGL) [32] integrates graph
construction and consensus representation learning into a joint optimization framework for incomplete
multi-view clustering. Unified tensor framework for incomplete multi-view clustering and missing-view
inferring (IMVTSC-MVI) [33] seeks to recover missing views and explores the full information of such
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Figure 2 The synthetic dataset is represented by two incomplete views and adopts different methods to partition instances into

two clusters. (a) View 1; (b) view 2; (c) existing methods; (d) our method.

recovered views with available views for data clustering. Compared with NMF-based methods, graph-
based methods can effectively exploit the relationships among views. However, because some views are
suffering from missing instances, these methods face difficulties in constructing a complete graph that
connects all the instances and reveals all the local structures.

(3) Multi-kernel-based methods redefine incomplete multi-view clustering as a joint optimization prob-
lem. The clustering process and kernel matrix imputation are alternately performed until convergence.
The recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK) [34] lays the foun-
dation of incomplete multi-kernels clustering. Different from MKKM-IK, localized incomplete multiple
kernel k-means (LI-MKKM) [35] only requires the similarity of a sample to its k-nearest neighbors to
align with their ideal similarity values. However, the comparatively intensive computational and storage
complexities limit the practical implementation of the algorithms mentioned above. Late fusion incom-
plete multi-view clustering (LF-IMVC) [36] has been proposed to integrate the incomplete base clustering
results generated by incomplete views on the basis of multiple kernel k-means clustering. This method
significantly improves the efficiency of clustering. However, a main disadvantage of multi-kernel based
methods is that they are sensitive to the quality of the preconstructed kernels. Besides, the filled kernel
matrix largely damages the local structure of each incomplete view.

Although the abovementioned methods are effective in some cases and have shown encouraging per-
formances in processing incomplete multi-view data, most of them excessively depend on views-public
instances to bridge the connection with view-private instances. Figure 2 shows the synthetic dataset
represented by two incomplete views. The goal of incomplete view clustering is to divide all instances
from two incomplete views (a) and (b) into two meaningful partitions, i.e., red cluster and blue cluster.
If an instance exists only in one view but is absent in another, we regard such an instance as a view-
private instance, which is displayed by a hollow point. The instance that exists in both two views can be
regarded as a views-public instance, which is displayed by a solid point. It can be seen from Figure 2(c)
that the existing methods can effectively transmit the structural information among incomplete views
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Table 1 Summary of notations

Notation Description

n The number of all the instances

nv The number of observed instances in the v-th view

m The number of views

c The number of clusters

X
v ∈ R

nv×dv Data matrix of observed instances in the v-th view

M
v ∈ R

nv×n Indicator matrix of the v-th view

U
v ∈ R

nv×c Local clustering matrix for the v-th view

U
∗ ∈ R

n×c Global clustering matrix for all the instances

S
v ∈ R

nv×nv Affinity matrix of the v-th view

αv Adaptive weight for the v-th view

r and λ Hyper-parameters

when there are sufficient views-public instances in the views. Except for the blue cluster, when there
are few views-public instances, it is difficult for the existing methods to utilize such a rare number of
views-public instances to reflect the local structure of each view. In other words, the existing methods
cannot effectively transmit structural information among views. In extreme cases, when there are no
views-public instances as intermediaries in multiple views, the existing methods fail to address incom-
plete views. Therefore, we propose an incomplete multi-view clustering algorithm via local and global
co-regularization (IMVC-LG) by fully considering the mutual effect between local clustering and global
clustering. Although our method includes no obvious views-public information, the global clustering
structure can be exploited as potential common information. As shown in Figure 2(d), each dotted line
represents the local clustering information of the view, and the solid line represents the global clustering
information after integrating different local information. Global clustering results act as latent common
information, which can guide local clustering to maximize the agreement on multiple distinct views. Local
structural information act as the individual information of each view, which can be utilized to describe
the data comprehensively and accurately. Moreover, with the help of an adaptive weighting strategy, the
proposed method can effectively balance the importance of different views and reduce the negative impact
of unbalanced incomplete views. Based on the above analysis, we define a new objective function that
is made up of two terms, i.e., local clustering from each view and global clustering from multiple views,
which constrain each other to exploit the local clustering information from different incomplete views
and determine a global consensus clustering result, respectively. Furthermore, an iterative optimization
method is developed for IMVC-LG to demonstrate its solvability. Finally, comparisons with other state-
of-the-art incomplete multi-view clustering methods on benchmark datasets illustrate the effectiveness of
our proposed method.

The rest of this paper is organized as follows: Section 2 presents our proposed method and its opti-
mization algorithm in detail. The experimental evaluations and discussions are presented in Section 3.
Section 4 presents the conclusions of this study.

2 Methodology

2.1 Problem formulation

Before we describe the method, we formulate the incomplete multi-view clustering problem first. As-
sume there is a multi-view dataset with incomplete instances in each view. The dataset contains n
instances X = [x1,x2, . . . ,xn], and let {X1,X2, . . . ,Xm} be the data matrices of m views. X

v =
[xv

1,x
v
2, . . . ,x

v
nv
] ∈ R

nv×dv(nv < n) represents the data in the v-th view, which contains nv observed
instances with dv features. Like most existing methods, it is assumed that there is at least one view
available for each instance. The purpose of incomplete multi-view clustering is to divide the original n
instances into c clusters. The primary notations are summarized in Table 1.
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Figure 3 The description of IMVC-LG. First, we consider global structural information as potential common information. Then,

we consider the effect of local clustering structures and their divergences on the effectiveness of multi-view clustering. Finally, we

utilize the mutual constraints of local clustering and global clustering to obtain the final clustering result.

2.2 The proposed IMVC-LG algorithm

In this subsection, we define a new objective function as follows:

min
U∗,{Uv}m

v=1

J =
m
∑

v=1

LUv +GU∗ , (1)

which is composed of two terms, i.e., local clustering results from each view and global clustering results
from multiple views. By fully considering the mutual effect of local clustering and global clustering, the
terms are constrained by each other to exploit the local clustering information from different incomplete
views and determine a global consensus clustering result, respectively. The general framework of IMVC-
LG is shown in Figure 3.

2.2.1 Local clustering

In this paper, we focus on spectral clustering because it is a flexible clustering algorithm [37]. Before per-
forming spectral clustering, it is necessary for the proposed method to construct an undirected weighted
graph with an affinity matrix S

v ∈ R
nv×nv for each view. Each entry svij of the symmetric matrix S

v

represents the affinity of a pair of instances. Commonly used similarity construction methods include
k-nearest neighbor (KNN) method, cosine similarity measure, and Gaussian kernel function. However,
each method has its own disadvantages. For example, cosine similarity cannot consider the local geomet-
ric structure of the data. KNN similarity and Gaussian kernel similarity are distance-based measures,
which are sensitive to noise and outliers in the data. To capture the correlations hidden in the observed
multi-view instances, we adopt the idea of adaptive local structure learning of clustering with adaptive
neighbors (CAN) [38] on incomplete multiple views. In other words, we aim to construct a similarity
matrix in each view such that a smaller distance ‖xv

i −x
v
j‖22 between two instances corresponds to a large

probabilistic similarity value svij . The function of local clustering for the v-th view is

LUv =

nv
∑

i,j=1

∥

∥x
v
i − x

v
j

∥

∥

2

2
svij +

nv
∑

i

γv ‖svi ‖
2
2 + tr

(

U
vT

D
v− 1

2LSvD
v− 1

2U
v
)

. (2)
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The Laplacian matrix LSv ∈ R
nv×nv is calculated by LSv = D

v − S
v, where D

v is a diagonal
matrix, and its i-th diagonal element is calculated as dvii =

∑

j [(s
v
ij + svji)/2]. γv is the regularization

parameter, which can be determined as a constant for each view [38]. Let uv
1,u

v
2, . . . ,u

v
c denote the first

c eigenvalues of LSv corresponding eigenvectors. Local clustering process normalizes all eigenvectors to
have unit length and forms the matrix U

v = [uv
1,u

v
2, . . . ,u

v
c ] by stacking the eigenvectors in columns. The

spectral embedding U
v ∈ R

nv×c is an approximately continuous-valued of the discrete cluster assignment
result, which can be regarded as a recasted matrix of the original feature matrix. Each row of Uv is a
new representation of an instance with lower dimensions and contains more discriminative, local cluster
information.

It should be noted that the proposed method is essentially different from CAN. The CAN algorithm
is a new version of the spectral clustering algorithm, specifically for addressing single view data, and
it cannot effectively handle multi-view data. We extend the part of CAN that adaptively constructs
samples’ similarity to handle incomplete multi-view data. IMVC-LG obtains clustering results based
on the standard spectral clustering algorithm. The two algorithms seem to be very similar, but the
optimization method and the computational complexity of IMVC-LG are different from those of CAN.

2.2.2 Global clustering

To exploit the latent common information, a global clustering function is proposed to integrate consistent
information and complementary information among different views. The problem can be formulated as
follows:

GU∗ =

m
∑

v=1

(αv)
r
F (Uv,U∗), (3)

where U∗ ∈ R
n×c is the global clustering indicator matrix for all instances. An index matrixM

v ∈ R
nv×n

is introduced to identify the missing instances of each view from original instances, and its (i, j)-th element
mv

ij is defined as follows:

mv
ij =

{

1, if xv
i corresponds to the j-th original instance,

0, otherwise.
(4)

Instead of directly integrating the local cluster results, Uv, various regular constraints are added to
U

∗. In IMVC-LG, because the membership of two instances in an individual local view should be
relatively consistent in the global space, we believe the pairwise similarities of instances under the local
cluster structure should be as similar as possible in the global consistent structure. In IMVC-LG, local
clustering result Uv only contains instances observed from each view. Therefore, the index matrix M

v

is utilized to select corresponding instances observed from the complete global clustering result U
∗ for

each view. To exploit the local clustering information from different incomplete views and determine a
global consensus clustering result, we propose the following cost function by using the inner product of
indicator matrices as a measure of discrepancy between two clustering results:

F (Uv,U∗) =
1

2

∥

∥U
v
U

vT − (Mv
U

∗)(Mv
U

∗)T
∥

∥

2

F
. (5)

Because U
vT

U
v = Ic, U

∗T
U

∗ = Ic, Eq. (5) can be rewritten as

F (Uv,U∗) = c− tr
(

U
v
U

vT (Mv
U

∗)
)

(Mv
U

∗)T. (6)

In real-world applications of multi-view data, different views generally have different physical meanings
and discriminant information. Specifically, for incomplete multi-view cases, the discriminative information
of different views has huge differences due to the different feature dimensions and numbers of available
instances. Therefore, it is unreasonable to treat all incomplete views equally during global clustering.
To this end, αv is utilized to balance the significance of the v-th view. αv is a positive weight, and
the parameter r > 1 is used to control the smoothness of the distribution of the weights. In this way,
the method can adaptively identify the complementary effects of different local discrimination for model
training.

Subsequently, we need to minimize the sum of dissimilarities between all local cluster indicator matrices
and global consensus matrix, to obtain the final clustering results.
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2.2.3 Unified objective function of IMVC-LG

To preserve the semantic correlations between the above two components, the objective function integrates
the above functions, i.e., Eqs. (2) and (3) into one unified incomplete multi-view clustering model as
follows:

min
U∗,{Uv}m

v=1

m
∑

v=1

nv
∑

i,j=1

{

∥

∥x
v
i − x

v
j

∥

∥

2

2
svij + γv ‖svi ‖22 + λ tr

(

U
vT

D
v− 1

2LSvD
v− 1

2U
v
)

+ (αv)
r (

c− tr
(

U
v
U

vT(Mv
U

∗)(Mv
U

∗)T
))

}

s.t. ∀v, i, svii = 0, svij > 0, 1T
s
v
i = 1,

m
∑

v=1

αv = 1, αv
> 0, U

vT
U

v = Ic, U
∗T

U
∗ = Ic.

(7)

2.3 Optimization of IMVC-LG

Next, an iterative optimization method is proposed to minimize the objective function, i.e., Eq. (7).
IMVC-LG optimizes the objective function with respect to one variable while fixing others until it con-
verges. Similarly, IMVC-LG divides the overall optimization into two processes: the optimization of local
clustering and the optimization of global clustering.

2.3.1 Optimization of local clustering

By fixing all the other variables, optimizing U
v for the v-th view amounts to minimizing the following

function:

min
Uv

tr
(

U
vT

L
v
U

v
)

s.t. UvT
U

v = Ic.
(8)

Eq. (8) is equivalent to solving the standard spectral clustering objective with a modified Laplacian

matrix L
v = λDv− 1

2LSvD
v− 1

2 − (αv)r(Mv
U

∗
U

∗T
M

vT). The optimal solution of (8) is the eigenvectors
corresponding to the c smallest eigenvalues of Lv. IMVC-LG normalizes all the eigenvectors to have a
unit length and forms the matrix U

v by stacking the eigenvectors in columns.

S
v can be calculated for each view independently because the similarity matrices do not have relation-

ships among each other. Let dvxij
= ‖xv

i −x
v
j‖22 , dvuij

= ‖ u
v
i√
dv
ii

− u
v
j√
dv
jj

‖22, and d
v
i denotes as a vector with

the j-th element as dvij = dvxij
+ λdvuij

.

min
sv
i

∥

∥

∥

∥

s
v
i +

1

2γv
d
v
i

∥

∥

∥

∥

2

2

s.t. svii = 0, svij > 0, 1T
s
v
i = 1.

(9)

The closed-form solution of (9) can be achieved by an efficient algorithm presented in [38].

2.3.2 Optimization of global clustering

By fixing all the other variables, optimizing U
∗ amounts to minimizing the following function:

max
U∗

tr
(

U
∗T

L
∗
U

∗
)

s.t. U∗T
U

∗ = Ic.
(10)

Eq. (10) is equivalent to solving the standard spectral clustering objective with a modified Laplacian
matrix L

∗ =
∑m

v=1(α
v)r(MvT

U
v
U

vT
M

v). The optimal solution of (10) is the eigenvectors correspond-
ing to the c largest eigenvalues of L∗. IMVC-LG normalizes all eigenvectors to have a unit length and
forms the matrix U

∗ by stacking the eigenvectors in columns.
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By fixing all the other variables, αv acts as an adaptive weight for each view, whose optimization
process can be simplified into the following problem:

min
αv

m
∑

v=1

(αv)
r
F (Uv,U∗)

s.t.

m
∑

v=1

αv = 1, αv
> 0,

(11)

where r > 1, the closed-form solution of (11) can be rewritten as follows:

αv =
(F (Uv ,U∗))1/(1−r)

∑m
v=1(F (Uv ,U∗))1/(1−r)

. (12)

Algorithm 1 briefly summarizes the iterative optimization procedures of the proposed method.

Algorithm 1 IMVC-LG

Input: Dataset {X1,X2, . . . ,Xm} with m incomplete views, the number of clusters c, hyperparameters λ and r.

Output: Indicator matrix of final clustering U
∗ ∈ R

n×c.

1: Initialize:

2: Utilizing (9) to generate the similarity matrix for each view by dv
ij = dv

xij
;

3: Initialize the weight for each view αv = 1

m
;

4: Initialize U
v by solving standard spectral clustering algorithm;

5: Initialize U
∗ by solving (10);

6: repeat

7: Update U
v by solving (8);

8: Update S
v by solving (9);

9: Update U
∗ by solving (10);

10: Update αv by using (12);

11: until converges;

12: Apply k-means to U
∗ to obtain the final clustering results.

3 Experiments

In this section, we compare the proposed method (IMVC-LG) with other state-of-the-art incomplete
multi-view clustering methods on benchmark datasets to illustrate the effectiveness of the proposed
method. Then, we analyze the impact of parameters and present the results about convergence behavior.

3.1 Datasets

Three complete multi-view datasets and a natural incomplete multi-view dataset were used for evaluation:
Newsgroups dataset1) (NGs), BBC dataset2) (BBC), handwritten digit dataset3) (HW), and three sources
dataset4) (3Sources). The details are summarized in Table 2. It is worth emphasizing that the first three
datasets are originally complete; in other words, each instance is sampled in all the views. The 3Sources
dataset includes naturally incomplete multi-view data. The missing rates of three views in the 3Sources
dataset are 15.38%, 29.33%, and 27.40%.

Multi-view data include scaling differences among different views. To eliminate these differences and
improve clustering performance, it is necessary to normalize the dataset. If the comparative experiment
does not clearly declare the method of normalization, each instance is normalized to unit L2 norm in this
paper, such as [27].

3.2 Baseline methods

We compare the performances of the following methods.

1) http://lig-membres.imag.fr/grimal/data.html.

2) http://mlg.ucd.ie/datasets/segment.html.

3) http://archive.ics.uci.edu/ml/datasets/Multiple+Features.

4) http://mlg.ucd.ie/datasets/3sources.html.
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Table 2 Statistics of the datasets

Dataset NGs BBC HW 3Sources

# d1 2000 4659 216 3560

# d2 2000 4633 76 3631

# d3 2000 4665 64 3068

# d4 – 4684 6 –

# d5 – – 240 –

# d6 – – 47 –

# view 3 4 6 3

# instances 500 685 2000 416

# class 5 5 10 6

• Single view spectral clustering. Best single view (BSV) [5] is a local clustering method that uses
the most informative view. Notably, the informative view has the best separate spectral clustering
performance among all multiple views. Hence, we ran standard spectral clustering on each incomplete
view and reported the best clustering result.

• Incomplete two-view clustering based on NMF. PVC [24] is a traditional, pioneered work dealing
with partial multi-view setting. PVC seeks to find a latent common subspace for both public and private
instances; therefore, it is a views-public instances based method; IMG [23] is a method following the
idea of PVC. IMG explores a global structure of partial multi-view data by utilizing a graph Laplacian
term. Incomplete multi-view clustering via graph regularized matrix factorization (IMC-GRMF) [39] is an
improved method of PVC. Similar to PVC, the matrix factorization technique is exploited in IMC-GRMF
to learn common latent representation, in which the representations corresponding to those samples with
all views are regularized to be consistent. These three methods mentioned above only work for two-view
data; therefore, we evaluated all two-view combinations and reported the best results.

• Incomplete multi-view clustering based on NMF. MIC [22] first fills the missing instances in each
incomplete view with the average features, then extends multi-NMF via weighted NMF with L2,1 regu-
larization. Doubly aligned incomplete multi-view clustering (DAIMC) [40] applies weighted semi-NMF
to learn a common representation for all views, and then performs k-means on the learned representation
to obtain the clustering results.

• Incomplete multi-view clustering based on graph-based method. GIMC [25] is the first attempt in
constructing a complete graph for partitioning incomplete multi-view data. GIMC constructs a graph
for each view, and then integrates all the constructed graph matrices to generate a consensus graph
matrix. IMSC-AGL [32] integrates the graph construction and consensus representation learning into a
joint optimization framework. It is the first work that exploits the graph learning and spectral clustering
techniques to learn the common representation for incomplete multi-view clustering. AGCIMC [30]
develops a joint framework for graph completion and consensus representation learning. GIMC-FLSD [31]
proposes a graph-regularized framework for structure preserving and representation learning.

• Incomplete multi-view clustering based on multi-kernel-based method. LF-IMVC [36] is a late fusion
incomplete multi-view clustering method that effectively and efficiently integrates the incomplete clus-
tering matrices generated by incomplete views. Essentially, LF-IMVC is an ensemble method based on
the multiple kernels k-means clustering.

3.3 Experimental setting

To mimic the incomplete multi-view setting, we randomly removed some instances from each view.
per%(per ∈ {10, 20, 30, 40, 50}) instances were randomly removed from every view to construct the in-
complete data with a missing ratio of per%. We ensured that each instance had at least one view
remaining.

Experiments were conducted on an Intel i7-7700 CPU personal computer with 48 GB RAM. Moreover,
we used the k-means algorithm to achieve the final clustering results. Since k-means is known to be
sensitive to initialization, to reduce the effect of the randomness caused by k-means, we repeated the
clustering process 20 times with random initialization and reported the average values. We employed
the widely used external indices clustering accuracy (ACC), normalized mutual information (NMI), and
purity to evaluate clustering performances. We expected the values of these evaluation criterions to be
as large as possible.
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Table 3 Clustering results (ACC and NMI) of different methods on the NGs dataset with different per%

Method
ACC NMI

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BSV 0.5712 0.5425 0.4930 0.4120 0.3700 0.3428 0.3227 0.3126 0.2117 0.1722

PVC 0.7134 0.6624 0.6354 0.6230 0.5686 0.5252 0.4440 0.3945 0.3812 0.3634

IMG 0.6904 0.6475 0.6022 0.5828 0.5793 0.4898 0.4588 0.4126 0.3846 0.3440

IMC-GRMF 0.8203 0.7721 0.7563 0.6986 0.6333 0.6172 0.5388 0.5151 0.4438 0.3898

MIC 0.8980 0.8280 0.5740 0.5200 0.4240 0.7528 0.6009 0.3849 0.2824 0.1424

LF-IMVC 0.8480 0.7840 0.6440 0.6100 0.6200 0.6522 0.5404 0.4205 0.3660 0.3823

DAIMC 0.9300 0.8140 0.7560 0.6880 0.5800 0.8091 0.6008 0.5971 0.4474 0.3154

IMSC-AGL 0.9500 0.9240 0.8120 0.8040 0.7700 0.8564 0.7857 0.5741 0.5573 0.4823

GIMC 0.7840 0.7720 0.7480 0.5920 0.5860 0.8222 0.7877 0.7129 0.6229 0.6116

AGCIMC 0.9480 0.8980 0.7001 0.6620 0.5700 0.8323 0.7661 0.5566 0.5404 0.3580

GIMC-FLSD 0.9100 0.8680 0.8180 0.7310 0.7120 0.7797 0.7196 0.6252 0.4404 0.4326

IMVC-LG 0.9640 0.9412 0.8960 0.8344 0.7740 0.8884 0.8218 0.7215 0.5921 0.5154

Table 4 Clustering results (ACC and NMI) of different methods on the BBC dataset with different per%

Method
ACC NMI

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BSV 0.6058 0.5051 0.4307 0.3956 0.3518 0.3799 0.2693 0.2230 0.2030 0.1662

PVC 0.6453 0.6345 0.6322 0.5707 0.5625 0.5104 0.4804 0.4890 0.4483 0.4226

IMG 0.6553 0.6394 0.6083 0.5799 0.5575 0.5021 0.4852 0.4194 0.4099 0.3775

IMC-GRMF 0.7915 0.7688 0.7601 0.6809 0.6395 0.5822 0.5550 0.5575 0.4889 0.4430

MIC 0.7810 0.6745 0.6365 0.6204 0.5051 0.6030 0.5452 0.4347 0.4080 0.2374

LF-IMVC 0.6993 0.6321 0.5577 0.5358 0.5299 0.5138 0.4710 0.4042 0.2923 0.3078

DAIMC 0.8055 0.7524 0.5956 0.5766 0.5561 0.6293 0.5925 0.5021 0.4468 0.4001

IMSC-AGL 0.9080 0.8686 0.8350 0.8161 0.8044 0.7628 0.6921 0.6432 0.5968 0.5713

GIMC 0.5635 0.5577 0.5197 0.5139 0.5095 0.6130 0.6590 0.6375 0.6162 0.5693

AGCIMC 0.8710 0.8554 0.8496 0.7708 0.7693 0.7155 0.6784 0.6551 0.5326 0.5152

GIMC-FLSD 0.7752 0.7623 0.7533 0.7322 0.7044 0.6064 0.5964 0.5722 0.5423 0.5147

IMVC-LG 0.9168 0.8905 0.8701 0.8453 0.8146 0.7716 0.7291 0.6916 0.6507 0.5936

Table 5 Clustering results (ACC and NMI) of different methods on the HW dataset with different per%

Method
ACC NMI

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BSV 0.5508 0.5046 0.4575 0.4363 0.3835 0.5157 0.4890 0.4289 0.3844 0.3243

PVC 0.5954 0.5745 0.5525 0.5320 0.5220 0.5410 0.5121 0.4805 0.4613 0.4485

IMG 0.6337 0.6030 0.5681 0.5428 0.5239 0.5729 0.5332 0.5118 0.4781 0.4612

IMC-GRMF 0.7301 0.6628 0.6221 0.5825 0.5470 0.6780 0.6104 0.5742 0.5359 0.4999

MIC 0.7390 0.6653 0.6014 0.5246 0.5123 0.6481 0.5827 0.5360 0.4835 0.4481

LF-IMVC 0.8955 0.8855 0.8805 0.8065 0.7220 0.8048 0.7877 0.7794 0.6779 0.6256

DAIMC 0.8778 0.8595 0.8855. 0.7782 0.7112 0.7826 0.7716 0.7548 0.6576 0.5815

IMSC-AGL 0.9575 0.9560 0.9394 0.9116 0.8977 0.9170 0.9108 0.8894 0.8601 0.8134

GIMC 0.8915 0.8830 0.8755 0.7790 0.5850 0.8978 0.8875 0.8881 0.8647 0.7785

AGCIMC 0.8671 0.8580 0.8555 0.8310 0.8175 0.9035 0.8938 0.8790 0.8595 0.8510

GIMC-FLSD 0.8752 0.8694 0.8101 0.7362 0.6021 0.7965 0.7746 0.6960 0.6048 0.4874

IMVC-LG 0.9615 0.9586 0.9430 0.9280 0.9025 0.9266 0.9136 0.9003 0.8638 0.8244

3.4 Experimental results

Tables 3∼6 and Figure 4 show the performance comparisons on the datasets. We can draw the following
observations and discussions.

(1) In most cases, BSV performed the worst in comparison with the other methods. From another
perspective, BSV can be viewed as a type of local clustering algorithm. Due to the lack of complementary
information from other views, local clustering results are unsatisfactory. With a fixed ratio of incomplete
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Table 6 Clustering results (ACC, NMI and Purity) of different methods on the 3Sources dataset

Method ACC NMI Purity

BSV 0.5409 0.3837 0.5649

PVC 0.5725 0.5089 0.6643

IMG 0.5582 0.5018 0.6104

IMC-GRMF 0.8442 0.6728 0.8674

MIC 0.6514 0.6192 0.7428

LF-IMVC 0.6346 0.5418 0.7067

DAIMC 0.8630 0.7113 0.8730

IMSC-AGL 0.8139 0.6901 0.8239

GIMC 0.7332 0.5024 0.6283

AGCIMC 0.7788 0.6836 0.7981

GIMC-FLSD 0.8654 0.7067 0.8774

IMVC-LG 0.8822 0.7544 0.8822
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Figure 4 The performances of purity on the (a) NGs, (b) BBC, and (c) HW datasets with different per%.

instances, the performances of incomplete multi-view clustering methods are generally better than that
of two-view methods. It can be concluded that exploiting the complementary information of multi-view
is an effective approach in dealing with the incomplete problem, and the more views that are utilized,
the more satisfying the results will be.

(2) When the missing ratio increased, the clustering performances of all the clustering methods were
worse in most cases, which is consistent with intuition. MIC filled the missing instances with the average
of values; therefore, the performance of MIC degenerated faster than the other methods. Based on this
result, it can be concluded that filling in the missing views with the average of values may not be a
useful approach. The features in both inter-class and intra-class may have large variances, and the same
assignment will weaken the discrimination among them, especially when the missing rate was large. When
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Figure 5 (a) ACC, (b) NMI, and (c) purity versus parameters λ and r of the proposed method on 3Sources dataset.

the missing ratio was relatively large, and the number of views-public instances was relatively small, PVC
and its versions performed worse than other methods. We can conclude that views-public based methods
only work when the view missing ratio is relatively low. IMVC-LG aimed at utilizing complementary
information from multiple views to exploit consistent public structural information among multiple views;
therefore, it is minimally affected by the large missing ratio.

(3) In most cases, NMF-based methods were inferior to graph-based and multi-kernel-based methods
because that the NMF-based methods are not efficient on nonlinear data. Nevertheless, graph-based
and multi-kernel-based clustering algorithms were sensitive to the initial graphs and kernels. IMVC-LG
attained better results than them on most datasets. The reason is that IMVC-LG not only considers
the local cluster structures of different views but the similarity matrices are also updated in subsequent
iterations to avoid the sensitivity of the initial graphs.

(4) The proposed method significantly outperformed the other methods on the above multi-view
databases with arbitrary incomplete cases. For instance, the experimental results of our method ap-
proximately improved by 20% to 30% on the BBC and NGs datasets in comparison with other methods.
On the HW dataset, the clustering performance of our method was the same as that of the latest algo-
rithm, IMSC-AGL. The reason is that our approach not only considers the importance of different views
but also exploits the local structure information of incomplete views to learn the global consensus cluster-
ing result. Therefore, the promising performance demonstrates the indispensability of two components
and further illustrates the effectiveness of our algorithm.

Overall, it can be concluded that IMVC-LG is superior among the compared algorithms on the datasets
with incomplete multiple views.

3.5 Parameters and convergence analysis

Experiments were conducted to analyze the sensitivity of the penalty parameters (λ and r). To the
best of our knowledge, setting the penalty parameters adaptively for different datasets without manual
intervention remains an open problem. In our work, we used the grid searching approach to find the
optimal combinations for different datasets. λ was tuned in the range of {0.001, 0.01, 0.1, 1, 10, 100, 1000},
while r was tuned in the range of {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. As shown in Figures 5(a)–(c), the
3Sources dataset achieved the best performance with the combinations of {λ = 0.01, r = 10}. From
Figures 6(a)–(c), it can be observed that the proposed method obtained the best performance when the
two parameters were selected with the combinations of {λ = 0.1, r = 4} on the HW dataset with 30%
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Figure 6 (a) ACC, (b) NMI, and (c) purity versus parameters λ and r of the proposed method on HW dataset with 30% random

missing instances of every view.
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Figure 7 (a) The convergence curve of the proposed method on 3Sources dataset; (b) the convergence curve of the proposed

method on HW dataset with 30% random missing instances of every view.

random missing instances of every view. Other datasets have different optimal parameters because their
data characteristics are different.

The value of the objective function and ACC versus iteration on two datasets are presented in Fig-
ures 7(a) and (b). It is obvious that the objective function curve is monotonically decreasing and the
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Figure 8 Visualization clustering results on 3Sources dataset. (a) PVC; (b) IMG; (c) IMC-GRMF; (d) MIC; (e) LF-IMVC;

(f) DAIMC; (g) IMSC-AGL; (h) AGCIMC; (i) GIMC-FLSD; (j) IMVC-LG.

ACC curve is increasing until the stable level, which demonstrated that our provided approach is efficient
for solving the optimization problem. It can be seen that IMVC-LG will converge after approximately
30 iterations.

3.6 Visualization of clustering results

To illustrate the experimental results more intuitively, we visualize the results of different incomplete
multi-view clustering algorithms with the t-SNE [41] method in Figure 8. Taking the PVC method as
an example, we performed PVC on the first and second views, and it can be seen from the visualization
results that the PVC method cannot separate the blue and yellow clusters well. Besides, when there
a large number of views, designing the combination between views is a problem. The MIC method
filled in the missing views with the average of values, resulting in the yellow cluster and green cluster
being indistinguishable. The results show that the same assignment weakened the discrimination among
samples. In most cases, it can be observed that the clustering partitions of graph-based methods are much
more obvious than those of NMF-based methods. Figure 8(j) shows the best separability for different
clusters, where instances from the same cluster were naturally gathered together, and the gap between
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different groups is obvious. This demonstrates the effectiveness of our method for incomplete multi-view
clustering tasks.

4 Conclusion

In this study, we propose an incomplete multi-view clustering algorithm that simultaneously consid-
ers the local information and global information of all the views. The learning processes of the two
kinds of information are constrained by each other by integrating two significant principles, i.e., con-
sensus and complementary principles. Considering the mutual effect of local and global clustering via
co-regularization, the proposed method can eliminate the clustering divergence between multiple views.
Furthermore, an iterative optimization method was developed for IMVC-LG to demonstrate its solv-
ability. Finally, comparisons with other state-of-the-art incomplete multi-view clustering methods on
benchmark datasets illustrated the effectiveness of our proposed method. In the future, our research
focus will be on using other structural information of the views to reduce the impact of incomplete views
on the clustering results.
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