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Abstract Graph convolutional networks (GCNs) provide a promising way to extract the useful informa-

tion from graph-structured data. Most of the existing GCNs methods usually focus on local neighborhood

information based on specific convolution operations, and ignore the global structure of the input data. To

extract the latent representation for the graph-structured data more effectively, we introduce a deepwalk

strategy into GCNs to efficiently explore the global graph information. This strategy can complement the

local neighborhood information of a graph, resulting in the more robust representation for the graph data.

The fusion of the local neighboring and global structured information of a graph can further facilitate deep

feature learning at the output layer of GCNs for node classification. Experimental results show that the

proposed model has achieved state-of-the-art results on three benchmark datasets including Cora, Citeseer,

and Pubmed citation networks.
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1 Introduction

The increasing use of the graph-structured data in real-world applications has attracted much atten-
tion in the machine learning community. Due to promising performance, graph convolutional networks
(GCNs) [1] have become popular to handle the graph-structured data. The existing GCNs adopt the
convolutional operation to propagate the neighboring information of a graph for learning the deep fea-
tures, which usually focus on capturing the local structure of a graph. The GCNs models have been
applied to solving various problems such as image classification [2], object detection [3] and semantic
segmentation [4].

The key challenge of graph convolutional networks is to define the suitable graph convolutions to
aggregate information for capturing the neighboring structures of a graph. Various GCNs have been
proposed, which can typically be divided into the spectral and spatial approaches. Spectral approaches [5]
are based on the spectral graph theory to define the convolutional operation via parameterized filters [6].
ChebNet [7] approximates the filters by means of a Chebyshev expansion of the graph Laplacian to
enhance the computation efficiency of graph filters. Later, GCN [8] simplifies the previous methods by
truncating the Chebyshev polynomial to the first-order neighborhood. GDC [9] uses generalized graph
diffusion to alleviate the problem of noisy and meaningless edges in actual graphs. Spatial approaches
learn the convolutional operation using the spatial information of a graph via relations between nodes.
Graph attention network (GAT) [10] adopts attention mechanisms [11] to learn the relative weights
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Figure 1 (Color online) The proposed method learns the information about global consistency. Because we focus on nodes 1,

5–7, different colors are used to distinguish them from the other nodes. As shown in the structure of a graph, nodes 6 and 1 are

connected, and nodes 6 and 7 are also connected. The existing models only consider the local consistency, where nearby data points

may have the same label. But we can see that nodes 5 and 6 have more similar structures (common nodes 2–4) and are more likely

to have the same label. However, nodes 5 and 6 are not adjacent. Nodes 5 and 6 show that the structural similarity can better

reflect the relationship between the two nodes, which is more convincing and ignored by existing models. Furthermore, we can see

that nodes 1 and 7 are connected to node 6, but from a structural point of view, nodes 1 and 6 have more similar neighbors, and

their adjacency relationship should be stronger.

between the central node and its neighbors. Mixture model network (MoNet) [12] is a general spatial-
based approach, which constructs a convolutional function for a graph. Cluster-GCN [13] is designed to
handle a large graph by performing graph convolutions on the subgraphs sampled by a graph clustering
algorithm.

Most of the existing studies [5–13] only consider the local neighborhood information of a graph for data
embedding. However, the global structured information of a graph that can actually complement the
local neighboring information of a graph is ignored. In fact, the local neighborhood information of a graph
(local consistency) assumes that adjacent data samples are tended to share the same label. However, the
global consistency (structure) of a graph can ensure that data samples that occur in similar contexts tend
to have the same label. Specifically, for the nodes that are far away, the global consistency can leverage
more detailed structural information of a graph, thereby expanding the receptive field of the nodes and
making the better global predictions (see Figure 1). Since the previous GCNs [5–13] usually only capture
the nearby node relationships based on a small number of layers, which ignores the global structure of
a graph, the limited performance enhancement is derived. To enhance the discriminative ability of deep
features for the graph-structured data, it is crucial to leverage the higher-level semantic information such
as the global structural similarity to determine whether two nodes in a graph are related.

Note that stacking more GCNs layers could increase the receptive field of the nodes, which is useful to
aggregate more information from the global structure of a graph. Some GCNs such as GAT [10] and dual
graph convolutional networks (DualGCN) [14] have certain capabilities to capture the global information
of a graph. However, the neighborhood aggregation of a graph is essentially a type of Laplacian smoothing
and stacking many layers may result in the problem of over-smoothing [15]. Furthermore, the number of
GCNs layers is the farthest distance that node features can travel on a graph [8]. Thus, stacking more
GCN layers could only capture the limited global structure and the global consistency of a graph is still
not fully explored by the existing methods.

In this paper, we propose a deepwalk-aware graph networks (DGN) method that fuses the local and
global structure information of a graph to derive the more effective graph representations. Firstly, Deep-
walk [16] uses a random walk to generate long node sequences, which are converted to embedding for
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Table 1 List of the important notations

Notation Description

V A set of nodes in a graph

v A node v ∈ V

G A graph

E A set of edges in a graph

N The number of graph nodes

A The graph adjacency matrix

A The updated graph adjacency matrix

H The latent feature matrix of GCN1

H The latent feature matrix of GCN2

d The dimension of latent representation

u The output dimension of the GCN layer

t The walk length

s The window size

C The number of the classes

X The original features matrix of the nodes

V The deepwalk features matrix of the nodes

M The output matrix of GCN1

N The output matrix of GCN2

K The feature matrix of the last softmax layer

γ The similarity threshold

keeping the long-range relationship between the nodes. Secondly, the node similarity based on deep-
walk features is calculated to update the graph adjacency matrix and the global features are further
propagated on the updated adjacency matrix. Finally, the local neighboring information and the global
structured information are fused to enhance the representation capability of GCNs, which achieve the
state-of-the-art results on three benchmark datasets.

The contributions of our paper can be summarized as follows.

(1) The proposed method explores the global structured information of a graph via a deepwalk to
enhance the representation capability of deep features, which can be considered as the combination of
graph embedding and graph convolutional networks.

(2) The adjacency matrix of a graph is updated by calculating the global information similarity to
achieve the richer relationships, and thus global context information of a graph is included, leading
to more effective deep features for GCNs. We use cosine similarity to calculate the global structural
similarity and use manually set rules to update the adjacency matrix.

(3) The node classification experiments on three benchmark network datasets (84.1% in Cora, 74.1%
in Citeseer and 80.2% in Pubmed) show that our model achieves state-of-the-art results.

The rest of this article is arranged as follows. Section 2 introduces the related work. Section 3 presents
the proposed method. Section 4 reports the experimental results and gives the discussions. Finally, we
conclude the article and give the future work in Section 5.

2 Related work

Graph embedding transfers a graph into a set of low dimensional vectors. Those vectors keep the graph
topology and relationships between different nodes. For instance, DeepWalk [16] uses a random walk
strategy to transfer a graph into various sequences and leverages the Skipgram model to derive the node
embedding. Node2Vec [17] employs the biased-random walks that provide both long-term or short-term
relationships among the nodes. LINE [18] leverages the 1st-order and 2nd-order similarity metrics to
derive the node embedding, where the 1st-order similarity is used to measure the pairwise similarity
between two nodes and the 2nd-order similarity is used to measure the similarity between the neighbor-
hoods of two nodes. SDNE [19] is a deep auto-encoder using a reconstruction loss, which leverages both
1st-order and 2nd-order similarity to supervise the training process. Struc2Vec [20] designs a complicated
structural similarity, which uses a hierarchy to measure node similarity at different scales for constructing
a multi-layer network. Walklets [21] uses a skipping random walk to generate a corpus of nodes pairs,
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which are reachable via the paths of a fixed length. This corpus can be used to learn a series of latent
representations in a way that is analytically derivable. DNGR [22] uses random surfing instead of random
walk to capture the graph structural information and applies the denoising autoencoder to extract the
complex features.

Considering that convolutional neural networks have achieved promising performance for image-based
applications such as remote sensing [23–25] and image semantic segmentation [26,27], graph convolutional
networks have recently been proposed to deal with the arbitrarily structured graph. Graph convolutional
networks define a convolution on a graph and iteratively aggregate the embeddings of local neighbors
for a node to derive the new data embedding. The derived data embedding is fed into the softmax
layer for a given learning task such as node classification. Aggregating embedding of data locality can
make GCNs scale for a large graph and propagation of the features on multiple layers can characterize
the global structured information of a graph. For instance, mixture model networks predict the hidden
relationship between 2D image and 3D model [28]. Group context graph neural networks (GCGNN) are
used to re-identify a group of people across camera systems [29]. To deduce the structural information
from a global view, a GCNs architecture is designed to leverage the comprehensive relationships within
cross-modal samples to optimize video-text retrieval results [30, 31]. Graph convolutional networks are
leveraged to customize an adaptive cross-modal feature learning framework, which is used to solve the
RGB-D scene recognition problem [32]. VRD-GCN [33] abstracts the video into a fully connected spatio-
temporal graph and uses graph convolutional networks to pass messages and reason in these 3D graphs
for the better prediction of the objects and their dynamic relationships.

To enhance the learning performance of GCNs, the researchers have proposed many GCNs models.
For instance, a convolution-like operation has been defined based on spectral graph theory. GCNs essen-
tially perform aggregation and transformation on node features without having to learn trainable filters.
GraphSAGE [34] samples a fixed number of neighbors and leverages an aggregation function that is in-
variant to the permutations of node orderings for data representation. GAT [10] leverages an attention
scheme to consider different relationships of the adjacent nodes for deriving the learnable filter weights.
DualGCN [14] designs two convolutional networks to consider the local consistency and global consis-
tency of the data distributions. Gated attention network (GAAN) [35] computes an additional attention
score for each attention head with a self-attention mechanism. GMI [36] leverages mutual information
to derive the graph representation via measuring mutual information between two graphs. N-GCN [37]
trains multiple GCNs over node pairs with different distances in random walks to derive the results by
the combination of the GCNs.

Some studies try to rank a node’s neighbors based on a variety of criteria and associate each ranking
with a learnable weight to achieve weight sharing across different locations. PATCHY-SAN [38] orders the
adjacent nodes according to the graph labelings and then chooses the top q neighbors for convolutional
computation to aggregate the neighborhood features. Unfortunately, the processing of PATCHY-SAN
requires a large amount of computation. Large-scale graph convolutional network (LGCN) [39] ranks a
node’s neighbors according to node feature values and assembles a feature matrix, where the first row is
fixed to its features and the other rows consist of its neighborhood features. After sorting this feature
matrix along each column, it selects the first q rows as the input data for the central node. MvsGCN [40]
combines the video summary task with GCN and proposes an important node sampling method. At the
same time, MvsGCN proposes two strategies to integrate the task data imbalance into the GCN network
to effectively generate a representative summary with good diversity.

More recently, the other work has focused on improving the training efficiency of GCNs. Fast learning
with graph convolutional network (Fast-GCN) [41] chooses to sample a fixed number of nodes for each
graph convolution layer instead of sampling for each node like GraphSage. Fast-GCN adopts a Monte
Carlo approximation and variance reduction technique to facilitate the training process. Adapt GCN [42]
leverages an adaptive layer-wise sampling approach and achieves higher accuracy but the sampling scheme
is complicated. We can also see the combination of many GCNs and application scenarios. MMGCN [43]
adopts a multi-modal strategy to use GCNs to encode the interactive information between users and
items in each modality to generate feature representations.

Note that the existing GCNs models usually fail to consider the global structured information of a
graph. We introduce deepwalk into GCNs to capture the global consistency of data distribution, leading
to the global structure-aware deep features for graph-structured data.
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Figure 2 (Color online) The framework of the proposed model. For a graph, we train our model with two GCN networks. The

first GCN network uses the original features as input and the second GCN network considers the deepwalk features as the input,

which can capture the global structure. Furthermore, the adjacency matrix of a graph is updated based on deepwalk features and

the updated adjacency matrix is used as the input of both GCN networks. After training, the features output by the two GCN

networks are concatenated after mapping to the same space. Finally, feature dimensionality reduction through MLP is fed into the

softmax layer for class prediction.

3 Method

In this section, we present the details of our model. The highlight of the proposed method is to drive
the deepwalk-aware GCN features by fusing two graph convolutional networks. We will begin with an
introduction to the graph convolutional networks. And then, we will elaborate the deep walk block on
extracting the global structure of a graph. Finally, we will present the fuse strategy to fuse two GCNs
networks for node classification. For clarification, Table 1 lists the important notations in this article.

Figure 2 shows the framework of the proposed method, which consists of two GCN networks. The
training of two networks needs to wait until the adjacency matrix has been updated and the potential
features have been obtained. The proposed method performs feature fusion to achieve a combination of
local and global consistency in the last network layer.

3.1 Graph convolutional networks

Assuming an undirected graph is represented as G = (V,E,X), where V = {v1, . . . , vN} is a set of nodes,
E is a set of edges that connect the related nodes, and each node vi ∈ V is associated with a d-dimensional
feature vector xi ∈ R

d, resulting in a feature matrix X = [x1, x2, . . . , xN ] ∈ R
N×d. Based on V and E,

the adjacency matrix of a graph is formulated as A ∈ R
N×N , where Aij = 1 if (vi, vj) ∈ E, otherwise

Aij = 0.
In this article, we would like to leverage the graph convolution network (GCN) [8] as the backbone

model to conduct the node classification task. Thus, we briefly introduce the network architecture of
GCN, where the layer-wise forward-propagation operation of GCN is defined as

F
(k+1) = φ

(

D̃
− 1

2 ÃD̃
− 1

2F
(k)

W
(k)

)

, (1)

where F (k) and F (k+1) are the input and output matrices, respectively, of layer k of the GCN network.
A is a graph adjacency matrix, I is an identity matrix and Ã = A + I is aiming to aggregate the
features of adjacent nodes. D̃ is a diagonal node degree matrix to normalize Ã, which makes the scale
of feature vectors unchanged after aggregation. W (k) is a trainable weight matrix to construct a linear
transformation for changing the feature dimension. φ(·) denotes an activation function.

Considering that Ã contains only the information of the first-order neighborhood features, we add high-
order structural similarity to enrich the information of the adjacency matrix and update the adjacency
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matrix to A. Furthermore, based on the updated adjacency matrix, we design two GCN networks to
extract the latent representation of the original data and the global structured data the via deep walk
approach (see Subsection 3.2), respectively. After the feature fusion of two GCN networks, the original
features can be improved for a better node classification. We define the layer-wise forward-propagation
operations of two GCN networks as

H
(k+1) = φ

(

D̂
− 1

2 ÂD̂
− 1

2H
(k)

W
(k)

)

, (2)

H
(k+1)

= φ
(

D̂
− 1

2 ÂD̂
− 1

2H
(k)

W
(k)

)

, (3)

where Eq. (2) is the layer-wise forward-propagation operation of the first GCN network, termed GCN1,
for deriving the local features, and H(k) and H(k+1) are the input and output matrices, respectively, of
layer k for the first GCN network. Eq. (3) is the layer-wise forward-propagation operation of the second
GCN network, termed GCN2, for deriving the global structural features, and H(k) and H(k+1) are the
input and output matrices, respectively, of layer k for the second GCN network.

Both GCN networks (GCN1 and GCN2) share the same adjacency matrix A that is updated according
to (6)–(8). The updated adjacency matrix can reflect both the local and global structures of a graph.

Furthermore, Â = A + I is used to aggregate feature vectors of adjacent nodes. D̂ is a diagonal node
degree matrix for normalizing Â, which makes the scale of feature vectors unchanged after aggregation.
For further capturing the local consistency and global consistency of data distribution, except for the
updated adjacency matrix, the inputs of two GCN networks are also different. In other words, GCN1

adopts the original feature matrix X as the input. However, GCN2 adopts the global structure-aware
deepwalk features as the input, where deepwalk features provide a reference for higher-order structural
information. Two GCN networks learn the latent representations separately, which are fused as the input
of the last softmax layer for classification prediction.

Next, we show that high-order structural similarity information can be obtained through deepwalk,
which is used to define two main components of the proposed networks architecture.

3.2 Deepwalk

The original GCN aggregates and propagates the local neighboring information of each node. We in-
troduce the deepwalk approach to extract the global information of a graph. Deepwalk [16] learns the
latent representations that encode the relations among the nodes in a continuous vector space, which has
been used as a similarity measure for a variety of problems such as community detection [44] and content
recommendation [45]. The deepwalk method [16] consists of two parts: random walk generator and the
update procedure.

A generator uniformly samples a random vertex vi in a given graph G as the root of the random walk
Wvi . A walk samples uniformly from the neighbors of the most visited node until the walk length reaches
the pre-defined value t. We set the maximum length of the walk in the experiment to t. A node can walk
to other nodes in the k-hop neighborhood and perform relationship calculations to obtain the structural
information of two nodes over a long distance.

The update procedure relies on SkipGram [46] to obtain the final mapping function. SkipGram is a
language model that can maximize the co-occurrence probability between words in sentences appearing
in window s to predict the context. Given the walk generated by the random walk generator, SkipGram
iterates over all possible collocations in a random walk that appears in the window. After mapping vi
to its current representation vector Φ (vi), the probability of the neighbors of vi in a walk is maximized.
Based on the node representation modeling, we summarize the optimization problem as follows:

Pr ({vi−w, . . . , vi+w} \vi|Φ (vi)) =

i+w
∏

j=i

j 6=i

Pr (vj |Φ (vi)) , (4)

min
Φ

− log Pr ({vi−w , . . . , vi−1, vi+1, . . . , vi+w} |Φ (vi)) . (5)

Given a node vi, we assume that a sequence of nodes appears in the window s that is consistent with
the sequence of random walks via maximizing (4). By solving the optimization problem of deepwalk of
(5), the mapping function Φ(·) of a graph is derived. Based on the mapping function Φ(·), the deepwalk
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A

Cosine similarity
update

Figure 3 (Color online) An example of updating adjacency matrix. The similarity function in entries (0, 2) and (4, 2) is set to

be 1, which represents that the nodes pairs (v0, v2) and (v2, v4) have stronger neighboring relationships. Then, we update the

corresponding entries of the adjacency matrix, which considers the global structured information of a graph. On the contrary, the

similarity function in entries (0, 4) and (4, 3) is set to be 0, which represents that the nodes pairs (v0, v4) and (v3, v4) have the

less neighboring relationship and the corresponding entries of the adjacency matrix are not updated.

representations of the nodes are derived as V = [v1, . . . , vi, . . . , vN ] ∈ R
N×d for the nodes, where vi ∈ R

d

is the deepwalk feature of the ith node. These deepwalk features can not only capture the representation
of shared similar nodes in a graph, but also preserve the highly non-linear structure of a graph. Based
on this investigation, we further propose our main network components.

3.3 Updating adjacency matrix

Considering that the graph information defined by the adjacency matrix A lacks a global structure infor-
mation, the adjacency matrix is updated with the latent representation of the deepwalk. By introducing
the deepwalk approach to generate the embedding that can reflect the similarity of the node structure, we
can infer whether there is a connection or a stronger connection between the nodes. Such information can
be derived by calculating the cosine similarity of the high-order structural information. The similarity
calculation and the updated adjacency matrix are formulated as follows:

cos(θ|i, j) =
vi · vj

‖vi‖‖vj‖
, (6)

f(i, j) =

{

1, if cos(θ|i, j) > γ,

0, otherwise,
(7)

Ai,j = Ai,j + f(i, j), i, j = 1, 2, . . . , n, (8)

where vi ∈ R
d and vj ∈ R

d (d is the dimension of latent representation) are the deepwalk representations
of nodes i and j in a graph. For one example of updating the adjacency matrix, please refer to Figure 3.

The proposed method calculates the cosine similarity between two nodes and compares the cosine
similarity to the predefined threshold. If cos(θ|i, j) is greater than the threshold γ, then the corresponding
Ai,j is set to 1. This means that nodes vi and vj have a stronger neighbor relationship and we update the
value of the corresponding position of two nodes in the adjacency matrix via the sum of Ai,j and f(i, j);
otherwise, Ai,j is in fact assigned to the large value between f(i, j) and Ai,j . After calculating the cosine
similarity of all pairs of nodes and updating the adjacency matrix, the updated adjacency matrix is input
into two GCN networks.

Note that we adopt the threshold scheme instead of the original similarity to update the adjacency
matrix of a graph based on the following two reasons: (1) in general, the large cosine similarity (meantime
usually smaller than 1) is more likely to reflect the underlying structures of the data. For the large
similarities, we enhance the cosine similarity to 1 via the threshold scheme, which makes GCN more
effectively capture the global consistency of a graph; (2) a large number of small similarities make the
entries of the updated adjacency matrix dense. Thus, we remove the small similarity via the threshold
scheme, which facilitates the following step of GCN employment.
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3.4 Fusion strategy

To make full use of the global structured information of a graph, we leverage two GCN networks architec-
ture to train the generated global structure information of a graph separately, instead of simply stitching
it. Since deepwalk is unsupervised and does not use the real labeled data, the vector of each node only
represents its high-order structural information. To make the nodes express the structural better, we use
supervised training to constrain and update the final structural features, and fuse the two features in the
last layer. We summarize the process as follows:

K = softmax (concat (W1 ×M ,W1 ×N)×W2) . (9)

To balance the importance of local and global consistency of a graph, we need to specify weight parameters
for the outputs of the two GCN networks. In our experiments, we specify W1 ∈ R

u×u (u is the output
dimension of the GCN layer) as the weight parameter to map the output matrices M and N of two GCN
networks to the same embedding space and W2 ∈ R

2u×C (C is the number of the classes) to reduce the
dimension to the number of categories. The matrix K ∈ R

n×C is a fusion result of M ∈ R
n×u and N

∈ R
n×u whereM is the output of the local consistency network (GCN1) and N is the output of the global

consistency network (GCN2). Finally, the labels matrix K is used for multi-class node classification.
Implementation. Algorithm 1 lists the main procedure of the proposed method. As our method

consists of two simple GCN neural networks, the conventional parameter update strategies can be applied
to train the proposed method.

Algorithm 1 DGN

Require: an adjacency matrix A, the updated adjacency matrix A, the original feature matrix X, original graph G(V,E), a set

of deepwalk features V , walk length t, window size s, walks per node r.

Ensure: Node labels matrix K.

1: F = Deepwalk(G(V,E), s, r, t);

2: for (i, j) ∈ V do;

3: Calculate the cosine similarity of Vi and Vj according to (6);

4: Assign a new value to Ai,j according to (7) and (8);

5: end for

6: M = GCN1(A,X);

7: N = GCN2(A,V );

8: Calculate the labels matrix K of nodes according to (9);

9: Return K;

10: Deepwalk(G(V,E), s, r, t)

11: Initialization: sample Φ from F ;

12: for i = 0 to r do

13: O = Shuffle(V );

14: for vi ∈ O do

15: Wvi
= RandomWalk(G, vi, t);

16: SkipGram(Φ,Wvi
, s);

17: end for

18: end for

19: Return F

4 Experiments

In this section, we evaluate the proposed method on the node classification task and report the accuracy
of classification (ACC), which is the ratio between the number of correctly classified nodes and the total
number of nodes.

4.1 Dataset description

We conduct the transductive node classification experiments on the Cora, Citeseer, and Pubmed
datasets [39]1). These datasets are the benchmark citation networks, where nodes represent documents,
features are the bag-of-word representation of a document, and edges are the citations of the documents.
We adopt the same experimental setting as LGCN [39]. Table 2 lists the statistic of the used citation
networks datasets and their corresponding experimental setting.

1) The source code is available. https://github.com/Paper-code-h/DGN.
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Table 2 Summary of datasets used in our node classification experiments

Dataset Nodes Edges Features Classes Training nodes Validation nodes Test nodes Degree

Cora 2708 5429 1433 7 140 500 1000 4

Citeseer 3327 4732 3703 6 120 500 1000 5

Pubmed 19717 44338 500 3 60 500 1000 6

• Cora. Cora dataset includes 2708 scientific publications with seven classes. This citation network
contains 5429 links, where each node is represented by a 1433-dimensional 0/1-valued vector. About
5.2% of the nodes are labeled, which can be used for training.

• Citeseer. Citeseer dataset includes 3327 scientific publications with six classes. This citation network
contains 4732 links, where each publication is represented by a 0/1-valued word vector for indicating the
absence/ presence of the word from a dictionary of 3703 unique words. About 3.6% of the nodes are
labeled, which can be used for training.

• Pubmed. The Pubmed dataset contains 19717 scientific publications classified into one of three
classes. The citation network consists of 44338 links. Each publication is described by a term frequency-
inverse document frequency (TF-IDF) vector drawn from a dictionary with 500 terms. About 0.3% of
the nodes are labeled, which can be used for training.

4.2 Experimental setup

In our experiments, we set the length of the random walk starting at each node to 40. After each node is
part of 10 walking paths, all paths are fed to the skipgram model with a window size of 5. We get a 96-
dimensional representation for the Citeseer dataset and a 64-dimensional representation for the Cora and
Pubmed datasets. After calculating the cosine similarity of the node representations, we set the threshold
of 0.86 for the Cora dataset, 0.9 for the Citeseer dataset and 0.98 for the Pubmed dataset to update the
adjacency matrix. We then feed the original features and deepwalk features into two-layer GCN [8]. The
final features are derived by a weighted sum of the two networks outputs. Finally, a softmax layer is used
as a classifier to make predictions. During training, we employ the Adam optimizer [47] with a learning
rate of 0.1 for the Citeseer dataset and 0.01 for the Cora dataset and the Pubmed dataset. Dropout [48]
with a rate of 0.5 is applied in each layer of two networks. We initialize weights using the initialization
described in [49]. We report the mean classification accuracy with a standard deviation of the 100 runs
of the proposed method, where the best classification results are bold faced.

4.3 Results

To demonstrate the learning of the proposed method, we compare the proposed method against Deep-
Walk [16] and the latest GCNs methods including GCN [8], GAT [10], DualGCN [14] and LGCN [39],
StoGCN [50], DGI [10], GMI [36] and N-GCN [37], which are denoted as follows:

DeepWalk [16]. DeepWalk leverages the rand walk scheme to derive the structured information of a
graph, which is used to learn latent representations.

GCN [8]. GCN relies on a first-order approximation of Chebyshev polynomials of the diagonal matrix
of eigenvalues with less computation cost.

GAT [10]. GAT leverages an attention scheme to consider different relationships of the adjacent nodes
for deriving the learnable filter weights.

DualGCN [14]. DualGCN designs two convolutional networks to consider the local consistency and
global consistency of the data distributions, where the original features are used as the input of two GCN
networks and the weights of two networks are shared.

LGCN [39]. LGCN is the graph convolutional network that order the different adjacent nodes according
to the feature values and then choose a fixed number of nodes to transform graph data into grid data for
employing the general convolutional computation.

StoGCN [50]. StoGCN leverages historical node representation to reduce the size of the perceptual
field of graph convolution for enhancing the computation efficiency of the convolutional operation.

DGI [10]. DGI relies on maximizing mutual information between patch representations and the high-
level summaries of graphs, where the derived patch representations summarize subgraphs centered around
nodes of interest.

GMI [36]. GMI extends the idea of mutual information to the graph domain by measuring mutual
information between two graphs.
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Table 3 Classification accuracy on the dataset

Method Cora (%) Citeseer (%) Pubmed (%)

DeepWalk [16] 67.2 43.2 65.3

GCN-2 [8] 81.5 70.3 79.0

GAT [10] 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

DualGCN [14] 83.5 72.6 80.0

LGCN [39] 83.3 ± 0.5 73.0 ±0.6 79.5 ± 0.2

StoGCN [50] 82.0± 0.8 70.9± 0.2 79.0± 0.4

DGI [10] 82.3± 0.6 71.8± 0.7 76.8± 0.6

GMI [36] 83.0± 0.3 73.0± 0.3 80.1± 0.2

N-GCN [37] 83.0 72.2 79.5

DGN (ours) 84.1 ± 0.2 74.1 ± 0.2 80.2 ± 0.1
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Figure 4 (Color online) Ablation study on the dataset. We compare the complete networks with several variants with parts

removed, where GGN-r removes the updated adjacency matrix and uses the original adjacency matrix. DGN-h removes the second

GCN network. All models were trained with the same hyper-parameters for 50 epochs on all datasets. The top of the icon in the

figure represents the maximum value reached, and the bottom of the icon represents the minimum value reached. (a) Cora; (b)

Citeseer; (c) Pubmed.

N-GCN [37]. N-GCN trains multiple GCNs over node pairs with different distances to derive the results
by the combination of the GCNs.

We report node classification accuracies on the datasets as summarized in Table 3. As shown in
Table 3, we observe the following.

The proposed method consistently outperforms the other methods on the Citeseer, and Pubmed
datasets, respectively. Specifically, our method significantly outperforms LGCN (achieving the second
best results), with the increase of 0.9% on Cora as well as 1.4% on Citeseer. Note that DualGCN also has
two GCN networks, but DualGCN is still inferior to the proposed method. The performance enhance-
ment benefits from that our method is capable to fuse both the global and local consistencies of a graph,
resulting in the more discriminative features. Compared to DualGCN, our method directly leverages the
deepwalk features as the input of a GCN network and meantime updates the shared adjacency matrix of
two GCN networks. More importantly, two GCN networks of our method are trained separately. How-
ever, two networks of DualGCN share the same network weights and deepwalk features are not used as
the input of GCN and the adjacency matrix is not updated accordingly. Thus, the network architecture of
DualGCN and our method is totally different. The experimental results show that the proposed method
is superior to DualGCN by a large margin, which demonstrates that the proposed method can more
effectively capture the global structures of a graph.

4.4 Ablation studies

In this subsection, we make ablation analyses for coupling our proposed method and evaluate different
update schemes of the adjacency matrix.

4.4.1 On the update of affinity and latent representation

To demonstrate the performance of the two components of the proposed framework, we remove each
component and test its performance while fixing the other components. We first cancel the update of the
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Figure 5 (Color online) Ablation study on the dataset. We compare the proposed method to deeper layer GCN-3, GCN-4, DGN-3,

DGN-4 and DGN-s. GCN-3 and GCN-4 are three-layer GCN and four-layer GCN, respectively. DGN-3 and DGN-4 leverage three-

layer GCN and four-layer GCN, respectively, as the backbone network within the proposed DGN architecture. DGN-s leverages the

original cosine similarity to update the adjacency matrix of a graph complete networks with several variants with parts removed.

All models were trained with the same hyper-parameters for 50 epochs on all datasets. The top of the icon in the figure represents

the maximum value reached, and the bottom of the icon represents the minimum value reached. (a) Cora; (b) Citeseer; (c) Pubmed.

adjacency matrix from the model (DGN-r) and then remove the input of the latent representation from
the model (DGN-h) and show the results in Figure 4.

We observe that both the update of the adjacency matrix and the addition of the latent representation
via deepwalk provide the performance enhancements. Removing updates of the adjacency matrix results
in large performance degradation, where the performance drops by 2.0%, 1.3% and 0.5%, respectively.
These experimental results show that the adjacency matrix is the key component and contains discrim-
inative information on higher-order structural information. A slight deviation of the matrix affects the
performance. On the other hand, when removing the latent representation of a deepwalk, the performance
drops by 0.5%, 1.0% and 0.3%, respectively.

The experimental results show that the representation only affects the performance when the feature
fusion is performed at the end and does not directly affect the networks trained by the original features.
Even if this part is missing, the performance degradation is not obvious. These experimental results
indicate that our method does capture the global structured information of a graph, which yields the
more discriminative features for graph-structured data.

4.4.2 On the threshold setting and network layer number

To update the adjacency matrix of a graph, we adopt the threshold strategy to remove the small similarity
values and set the large similarity to 1 (see Eq. (7)). To observe how the similarity setting affects the
learning performance, we design a novel GCNs model, termed DCN-s, which is the same as the proposed
method except that the original cosine similarity is directly used to update the affinity matrix. On the
other hand, GCNs can derive the global structures of a graph by enhancing the number of network layer.
We compare our method to the deeper layer GCN models: GCN-3 and GCN-4, where GCN-3 and GCN-
4 are three-layer GCN and four-layer GCN methods, respectively. Furthermore, we leverage three-layer
GCN and four-layer GCN, respectively, as the backbone network within the DGN architecture, where
the proposed method is termed DGN-3 and DGN-4, respectively. Figure 5 shows the ablation results.

We observe that the proposed method outperforms DGN-s, uses the original cosine similarity between
two nodes to update the adjacency matrix. Compared with the deeper layer GCN model: GCN-3 and
GCN-4, the proposed method achieves the performance enhancement by a large margin. Specifically,
compared with the proposed method using the two-layer GCN (DGN), the learning performance of the
proposed method using the three-layer GCN or four-layer GCN as the backbone network (DGN-3 and
DGN-4) is degraded slightly. However, both DGN-3 and DGN-4 are still superior to the original GCN-3
and GCN-4 framework, respectively.

These experimental results indicate that our method (DGN) can more effectively capture the global
structure of a graph, which explains most of the performance enhancement of the proposed method.
Compared with the proposed method, the deeper layer GCN models (GCN-3 and GCN-4) only capture
the limited global structures of a graph. The over-smooth effect of the backbone GCN framework makes
learning performance of deeper GCN networks including GCN-3, GCN-4, DGN-3 and DGN-4 degenerate
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Figure 6 (Color online) Classification accuracy vs. d. d is the dimension of latent representation and ranges from 32 to 112. Our

model performs the best when the representation dimension is set to 96 for the Citeseer and 64 for the Cora dataset and Pubmed

dataset.
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Figure 7 (Color online) Classification accuracy vs. γ. γ is the similarity threshold and ranges from 0.8 to 1.0. Our model

performs the best when the similarity threshold is set to 0.86 for the Cora dataset, 0.9 for the Citeseer dataset and 0.98 for the

Pubmed dataset.

a little. It is attributed that stacking too many layers may result in over-smoothing [15]. However, the
proposed method can significantly enhance the learning performance by fusing graph embedding and
GCN models, resulting in the improved classification results.

4.5 Parameter setting

Our method has three key parameters: the dimension of latent representation d, the similarity threshold
γ and the output dimension of GCN layer u. We tune these three parameters separately by fixing other
parameters to observe how the parameter affects performance.

As shown in Figure 6, our model performs the best when the representation dimension is 96 for the
Citeseer dataset and 64 for the Cora and Pubmed datasets. Larger or smaller feature dimensions result
in performance degradation. Too small feature dimensions lose graph information, while too large feature
dimensions cause information redundancy. Thus, it is crucial to choose a suitable feature dimension.

As shown in Figure 7, our model performs the best when the similarity threshold is set to 0.86 for
the Cora dataset, 0.9 for the Citeseer dataset and 0.98 for the Pubmed dataset. The similarity can be
considered a correlation between two nodes when using under a small threshold. We believe that two
nodes below the threshold have no neighbor relationship. Deepwalk has a varying ability to acquire nodes
in different datasets. It has a stronger representation ability for graph networks with denser nodes. For
the dataset, if its node degree is higher, the possibility of having a similar structure is greater, so a
stronger similarity threshold is needed to determine whether they are adjacent nodes. We see that as the
node degree values of Cora, Citeseer, and Pubmed are higher, their similarity threshold is also higher.

As shown in Figure 8, our model performs the best when the output dimension of GCN layer u is set to
128 for the Cora dataset, 128 for Citeseer dataset and 64 for Pubmed dataset. The reason is attributed
that too small of a feature dimension loses graph information, while too large feature dimensions cause
information redundancy. Appropriate dimensions can reasonably represent local and global information.
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Figure 8 (Color online) Classification accuracy vs. u. u is the output dimension of GCN layer and ranges from 32 to 224. Our

model performs the best when the output dimension of GCN layer is set to 128 for the Cora dataset, 128 for Citeseer dataset and

64 for Pubmed dataset.

Table 4 Train time on the dataset

Dataset Cora (ms) Citeseer (ms) Pubmed (ms)

GCN-2 [8] 15 29 207

GCN-3 [8] 56 78 584

GCN-4 [8] 64 96 723

GAT [10] 109 254 268

DualGCN [14] 151 238 1,884

LGCN [39] 86 62 574

GMI [36] 181 239 1,056

N-GCN [37] 82 140 277

DGN-s 54 67 478

DGN (ours) 43 58 420

Table 5 Test time on the dataset

Dataset Cora (ms) Citeseer (ms) Pubmed (ms)

GCN-2 [8] 9 14 118

GCN-3 [8] 27 39 267

GCN-4 [8] 31 48 305

GAT [10] 98 204 178

DualGCN [14] 43 32 241

LGCN [39] 341 381 1,473

GMI [36] 140 176 857

N-GCN [37] 31 61 196

DGN-s 25 32 224

DGN (ours) 22 29 214

4.6 Runtime

Compared with the typical GCNs, our model is not complex, which only adds an additional network
to calculate the latent representation. Compared with the simple GCN [8], the number of the network
weights of the proposed method only increases by one fold (except for the deepwalk parameters). Besides,
the running time of the proposed method increases accordingly. We report training and test time of one
epoch implementation of different methods. For the DGI and StoGCN methods, because of no open-
source code, we do not report the results of StoGCN and DGI. For a fair comparison, we adopt the same
deep learning framework. All tests are conducted on a single Nvidia GPU of GeForce GTX 1080Ti. The
running time of the other methods is listed in Tables 4 and 5.

As shown in Tables 4 and 5, the proposed method spends about the double running time of the native
GCN method. Although our method involves two networks at the same time, they are very simple and
do not require much training time. We also compare the proposed method with other methods based
on the same experimental conditions. The results show that our method has the better computational
efficiency, which is superior to the other compared methods including GAT, DualGCN, LGCN, GMI and
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N-GCN in most cases. From the results, our model shows promising performance in both computational
efficiency and node classification results.

5 Conclusion

In this paper, we proposed a global structure-aware graph convolutional network. By incorporating
deepwalk into GCNs to calculate a better corresponding embedding, the resulting latent representation
can infer the connection relationship between two nodes, and further provide more effective information
for the original training by updating the adjacency matrix. Experimental results demonstrate that the
proposed model achieves the performance improvement on transductive learning tasks.

As the first step of introducing Deepwalk for graph node classification, we pay more attention to
the structural modeling than existing models. For the future work, we plan to leverage more structure
information via designing new approaches such as k-hop neighborhood structure calculation to integrate
the global information of the graph into a local neighboring structure. Moreover, the proposed network
framework has potential to be applied to the other fields such as activity recognition.
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9 Klicpera J, Weißenberger S, Günnemann S. Diffusion improves graph learning. In: Proceedings of Annual Conference on

Neural Information Processing Systems, 2019. 13333–13345

10 Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks. In: Proceedings of International Conference of Legal

Regulators, 2018

11 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of Annual Conference on Neural Information

Processing Systems, 2017. 5998–6008

12 Monti F, Boscaini D, Masci J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017. 5115–5124

13 Chiang W L, Liu X, Si S, et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks.

In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019

14 Zhuang C, Ma Q. Dual graph convolutional networks for graph-based semi-supervised classification. In: Proceedings of the

World Wide Web Conference, 2018. 499–508

15 Li Q, Han Z, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of

the 32nd AAAI Conference on Artificial Intelligence, 2018. 3538–3545

16 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014. 701–710

17 Grover A, Leskovec J. Node2vec: scalable feature learning for networks. In: Proceedings of ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD), 2016

18 Tang J, Qu M, Wang M, et al. LINE: large-scale information network embedding. In: Proceedings of the World Wide Web

Conference, 2015

19 Wang D, Cui P, Zhu W. Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2016

20 Ribeiro L F R, Saverese P H P, Figueiredo D R. Struc2vec: learning node representations from structural identity. In:

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017

21 Perozzi B, Kulkarni V, Chen H, et al. Don’t walk, skip!: online learning of multi-scale network embeddings.

In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,

2017. 258–265

22 Cao S, Lu W, Xu Q. Deep neural networks for learning graph representations. In: Proceedings of the Association for the

Advance of Artificial Intelligence, 2016

23 Ru L, Du B, Wu C. Multi-temporal scene classification and scene change detection with correlation based fusion. IEEE Trans

Image Process, 2021, 30: 1382–1394

https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1109/TIP.2020.3039328


Jin T S, et al. Sci China Inf Sci May 2022 Vol. 65 152104:15

24 Zhu D, Du B, Zhang L. Two-stream convolutional networks for hyperspectral target detection. IEEE Trans Geosci Remote

Sens, 2021, 59: 6907–6921

25 Xu Y, Du B, Zhang L. Beyond the patchwise classification: spectral-spatial fully convolutional networks for hyperspectral

image classification. IEEE Trans Big Data, 2020, 6: 492–506

26 Zhou Q, Yang W, Gao G, et al. Multi-scale deep context convolutional neural networks for semantic segmentation. World

Wide Web, 2019, 22: 555–570

27 Zhou Q, Wang Y, Liu J, et al. An open-source project for real-time image semantic segmentation. Sci China Inf Sci, 2019,

62: 227101

28 Nie W Z, Ren M J, Liu A A, et al. M-GCN: multi-branch graph convolution network for 2D image-based on 3D model

retrieval. IEEE Trans Multimedia, 2021, 23: 1962–1976

29 Zhu J, Yang H, Lin W, et al. Group re-identification with group context graph neural networks. IEEE Trans Multimedia,

2021, 23: 2614–2626

30 Wang W, Gao J, Yang X, et al. Learning coarse-to-fine graph neural networks for video-text retrieval. IEEE Trans Multimedia,

2021, 23: 2386–2397

31 Mithun N C, Li J, Metze F, et al. Learning joint embedding with multimodal cues for cross-modal video-text retrieval.

In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, 2018. 19–27

32 Yuan Y, Xiong Z, Wang Q. ACM: adaptive cross-modal graph convolutional neural networks for RGB-D scene recognition.

In: Proceedings of the Association for the Advance of Artificial Intelligence, 2019. 9176–9184

33 Qian X, Zhuang Y, Li Y, et al. Video relation detection with spatio-temporal graph. In: Proceedings of the 27th ACM

International Conference on Multimedia, 2019. 84–93

34 Hamilton W L, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the Annual Confer-

ence on Neural Information Processing Systems, 2017. 1024–1034

35 Zhang J, Shi X, Xie J, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs. In: Proceedings

of the Conference on Uncertainty in Artificial Intelligence, 2018

36 Peng Z, Huang W, Luo M, et al. Graph representation learning via graphical mutual information maximization. In: Proceed-

ings of the Web Conference, 2020. 259–270

37 Abu-El-Haija S, Kapoor A, Perozzi B, et al. N-GCN: multi-scale graph convolution for semi-supervised node classification.

In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2019. 841–851

38 Niepert M, Ahmed M O, Kutzkov K. Learning convolutional neural networks for graphs. In: Proceedings of International

Conference on Machine Learning, 2016. 2014–2023

39 Gao H, Wang Z, Ji S. Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2018. 1416–1424

40 Wu J, Zhong S H, Liu Y. MvsGCN: a novel graph convolutional network for multi-video summarization. In: Proceedings of

the 27th ACM International Conference on Multimedia, 2019. 827–835

41 Chen J, Ma T, Xiao C. FastGCN: fast learning with graph convolutional networks via importance sampling. In: Proceedings

of the International Conference of Legal Regulators, 2018

42 Huang W, Zhang T, Rong Y, et al. Adaptive sampling towards fast graph representation learning. In: Proceedings of Annual

Conference on Neural Information Processing Systems, 2018. 4558–4567

43 Wei Y, Wang X, Nie L, et al. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-

video. In: Proceedings of the 27th ACM International Conference on Multimedia, 2019. 1437–1445

44 Andersen R, Chung F, Lang K. Local graph partitioning using pagerank vectors. In: Proceedings of the 47th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’06), 2006. 475–486

45 Fouss F, Pirotte A, Renders J, et al. Random-walk computation of similarities between nodes of a graph with application to

collaborative recommendation. IEEE Trans Knowl Data Eng, 2007, 19: 355–369

46 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. In: Proceedings of ICLR

Workshop, 2013

47 Kingma D P, Ba J. Adam: a method for stochastic optimization. In: Proceedings of the International Conference of Legal

Regulators, 2015

48 Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach

Learn Res, 2014, 15: 1929–1958

49 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res, 2010, 9:

249–256

50 Chen J, Zhu J, Song L. Stochastic training of graph convolutional networks with variance reduction. In: Proceedings of the

International Conference on Machine Learning, 2018

https://doi.org/10.1109/TGRS.2020.3031902
https://doi.org/10.1109/TBDATA.2019.2923243
https://doi.org/10.1007/s11280-018-0556-3
https://doi.org/10.1007/s11432-019-2685-1
https://doi.org/10.1109/TMM.2020.3006371
https://doi.org/10.1109/TMM.2020.3013531
https://doi.org/10.1109/TMM.2020.3011288
https://doi.org/10.1109/TKDE.2007.46

	Introduction
	Related work
	Method
	Graph convolutional networks
	Deepwalk
	Updating adjacency matrix
	Fusion strategy

	Experiments
	Dataset description
	Experimental setup
	Results
	Ablation studies
	On the update of affinity and latent representation
	On the threshold setting and network layer number

	Parameter setting
	Runtime

	Conclusion

