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Abstract This paper considers a distributed resource allocation problem over time-varying networks. The

objective of each agent in the network is to optimize the sum of separable convex functions subjected to

resource constraints by observing its local objective function and the information exchanged with its adjacent

neighbors. Thus, the problem lies in a distributed framework. In existing literature dealing with similar

problems, the measurement of the gradients/subgradients of the objective functions has been applied in the

algorithm design. In this paper, by adding stochastic dithers to the local objective functions and constructing

randomized differences, we propose a distributed gradient-free algorithm for solving the problem, and show

that the algorithm is strongly convergent; that is, the estimates generated from each agent almost certainly

converge to the optimal resource allocation solution of the network. Finally, the effectiveness of the algorithm

is validated by conducting numerical experiments.
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1 Introduction

A resource allocation problem involves a group of agents cooperatively utilizing a finite resource to
minimize or maximize a global objective function, which is usually formulated as the sum of the local
objective functions of all agents. Resource allocation problems have wide applications, such as the eco-
nomic dispatch in a smart grid [1–3], load control problem in power systems [4], and energy management
in communication networks [5, 6], and have been studied in diverse fields.

A pioneer theoretical paper on resource allocation is [7], where the problem of allocating limited re-
sources to two agents, called “activities” in this paper, was considered, and several mathematical models
were proposed to address this problem. Since then, this problem has been extensively studied (e.g., [8–10]
and the references therein). The algorithms used in the abovementioned papers were formulated in a cen-
tralized manner; that is, the information regarding the entire system was sent to an actual/virtual center,
where these algorithms performed allocation, and then, the results were sent to each resource demand
unit of the system. However, with the recent, rapid development and special demands of networked
systems, distributed resource allocation has received much attention and many algorithms have been
proposed [11–15]. Compared to centralized algorithms, distributed algorithms do not possess any pro-
cessing center, and thus, have the merits of privacy protection, scalability and robustness for large-scale
networks. In [11], a distributed algorithm was proposed to estimate the saddle point of a dual problem
related to primal resource sharing. In [12], an asynchronous gradient-descent algorithm was introduced
for distributed resource allocation. Considering communication noises and various uncertainties, in a
recent study [14], a stochastic approximation (SA)-based distributed resource allocation algorithm was
introduced, and the ordinary differential equation (ODE) method was used for the convergence analysis
of the SA. In [13], the relation between the decentralized resource allocation problem and decentralized
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consensus optimization problem was studied and a novel class of decentralized schemes for solving re-
source allocation problems was proposed. In [15], a distributed dual gradient tracking algorithm was
proposed to solve the resource allocation problems over an unbalanced network, where the algorithm
was found to converge linearly for strongly convex and Lipschitz smooth cost functions and sublinearly
without Lipschitz smoothness. In [16], a distributed continuous-time algorithm for solving the resource
allocation problem was considered. In the aforementioned papers and almost all other existing literature
on resource allocation, the gradient information of the objective functions was applied in the algorithm
design. However, as shown in [17,18], in many cases, the gradient or subgradient is unavailable or compu-
tationally expensive, and even impracticable. Hence, algorithms without gradients or subgradients, also
known as derivative-free methods in optimization areas, are in high demand in both theoretical research
and practical applications.

In fact, many studies have been conducted on gradient-free algorithms under both centralized and
distributed settings. For example, as a centralized algorithm, a randomized difference-based gradient-
free algorithm, called the Kiefer-Wolfowitz (KW) algorithm, was introduced in [19] and its modified
version with randomly varying truncations was proposed in [20]. In addition, a simultaneous perturbation
SA (SPSA) algorithm was introduced in [21]. Based on a pre-smoothing technique, a gradient-free
algorithm was applied to nonsmooth optimization in [18]. Please refer to [17] for a unified view of
various gradient-free optimization procedures. Meanwhile, for achieving distributed settings on networked
systems, some gradient-free algorithms have been recently proposed (e.g., [22–26]). These studies focused
on the distributed optimization of a global objective function over networks with/without constraints
and the algorithms were mostly found to be of both consensus and convergence types (i.e., the estimates
for all agents in the networks converged to the same optimal point, or its neighborhood, of the objective
function). In the resource allocation problem, each agent has its own operating variable, and the optimal
solution to each agent is not expected to converge to the same value, and thus, the above methods cannot
be directly applied. Meanwhile, a few studies have also used gradient-free algorithms for distributed
resource allocation. For example, in [27], based on the concept of extremum seeking control (ESC), a
distributed continuous-time algorithm for real-time resource allocation was introduced and its convergence
was established using the classical results of ESC. In [28], using the so-called robust box-constrained
gradient fairness [29] with SPSA [21], a distributed discrete-time algorithm was proposed and was found
to converge to a neighborhood of the optimal solution with a constant step size. To the best of our
knowledge, so far, no strongly consistent results on gradient-free algorithms for distributed resource
allocation of discrete-time systems with communication noises has been reported. Strong consistency
means that the algorithms converge to the optimal solution of resource allocation with probability one.

Therefore, this paper considers a gradient-free algorithm for distributed resource allocation over undi-
rected and randomly switching networks with communication noises among agents. The contributions of
this paper are listed as follows.

(i) Motivated by the algorithms proposed in [14], this paper transforms the original resource allocation
into the saddle-point-seeking of an augmented Lagrangian duality problem. Then, based on the local
observation of each agent in the network and the information exchanged with adjacent neighbors, a
distributed algorithm is proposed to solve the augmented Lagrangian duality problem. The key difference
in the proposed algorithm design and that proposed in [14] is that, by introducing stochastic perturbation
to each local objective function, and then constructing randomized differences to replace its gradient
information, the proposed algorithms is completely gradient-free.

(ii) Under the uncertainty environment including the time-varying network topology and the commu-
nication and resource-sharing noises among the agents, by applying the ODE method for convergence
analysis of SA (e.g., [30]), we first prove that the estimates generated from the algorithm converge to an
equilibrium point of an ODE associated with the problem, and then establish an almost certain conver-
gence of the estimates to the optimal solution of resource allocation. Compared to [14], as the gradient
information of the objective functions is not directly available, the convergence analysis conducted in
this study is more involved. As a bottleneck of distributed algorithms is the high-dimensional gradient
information exchanged among agents, the method used in this study is suitable for the cases in which
the direct measurements of gradients are not available or are costly and the objective functions have
high dimensions. To the best of our knowledge, this is the first study conducted on a strongly consistent
convergence of gradient-free algorithms for a distributed resource allocation of discrete-time systems with
imperfect communications.

The remainder of this paper is organized as follows. Section 2 presents the problem formulation for
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distributed resource allocation and introduces a randomized difference-based gradient-free algorithm for
solving this problem. Section 3, under certain mild conditions, establishes an almost certain conver-
gence of estimates generated from the algorithm. Section 4 provides some simulation examples, and
Section 5 presents the concluding remarks. Some technical results applied in this paper are presented in
Appendix A.

Notations. The vectors used in this paper are deemed as column vectors, and the transpose of a
vector x is denoted as xT. domf denotes the domain of a function f(·). Ak = [aijk ] denotes the adjacent

matrix of a time-varying network at time k and a
ij
k denotes its (i, j)-entry. The Kronecker product

of matrices A and B is denoted as A ⊗ B. The projection mapping of x onto a set Ω is denoted by
PΩ(x) , argminy∈Ω ‖x− y‖2, where ‖ · ‖2 is the 2-norm in the real space. For a convex set Ω ⊆ R

p and

x ∈ Ω, NΩ(x) , {v ∈ R
p|〈v, y − x〉 6 0, ∀y ∈ Ω} is defined as the normal cone of Ω at x, where 〈u,w〉

denotes the inner product of u and w. X , col{x1, . . . , xn} = [(x1)T, . . . , (xn)T]T denotes a stacked
column vector with x1, . . . , xn.

2 Gradient-free algorithm for distributed resource allocation

2.1 Problem formulation

Let us consider a time-varying network Gk = (N , Ek), where k > 1 indicates the time indices, N =
{1, 2, . . . , n} indicates the agent set, and Ek ⊆ N ×N indicates the edge set. When (j, i) ∈ Ek, we assume
that agent i can receive information from agent j at time k. We define the neighbor set of agent i at time
k as N i

k, i.e., N i
k = {j ∈ N|(j, i) ∈ Ek}. In addition, we define the adjacency matrix of the network at

time k by Ak = [aijk ] with a
ij
k = 1 when j ∈ N i

k, and otherwise, aijk = 0. Its Laplacian matrix is denoted

as Lk = Dk −Ak, where Dk = diag[
∑n

j=1 a
1j
k , . . . ,

∑n
j=1 a

nj
k ].

We consider a resource allocation problem over a time-varying network Gk, k > 1. Each agent i, i ∈ N
possesses a local resource variable xi ∈ R

p, which can only be operated by itself throughout the allocation
process. Meanwhile, each agent i has a local objective function f i(·) : Rp → R and can access a fixed
local resource ri, but aims at cooperating with other agents to minimize the global objective function of
the network with resource constraint

∑

i∈N xi =
∑

i∈N ri. Without loss of generality, the global objective
function of the network is denoted as the sum of all local objective functions f i(·), i = 1, . . . , n. Thus,
the problem lies in a distributed framework and can be formulated as follows:

min
xi∈Rp, i∈N

∑

i∈N

f i(xi),

s.t.
∑

i∈N

xi =
∑

i∈N

ri, xi ∈ Ωi, Ωi ⊂ R
p, (1)

where Ωi , {x : hij(x) 6 0, j = 1, . . . ,mi}, with hij(·) : Rp → R, j = 1, . . . ,mi being a continuously
differentiable convex function and Ωi being available to agent i only.

The existing distributed algorithms for solving problem (1) usually require the gradient information
on f i(·), i ∈ N . As stated in Section 1, the gradient information is not always available, or even
intractable in some cases. Next, we first introduce stochastic perturbation to the local objective functions
f i(·), i ∈ N , construct randomized differences to replace the gradient measurements, and then introduce
the distributed gradient-free algorithm.

2.2 Randomized differences

For each i ∈ N , let {∆i
k = [∆i1

k ,∆i2
k , . . . ,∆ip

k ]T ∈ R
p}k>1 be a sequence of mutually independent and

identically distributed random vectors, which we call the perturbation signal of agent i at time k. Fur-
thermore, we choose a positive sequence {βk}k>0 tending to zero, which will be specified later. Assuming
that at iteration k + 1, we have two observations of each local objective function f i(·) at xi

k + βk∆
i
k+1

and xi
k − βk∆

i
k+1, denoted by [yik+1]

+ = f i(xi
k + βk∆

i
k+1) and [yik+1]

− = f i(xi
k − βk∆

i
k+1), respectively;

where [·]+ and [·]− represent positive and negative perturbation directions, respectively.
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Let us consider [∆i
k]

−1 , [ 1
∆i1

k

, 1
∆i2

k

, . . . , 1
∆ip

k

]T. The randomized differences adopted in this paper are

given as follows:

dik+1 ,
([yik+1]

+ − [yik+1]
−)[∆i

k+1]
−1

2βk

. (2)

From the definition of the randomized differences, we find that dik+1 only uses the measurements of
the function values f i(xi

k + βk∆
i
k+1) and f i(xi

k − βk∆
i
k+1), but can be regarded as an approximation or

estimate of the true gradient of f i(·) at xi
k.

Remark 1. Another type of randomized difference, which is usually called a random gradient-free
oracle, can be expressed as ([18, 26])

gµ(xk) =
f(xk + µuk)− f(xk − µuk)

2µ
uk, (3)

where µ > 0 is a constant, called the smoothing parameter, and uk ∈ R
p is uniformly generated over a unit

ball. For the centralized/distributed stochastic optimization algorithms with gradients replaced by the
abovementioned randomized differences, it can be proved that the estimates converge to a neighborhood
of the optimal value, whose size is characterized by the smoothing parameter µ. The problem considered
in this paper is not only to design a gradient-free algorithm but also to ensure that the estimates converge
to the optimal value almost certainly. Thus, the randomized difference provided by (3) cannot be applied
here, and correspondingly, the mathematical proofs presented in this paper differ from those presented
in [18, 26].

2.3 Distributed resource allocation algorithm

The basic concept of the algorithm is motivated by [31–33]; that is, first transform the resource allocation
problem into saddle-point-seeking of Lagrangian duality, and then use the primal-dual gradient dynamics
(PDGD) to solve the problem. However, for PDGD, the gradients of the objective functions are applied.
In this paper we use the above-defined randomized differences to replace the gradients in PDGD. In
addition, by considering the network uncertainties, we assume that each agent i can only access its local
resource ri with noise observations and the information communicated among agents is corrupted by
noises. As mentioned in Section 3, the randomized differences adopted in the algorithm and the network
uncertainties make the problem nontrivial and the convergence analysis of the distributed algorithm more
involved. For simplicity, the concept of the algorithm design is defined as being based on a connected
and time-invariant network. The detailed assumptions made on the network are presented in Section 3.

First, we define the Lagrangian function L : Rp × · · · × R
p × R

p → R, with the multiplier λ ∈ R
p

associated with problem (1), as

L(x1, . . . , xn, λ) ,
n
∑

i=1

f i(xi)− λT

(

n
∑

i=1

xi −
n
∑

i=1

ri

)

, (4)

where domL = Ω1 × · · · × Ωn × R
p. Then, the Lagrangian dual problem is presented as

max
λ∈Rp

g(λ) (5)

with

g(λ) =

n
∑

i=1

gi(λ) =

n
∑

i=1

inf
xi∈Ωi

{f i(xi)− λTxi + λTri}. (6)

Let L denote the Laplacian matrix of the network, and set Λ = col{λ1, . . . , λn} ∈ R
np and Γ =

col{γ1, . . . , γn} ∈ R
np. Then, the Lagrangian duality problem (5) can be equivalently formulated as

{

max
Λ

G(Λ)

s.t. (L⊗ Ip)Λ = 0 ∈ R
np

(7)
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with

G(Λ) =
n
∑

i=1

gi(λi) (8)

and the augmented Lagrangian duality is given by

min
Γ

max
Λ

G(Λ,Γ) (9)

with

G(Λ,Γ) =

n
∑

i=1

gi(λi)− ΓT(L ⊗ Ip)Λ − 1

2
ΛT(L⊗ Ip)Λ. (10)

For the resource allocation problem (1), the Karush-Kuhn-Tucker (KKT) condition can be formulated
as

−∇f i(xi∗) + λ∗ ∈ NΩi(xi∗),
n
∑

i=1

xi∗ =

n
∑

i=1

ri, xi∗ ∈ Ωi, (11)

where X∗ = [x1∗T . . . xn∗T]T and λ∗ denotes one of the solutions of KKT.
Lemma 2.38 in [32] shows that, under certain moderate conditions, X∗ is the optimal solution of

the original problem (1) if and only if (X∗, λ∗) is a saddle point of the Lagrangian (4). Furthermore,
Λ∗ = [λ∗T . . . λ∗T]T is the optimal solution of the Lagrangian duality (7) if and only if (Λ∗,Γ∗) is a saddle
point of the augmented Lagrangian duality (10). Thus, the optimal solution of resource allocation (1) is
equivalent to seeking the saddle points of the Lagrangian (4) and the augmented Lagrangian duality (10).

A widely used algorithm for the seeking of the saddle points of the Lagrangian (4) and the augmented
Lagrangian duality (10) is called PDGD or the saddle point dynamics [34, 35], for which the distributed
continuous-time algorithm can be formulated as, e.g., [33],











ẋi = PΩi{xi −∇f i(xi) + λi} − xi,

λ̇i = ri − xi −∑n
j=1 a

ij(λi − λj)−∑n
j=1 a

ij(γi − γj),

γ̇i =
∑n

j=1 a
ij(λi − λj),

(12)

for all i ∈ N , where the matrix [aij ]ni,j=1 represents the link structure of the network. However, the above
algorithm cannot be directly applied to problem (1), as in this paper, we consider the observations in
discrete time and the time-varying network; furthermore, there is no gradient information available for
the objective functions in (1).

Motivated by PDGD, based on the randomized differences dik+1 in (2) in this paper, we introduce the
gradient-free algorithm for distributed resource allocation, see Algorithm 1.

Algorithm 1 Gradient-free algorithm for distributed resource allocation

For each agent i ∈ N , initialize xi
0, λ

i
0, γ

i
0,

for k = 0, 1, 2, . . . do















xi
k+1 = PΩi{x

i
k + αk(−di

k+1 + λi
k)},

λi
k+1 = λi

k + αk{(r
i + δik+1) − xi

k −
∑

j∈Ni
k
a
ij

k
(λi

k − (λj

k
+ ξ

ij

k+1)) −
∑

j∈Ni
k
a
ij

k
(γi

k − (γj

k
+ η

ij

k+1))},

γi
k+1 = γi

k + αk

∑

j∈Ni
k
a
ij

k
(λi

k − (λj

k
+ ξ

ij

k+1)),

(13)

end for

In Algorithm 1, k is the time index; {αk}k>0 is a positive sequence tending to zero, which we call the

step size in this paper; [aijk ]
n
i,j=1 indicates the adjacent matrices of the network; xi

k represents the resource

allocated to agent i at time k; ([x1T
k , . . . , xnT

k ]T, λi
k), k > 0 are the estimates for the saddle points of the

Lagrangian (4), while ([λ1T
k , . . . , λnT

k ]T, [γ1T
k , . . . , γnT

k ]T), k > 0 serve as the estimates for the saddle points
of the augmented Lagrangian duality (10). From Algorithm 1, we find that the gradient information of
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local objective functions is not applied, and for each agent i, it only uses its local information and
that information exchanged with its adjacent neighbors. Thus, Algorithm 1 is gradient-free and fully
distributed.

Considering the uncertainties in the communication between the agents, in Algorithm 1, ξijk+1 and

η
ij
k+1 are random noises occurring when λ

j
k and γ

j
k are sent from agent j to agent i, and δik+1 denotes the

random noise when agent i gets access to its local resource ri.
In Section 3, we will introduce the network assumptions, and then establish a high-probability

convergence—and in fact, convergence with probability one—of the proposed algorithm.

3 Assumptions and convergence of algorithm

We make the following network assumptions.

Assumption 1. Problem (1) is feasible and has a finite optimal solution. For each i ∈ N , f i(·) is
strictly convex and differentiable in dom(f i), and has a Lipschitzian continuous gradient, i.e., ‖∇f i(x)−
∇f i(y)‖2 6 lc‖x− y‖2 for some lc > 0 and ∀x, y ∈ dom(f i). Furthermore, f i(·) has a bounded gradient,
i.e., ‖∇f i(x)‖2 6 L, for some L > 0 and ∀x ∈ dom(f i).

Assumption 2. For each i ∈ N , Ωi is convex and closed and the set of its interior points is nonempty.
Let us define Ii(x) , {j : hij(x) = 0}. For each x with nonempty Ii(x), {∇xh

ij(x), j ∈ Ii(x)} are linearly
independent.

Remark 2. In what follows, we will apply the ODE method (e.g., [30]) for convergence analysis of
the distributed algorithm. The primary concept of ODE is based on transforming the convergence of
the discrete-time algorithm into the stability of the equilibrium of an associated ODE. Assumption 2,
called the Slater condition in the optimization literature, aims to guarantee that the equilibrium of the
associated ODE is precisely the solution of the KKT condition (11), and then, the convergence of the
distributed algorithm can be established.

Assumption 3. Let Lk denote the Laplacian matrix of the network at time k. Let us assume that
{Lk}k>0 is an i.i.d. sequence1). Set L , E(Lk). L is symmetric with a positive second-smallest eigenvalue.

Remark 3. Assumption 3 does not require the connectivity of the communication graph at any time
instance k. In contrast, it requires the mean graph of the network to be connected. This assumption is
often applied in the distributed optimization/estimation (e.g., [36, 37]).

Next, we introduce the conditions on the stochastic perturbation and the perturbation step size adopted
in the randomized differences.

Assumption 4. For each i ∈ N and j ∈ {1, 2, . . . , p}, we choose {∆ij
k }k>0 as an i.i.d. sequence with

|∆ij
k | < a,

∣

∣

∣

∣

∣

1

∆ij
k

∣

∣

∣

∣

∣

< b, E

[

1

∆ij
k

]

= 0, ∀k > 0 (14)

for some a > 0 and b > 0, and {∆ij
k }k>0 and {∆i′j′

k }k>0 are mutually independent if i 6= i′ or j 6= j′.

Assumption 5. Let us assume that {αk}k>0 and {βk}k>0 are two positive sequences that satisfy the
following:
(a) αk > 0,

∑∞
k=0 αk = ∞,

∑∞
k=0 α

2
k < ∞;

(b) βk > 0, βk → 0,
∑∞

k=0 αkβk < ∞.

Remark 4. We select

αk =
1

kθ
and βk =

1

kν

with θ ∈ (12 , 1] and ν ∈ (0, 1
2 ], to directly verify that such choices on αk and βk meet the requirements in

Assumption 5.

Let {Fk}k>0 and {F ′
k}k>0, which are two sequences of σ-algebras, by

Fk , σ
{

ξ
ij
t , η

ij
t , δit,∆

i
t, Lt, 0 6 t 6 k, i ∈ N , j ∈ N , X(0),Λ(0),Γ(0)

}

(15)

and F ′
k , σ{Fk, Lk+1}, respectively.

Now, we introduce the conditions on communication noises.

1) Independent and identically distributed.
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Assumption 6. (a) Assume that for each i ∈ N , {δik}k>0 is an i.i.d. sequence with E(δik) = 0 and

E(‖δik‖22) 6 σ2
1 < ∞, where σ1 is a positive constant and {δik}k>0 is independent of {Lk}k>0, {ξi

′j′

k }k>0,

and {ηi
′j′

k }k>0 for any i′, j′ ∈ N .

(b) For each i, j ∈ N , {ξijk+1,F ′
k}k>0 and {ηijk+1,F ′

k}k>0 are martingale difference sequences (m.d.s.)

and there exists a positive constant σ2 such that E(‖ξijk+1‖22|F ′
k) 6 σ2

2 and E(‖ηijk+1‖22|F ′
k) 6 σ2

2 for all
k > 0.

(c) Furthermore, the perturbation signals {∆ij
k , i ∈ N , j ∈ {1, . . . , p}}k>0 are independent of {δik, i ∈

N}k>0, {ξijk , i ∈ N , j ∈ N}k>0 and {ηijk , i ∈ N , j ∈ N}k>0.

Remark 5. Assumptions 6(a) and (b) are made on the uncertainties of the observations/communications
over random networks (e.g., [14, 36, 38, 39]). Assumption 6(a) is made on the uncertainties of the local
resource observation. Assumption 6(b) aims to describe the noises when the information is exchanged
over random networks with imperfect communications, which includes independent and identically dis-
tributed random noises, such as Gaussian distributed variables and uniformly distributed variables, as
special cases. Assumption 6(c) requires that the perturbation signals adopted in the algorithm are inde-
pendent of the communication and resource observation noises.

Before proving the strong consistency of the distributed resource allocation algorithm, we first introduce
the notations used throughout this section.

Let R = col{r1, r2, . . . , rn},

ξik =

n
∑

j=1

a
ij
k ξ

ij
k , ηik =

n
∑

j=1

a
ij
k η

ij
k ,

Xk = col{x1
k, x

2
k, . . . , x

n
k}, Λk = col{λ1

k, λ
2
k, . . . , λ

n
k}, Γk = col{γ1

k, γ
2
k, . . . , γ

n
k },

δk = col{δ1k, δ2k, . . . , δnk }, ξk = col{ξ1k, ξ2k, . . . , ξnk }, ηk = col{η1k, η2k, . . . , ηnk },
Dk = col{d1k, d2k, . . . , dnk},

and

∇f(Xk) = col{∇f1(x1
k),∇f2(x2

k), . . . ,∇fn(xn
k )}.

With the above notations, the algorithm (13) can then be rewritten in a compact form as follows:










Xk+1 = PΩ{Xk + αk(−Dk+1 + Λk)},
Λk+1 = Λk + αk{R+ δk+1 −Xk − (Lk ⊗ Ip)(Λk + Γk) + ξk+1 + ηk+1},
Γk+1 = Γk + αk{(Lk ⊗ Ip)Λk − ξk+1},

(16)

where Ω =
∏n

i=1 Ω
i is the Cartesian product of Ωi, i = 1, . . . , n.

Let

e1k+1 = ((L̄ − Lk)⊗ Ip)(Λk + Γk),

e2k+1 = δk+1 + ξk+1 + ηk+1,

e3k+1 = ((Lk − L̄)⊗ Ip)Λk − ξk+1.

Then, Eq. (16) can be formulated as










Xk+1 = PΩ{Xk + αk(−Dk+1 + Λk)},
Λk+1 = Λk + αk{R−Xk − (L̄⊗ Ip)(Λk + Γk) + e1k+1 + e2k+1},
Γk+1 = Γk + αk{(L̄⊗ Ip)Λk + e3k+1},

(17)

or equivalently,
Sk+1 = PΦ{Sk + αk(J(Sk) + Ek+1)}, (18)

where

Sk =









Xk

Λk

Γk









, J(S) =









−∇f(X) + Λ

R−X − (L̄ ⊗ Ip)(Λ + Γ)

(L̄ ⊗ Ip)Λ









, Ek+1 =









∇f(Xk)−Dk+1

e1k+1 + e2k+1

e3k+1









(19)
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and Φ = Ω× R
np × R

np.

Remark 6. Let Zk+1 = 1
αk

(

PΦ{Sk + αk(J(Sk) + Ek+1)} − Sk − αk(J(Sk) + Ek+1)
)

. Then Eq. (18)
can further be written as

Sk+1 = Sk + αk(J(Sk) + Ek+1 + Zk+1), (20)

which is in a standard SA algorithm form [30, 40]. According to [30], Zk+1 ∈ −NΦ(Sk+1) and Zk+1 can
be regarded as the minimum norm force required to take Sk+αk(J(Sk)+Ek+1) back to the constraint set
Φ. In what follows, we will apply the ODE method (e.g., [30]) for the convergence analysis of (18). The
basic concept of ODE lies in first interpolating the discrete-time estimates {Sk}k>0 into a sequence of
uniformly bounded and equicontinuous functions, then using Arzelà-Ascoli Theorem [30,40], determining
an associated ODE, and finally proving the convergence of estimation sequence to the ODE equilibrium.

Let us define the following continuous-time projected dynamics as the underlying ODE of (13):

Ṡ = J(S) + z, S0 = col{X0,Λ0,Γ0} ∈ Φ (21)

with z ∈ −NΦ(S) and J(S) defined by (19).
We first present two technical lemmas, which will be used in our analysis. Their proofs are omitted

here as they can be found in [14].

Lemma 1 ([14]). Suppose that Assumptions 1–3 hold. Then, the ODE (21) has at least one equilibrium
point. Denote any one equilibrium point of (21) by S∗ = col{X∗,Λ∗,Γ∗}. Then, X∗ = col{x1∗ · · ·xn∗}
is the optimal solution to problem (1), and the following formulas hold:











−∇f i(xi∗) + λ∗ ∈ NΩi(xi∗), xi∗ ∈ Ωi, i ∈ N ,

(L̄⊗ Ip)(Λ
∗ + Γ∗) +X∗ −R = 0,

(L̄⊗ Ip)Λ
∗ = 0.

(22)

Moreover, the trajectories of (21) converge to one of its equilibrium points if the initial S0 ∈ Φ.

For ease of reading, we list some notations to be used later. Set

C1 = 3(2n3σ2
2 + nσ2

1), (23)

C2 = E(‖(L̄− Lk)⊗ Ip‖22), (24)

C3 = ‖(L̄⊗ Ip)‖22, (25)

c1 = pa
√

(p− 1)a2b2 + 1, (26)

c2 = ‖nΩ(X
∗)‖22 = ‖∇f(X∗)− Λ∗‖22, (27)

whereX∗ and Λ∗ are guaranteed by Lemma 1 and nΩ(X
∗) = col{nΩ1(x1∗), . . . , nΩn(xn∗)} with nΩi(xi∗) ∈

NΩi(xi∗) such that −∇f i(xi∗) + λ∗ = nΩi(xi∗).

Lemma 2 ([14]). Suppose that Assumptions 3 and 6 hold. Then,

E(e1k+1 + e2k+1|Fk) = 0, E(e3k+1|Fk) = 0, (28)

E(‖e1k+1 + e2k+1‖22|Fk) 6 C2‖Λk + Γk‖22 + C1, (29)

E(‖e3k+1‖22|Fk) 6 C2‖Λk‖22 + n3σ2
2 , (30)

where C1 and C2 are defined by (23) and (24), respectively.

We have the following lemma.

Lemma 3. Let {Sk}k>0 be generated by algorithm (17) and S∗ be any of the equilibrium points of (21).
If Assumptions 1 and 4 hold, then

(Sk − S∗)TE(Ek+1|Fk) 6 c1lcβk‖Xk −X∗‖22 + nc1lcβk (31)

and
J(Sk)

TE(Ek+1|Fk) 6 c1lc(l
2
c + 1)βk(‖Xk −X∗‖22 + ‖Λk − Λ∗‖22) + c1c2lcβk + 3nc1lcβk, (32)

where c1 and c2 are positive constants defined by (26) and (27), respectively, and Ek+1 and J(·) are
defined in (19).
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Proof. We first prove (31). According to the definitions of Sk and Ek+1,

(Sk − S∗)TE(Ek+1|Fk) = (Xk −X∗)TE(∇f(Xk)−Dk+1|Fk) + (Λk − Λ∗)TE(e1k+1 + e2k+1|Fk)

+ (Γk − Γ∗)TE(e3k+1|Fk).

According to (28), for (31), it suffices to show that

(Xk −X∗)TE(∇f(Xk)−Dk+1|Fk) 6 c1lcβk‖Xk −X∗‖22 + nc1lcβk. (33)

For i ∈ N and k > 0, by the definition of the randomized difference dik+1, we have

E
(

∇f i(xi
k)− dik+1

∣

∣Fk

)

= E

(

∇f i(xi
k)−

f i(xi
k + βk∆

i
k+1)− f i(xi

k − βk∆
i
k+1)

2βk

[∆i
k+1]

−1

∣

∣

∣

∣

∣

Fk

)

= E

(

∇f i(xi
k)−

〈∇f i(xi
k + µi

kβk∆
i
k+1), 2βk∆

i
k+1〉

2βk

[∆i
k+1]

−1

∣

∣

∣

∣

∣

Fk

)

,

where µi
k ∈ [−1, 1] and the mean value theorem is applied in the second equality.

By noting that ∇f i(xi
k) is Fk-measurable and ∆i

k+1 and Fk are mutually independent, we have

E
(

∇f i(xi
k)− dik+1

∣

∣Fk

)

= E
(

∇f i(xi
k)− [∆i

k+1]
−1(∆i

k+1)
T∇f i(xi

k + µi
kβk∆

i
k+1)

∣

∣Fk

)

= E
(

[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))

∣

∣Fk

)

+ E
(

(I − [∆i
k+1]

−1(∆i
k+1)

T)∇f i(xi
k)
∣

∣Fk

)

= E
(

[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))

∣

∣Fk

)

+ E
(

I − [∆i
k+1]

−1(∆i
k+1)

T
)

∇f i(xi
k). (34)

Assumption 4 indicates that E
(

I − [∆i
k+1]

−1(∆i
k+1)

T
)

= 0. Then, from (34), we obtain

E
(

∇f i(xi
k)− dik+1

∣

∣Fk

)

= E
(

[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))

∣

∣Fk

)

, (35)

from which, by noting xi
k − xi∗ ∈ Fk, we have

(xi
k − xi∗)TE

(

∇f i(xi
k)− dik+1

∣

∣Fk

)

= (xi
k − xi∗)TE

(

[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))

∣

∣Fk

)

6 ‖xi
k − xi∗‖2E

(

‖[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))‖2

∣

∣Fk

)

6 ‖xi
k − xi∗‖2E

(

‖[∆i
k+1]

−1(∆i
k+1)

T‖2‖∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1)‖2

∣

∣Fk

)

, (36)

where for the first inequality, the Cauchy-Schwarz inequality and the Jensen inequality are applied.
Assumption 4 indicates that

‖[∆i
k+1]

−1(∆i
k+1)

T‖2 6
√

p(p− 1)a2b2 + p. (37)

From (36) and (37) and under the Lipschitzian condition of the gradient (Assumption 1), we further
obtain

(xi
k − xi∗)TE

(

∇f i(xi
k)− dik+1

∣

∣Fk

)

6
√

p(p− 1)a2b2 + plcβk‖xi
k − xi∗‖2E

(

‖∆i
k+1‖2

∣

∣Fk

)

6
√

p(p− 1)a2b2 + plcβk

√
pa‖xi

k − xi∗‖2 = c1lcβk‖xi
k − xi∗‖2 (38)

with c1 defined by (26), and hence,

(xi
k − xi∗)TE

(

∇f i(xi
k)− dik+1

∣

∣Fk

)

6 c1lcβk(‖xi
k − xi∗‖22 + 1) = c1lcβk‖xi

k − xi∗‖22 + c1lcβk. (39)

Noting that X∗ = col{x1∗, x2∗, . . . , xn∗}, from (39), we derive that

(Xk −X∗)TE (∇f(Xk)−Dk+1| Fk) 6 c1lcβk‖Xk −X∗‖22 + nc1lcβk.
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Thus, Eq. (31) is proved. Next, we will prove (32).
According to the definitions of J(·) and Ek+1, we have

J(Sk)
TE(Ek+1|Fk) =(−∇f(Xk) + Λk)

TE(∇f(Xk)−Dk+1|Fk)

+ (R−Xk − (L̄⊗ Ip)(Λk + Γk))
TE(e1k+1 + e2k+1|Fk) + ((L̄ ⊗ Ip)Λk)

TE(e3k+1|Fk)

=(−∇f (Xk) + Λk)
T
E (∇f (Xk)−Dk+1| Fk) .

Thus, for (32), we only need to prove

(−∇f(Xk) + Λk)
TE (∇f(Xk)−Dk+1| Fk)

6 c1lc(l
2
c + 1)βk

(

‖Xk −X∗‖22 + ‖Λk − Λ∗‖22
)

+ c1c2lcβk + 3nc1lcβk. (40)

Noting that nΩi(xi∗) ∈ NΩi(xi∗) and −∇f i(xi∗) + λ∗ = nΩi(xi∗), by (35) and conducting a similar
analysis as that for (36)–(38), we can obtain

(−∇f i(xi
k) + λi

k)
TE
(

∇f i(xi
k)− dik+1

∣

∣Fk

)

= (−∇f i(xi
k) + λi

k +∇f i(xi∗)− λ∗ + nΩi(xi∗))T

· E
(

[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))

∣

∣Fk

)

6 (‖∇f i(xi
k)−∇f i(xi∗)‖2 + ‖λi

k − λ∗‖2 + ‖nΩi(xi∗)‖2)
· E
(

‖[∆i
k+1]

−1(∆i
k+1)

T‖2‖(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))‖2

∣

∣Fk

)

6 c1lcβk(‖∇f i(xi
k)−∇f i(xi∗)‖2 + ‖λi

k − λ∗‖2 + ‖nΩi(xi∗)‖2)
6 c1lcβk(‖∇f i(xi

k)−∇f i(xi∗)‖22 + ‖λi
k − λ∗‖22 + ‖nΩi(xi∗)‖22 + 3)

6 c1lcβk(‖∇f i(xi
k)−∇f i(xi∗)‖22 + ‖λi

k − λ∗‖22 + ‖nΩi(xi∗)‖22) + 3c1lcβk, (41)

and then

(−∇f(Xk) + Λk)
TE (∇f(Xk)−Dk+1| Fk)

6 c1lcβk(‖∇f(Xk)−∇f(X∗)‖22 + ‖Λk − Λ∗‖22 + ‖nΩ(X
∗)‖22) + 3nc1lcβk

6 c1lcβk(l
2
c‖Xk −X∗‖22 + ‖Λk − Λ∗‖22 + ‖nΩ(X

∗)‖22) + 3nc1lcβk

6 c1lcβk(l
2
c + 1)(‖Xk −X∗‖22 + ‖Λk − Λ∗‖22) + c1c2lcβk + 3nc1lcβk, (42)

with c1 and c2 defined by (26) and (27), respectively.
Thus, Eq. (40) is established, and the proof is complete.

Lemma 4. If Assumptions 1 and 4 hold, then

E
(

‖Ek+1‖22
∣

∣Fk

)

6 2nc21l
2
cβ

2
k + 6C2(‖Sk − S∗‖22 + ‖S∗‖22) + c3, (43)

where c1 and C2 are defined by (26) and (24), respectively, and c3 , 2np(p− 1)a2b2L2 + C1 + n3σ2
2 .

Proof. According to the definitions of dik+1 and (34),

E
(

‖∇f i(xi
k)− dik+1‖22

∣

∣Fk

)

= E
(

‖∇f i(xi
k)− [∆i

k+1]
−1(∆i

k+1)
T∇f i(xi

k + µi
kβk∆

i
k+1)‖22

∣

∣Fk

)

6 2E
(

‖[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))‖22

∣

∣Fk

)

+ 2E
(

‖(I − [∆i
k+1]

−1(∆i
k+1)

T)∇f i(xi
k)‖22

∣

∣Fk

)

, (44)

from which, by Assumptions 1 and 4 and the fact that ∇f i(xi
k) is Fk-measurable and ∆i

k+1 is independent
of Fk,

E
(

‖∇f i(xi
k)− dik+1‖22

∣

∣Fk

)

6 2c21l
2
cβ

2
k + 2p(p− 1)a2b2L2. (45)

By combining (45) with (29) and (30), we have

E
(

‖Ek+1‖22
∣

∣Fk

)

= E
(

‖∇f(Xk)−Dk+1‖22
∣

∣Fk

)

+ E
(

‖e1k+1 + e2k+1‖22
∣

∣Fk

)

+ E
(

‖e3k+1‖22
∣

∣Fk

)
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6
n
∑

i=1

E(‖∇f i(xi
k)− dik+1‖22|Fk) + C2 ‖Λk + Γk‖22 + C1 + C2‖Λk‖22 + n3σ2

2

6 2nc21l
2
cβ

2
k + 2np(p− 1)a2b2L2 + 3C2‖Sk‖22 + C1 + n3σ2

2

6 2nc21l
2
cβ

2
k + 2np(p− 1)a2b2L2 + 6C2(‖Sk − S∗‖22 + ‖S∗‖22) + C1 + n3σ2

2

= 2nc21l
2
cβ

2
k + 6C2(‖Sk − S∗‖22 + ‖S∗‖22) + c3. (46)

Thus, we can now prove the strong consistency of the proposed algorithm. The mathematical proofs
can be formulated into two steps: (1) establish the boundedness of the estimates generated from the
algorithm and (2) prove that the estimates converge almost certainly to the optimal solution of the
resource allocation problem. The main results are given as follows.

Theorem 1. Let us suppose that Assumptions 1–6 hold. Then, there exists an ω-set Ω0 with P{Ω0} = 1
such that for any ω ∈ Ω0, {Sk(ω)}k>0 generated by (17) is a bounded sequence with any initial S0.

Proof. Let us suppose S∗ is an equilibrium point of (21). According to Assumption 1 and (22), S∗ is
finite. Defining V (S) , ‖S − S∗‖22, we have

V (Sk+1) = ‖Sk+1 − S∗‖22 6 ‖Sk + αk(J(Sk) + Ek+1)− S∗‖22
6 ‖Sk − S∗‖22 + α2

k‖J(Sk) + Ek+1‖22 + 2αk(Sk − S∗)T(J(Sk) + Ek+1), (47)

where for the first inequality, the nonexpansive property of the projection operator (see Proposition A1
in Appendix A) is applied. Note that Sk is Fk-measurable. By taking the conditional expectation on
both sides of (47), we derive

E (V (Sk+1)| Fk) 6 E
{

‖Sk − S∗‖22 + α2
k‖J(Sk) + Ek+1‖22 + 2αk(Sk − S∗)T(J(Sk) + Ek+1)

∣

∣Fk

}

= V (Sk) + α2
k‖J(Sk)‖22 + α2

kE
(

‖Ek+1‖22 + 2ET
k+1J(Sk)

∣

∣Fk

)

+ 2αk(Sk − S∗)TJ(Sk)

+ 2αk(Sk − S∗)TE (Ek+1| Fk) . (48)

From the definitions of Sk and J(·) and by noting (22), we have

(Sk − S∗)TJ(Sk) = (Xk −X∗)T (−∇f(Xk) + Λk +∇f(X∗)− Λ∗ + nΩ(X
∗))

+ (Λk − Λ∗)T
(

−(L̄⊗ Ip)(Λk + Γk) +R−Xk + (L̄ ⊗ Ip)(Λ
∗ + Γ∗)−R+X∗

)

+ (Γk − Γ∗)T
(

(L̄⊗ Ip)Λk − (L̄ ⊗ Ip)Λ
∗
)

= −(Xk −X∗)T (∇f(Xk)−∇f(X∗)) + (Xk −X∗)TnΩ(X
∗)

− (Λk − Λ∗)T(L̄⊗ Ip)(Λk − Λ∗).

Through the convexity of f i(·), i ∈ N , it follows that −(Xk −X∗)T (∇f(Xk)−∇f(X∗)) 6 0. From
the definition of cone NΩ(X

∗), (Xk −X∗)TnΩ(X
∗) 6 0. By noting that L̄ is non-negative definite, we

find that −(Λk − Λ∗)T(L̄ ⊗ Ip)(Λk − Λ∗) 6 0. Hence, from the above equalities we obtain

(Sk − S∗)TJ(Sk) 6 0. (49)

From (48) and (49), we derive

E (V (Sk+1)| Fk) 6 V (Sk) + α2
k‖J(Sk)‖22 + α2

kE
(

‖Ek+1‖22
∣

∣Fk

)

+ 2α2
kJ(Sk)

TE (Ek+1| Fk) + 2αk(Sk − S∗)TE (Ek+1| Fk) . (50)

Again, by using (22) and the definition of J(·), we have the following equality and inequalities:

‖J(Sk)‖22 = ‖ − ∇f(Xk) + Λk +∇f(X∗)− Λ∗ + nΩ(X
∗)‖22

+ ‖(L̄⊗ Ip)(Λk − Λ∗) + (L̄ ⊗ Ip)(Γk − Γ∗) +Xk −X∗‖22 + ‖(L̄⊗ Ip)(Λk − Λ∗)‖22
6 3

(

‖∇f(Xk)−∇f(X∗)‖22 + ‖Λk − Λ∗‖22 + ‖nΩ(X
∗)‖22

)

+ 3
(

‖(L̄⊗ Ip)(Λk − Λ∗)‖22 + ‖(L̄⊗ Ip)(Γk − Γ∗)‖22 + ‖Xk −X∗‖22
)

+ ‖(L̄⊗ Ip)(Λk − Λ∗)‖22
6 (3l2c + 3)‖Xk −X∗‖22 + (4C3 + 3)‖(Λk − Λ∗)‖22 + 3C3‖(Γk − Γ∗)‖22 + 3c2
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6 (3l2c + 3 + 4C3)‖Sk − S∗‖22 + 3c2 , c4V (Sk) + 3c2, (51)

where C3 and c2 are defined by (25) and (27), respectively.
By noting (31), (32), (43), and (51), from (50), we have

E (V (Sk+1)| Fk)

6 V (Sk) + c4α
2
kV (Sk) + 3c2α

2
k + 2nc21l

2
cα

2
kβ

2
k + 6C2α

2
k(‖Sk − S∗‖22 + ‖S∗‖22) + c3α

2
k

+ 2c1lc(l
2
c + 1)α2

kβk(‖Xk −X∗‖22 + ‖Λk − Λ∗‖22) + 2c1c2lcα
2
kβk + 6nc1lcα

2
kβk

+ 2c1lcαkβk‖Xk −X∗‖22 + 2nc1lcαkβk

6 V (Sk) + (c4 + 6C2)α
2
kV (Sk) + 2c1lc(l

2
c + 1)α2

kβkV (Sk) + 2c1lcαkβkV (Sk)

+ (3c2 + 6C2‖S∗‖22 + c3)α
2
k + 2nc21l

2
cα

2
kβ

2
k + (2c1c2lc + 6nc1lc)α

2
kβk + 2nc1lcαkβk

6
(

1 + (c4 + 6C2)α
2
k + 2c1lc(l

2
c + 1)α2

kβk + 2c1lcαkβk

)

V (Sk)

+ (3c2 + 6C2‖S∗‖22 + c3)α
2
k + 2nc21l

2
cα

2
kβ

2
k + (2c1c2lc + 6nc1lc)α

2
kβk + 2nc1lcαkβk. (52)

Assumption 5 indicates that
∑∞

k=1 α
2
kβk < ∞ and

∑∞
k=1 α

2
kβ

2
k < ∞. Then by Proposition A2 in

Appendix A, V (Sk) converges to a finite non-negative random variable as k → ∞ almost certainly.
Hence, {Sk}k>0 is bounded with probability one.

Theorem 2. Let us suppose that Assumptions 1–6 hold. Then, there exists an ω-set Ω0 with P{Ω0} = 1
such that, for any ω ∈ Ω0, {Sk(ω)}k>0 generated by (17) converges to S∗ = (X∗,Λ∗,Γ∗), which is one
of the equilibrium points of (21). Hence, {Xk(ω)}k>0 converges to X∗, which is the optimal solution to
problem (1).

Proof. Note that Sk+1, J(Sk) + Ek+1, and Φ = Ω × R
np × R

np correspond to χk+1, Yk+1, and Φ,
respectively, in Proposition A4 in Appendix A. Thus, to prove the convergence of {Sk}k>0 and {Xk}k>0,
we only need to verify conditions (C1)–(C5) of Proposition A4.

We first verify that condition (C1) holds for algorithm (17). Noting that Sk is Fk-measurable, we have

E(‖Yk+1‖22) = E
(

E
(

‖J(Sk) + Ek+1‖22
∣

∣Fk

))

= E
(

‖J(Sk)‖22 + E(‖Ek+1‖22|Fk) + 2J(Sk)
TE (Ek+1| Fk)

)

.
(53)

Let

g1(αk, βk) = (c4 + 6C2)α
2
k + 2c1lc(l

2
c + 1)α2

kβk + 2c1lcαkβk,

g2(αk, βk) = (3c2 + 6C2‖S∗‖22 + c3)α
2
k + 2nc21l

2
cα

2
kβ

2
k + (2c1c2lc + 6nc1lc)α

2
kβk + 2nc1lcαkβk.

Then, considering the expectation on both sides of (52), we obtain

E(V (Sk+1)) 6 (1 + g1(αk, βk))E(V (Sk)) + g2(αk, βk).

Noting that
∑∞

k=0 g1(αk, βk) < ∞ and
∑∞

k=0 g2(αk, βk) < ∞, by Proposition A3 in Appendix A,
{E(V (Sk))} is considered to be bounded.

Therefore, according to (32), (43), (51), and (53), we have E(‖Yk+1‖22) < ∞, and hence, condition (C1)
holds for algorithm (17).

We now verify that conditions (C2) and (C3) hold for algorithm (17). It directly follows that

E [Yk+1|χ0, Yi, i 6 k] = E [J(Sk) + Ek+1| Fk] = J(Sk) + E (Ek+1| Fk) = J(Sk) + ζk+1,

and by (28)
ζk+1 = E (Ek+1| Fk) = col{E (∇f(Xk)−Dk+1| Fk) , 0, 0},

with 0 ∈ R
np. Thus, the measurable function h(·) and random variable ζk+1 required by (C2) in Propo-

sition A4 can be chosen as h(·) = J(·) and ζk+1 = E (Ek+1| Fk), respectively, and hence, conditions (C2)
and (C3) hold for algorithm (17).

We now proceed to consider (C4). Let ζk+1,i = E
(

∇f i(xi
k)− dik+1

∣

∣Fk

)

. By (35), we derive

‖ζk+1,i‖1 =
∥

∥E
(

[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))

∣

∣Fk

)∥

∥

1

6 c5
∥

∥E
(

[∆i
k+1]

−1(∆i
k+1)

T(∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1))

∣

∣Fk

)∥

∥

2

6 c5E
(

‖[∆i
k+1]

−1(∆i
k+1)

T‖2‖∇f i(xi
k)−∇f i(xi

k + µi
kβk∆

i
k+1)‖2

∣

∣Fk

)

6 c5c1lcβk,
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where the first inequality holds by equivalence of vector norms in Euclidean space, and similarly, the last
two inequalities follow as (36)–(38). Therefore,

∞
∑

k=0

αk‖ζk+1‖1 =

∞
∑

k=0

αk

n
∑

i=1

‖ζk+1,i‖1 6
∞
∑

k=0

αk

n
∑

i=1

c5c1lcβk = nc5c1lc

∞
∑

k=0

αkβk,

which is finite, as by Assumption 5,
∑∞

k=0 αkβk < ∞. Hence condition (C4) holds for algorithm (17).

Finally, Theorem 1 indicates that {Sk}k>0 is bounded almost certainly, and thus, condition (C5) holds
for algorithm (17).

Thus, all conditions required in Proposition A4 hold for algorithm (17). By Proposition A4, we know
that {Sk}k>0 converges to a limit set of (21). By Lemma 1, the trajectories of (21) converge to one of
its equilibria S∗. Therefore, {Sk}k>0 converges to S∗ and {Xk}k>0 converges to the optimal solution of
problem (1) as k → ∞.

4 Numerical example

Example 1. Consider a network with five agents. Each agent i (i = 1, . . . , 5) has its local objective

function f i(xi) = 1
i
((xi)2 + xi) and the resource over the network is

∑5
i=1 r

i = 100. The constraint set
for each agent is set as 0 6 xi 6 100, i = 1, . . . , 5. The resource allocation problem is given as follows:

min
xi

5
∑

i=1

1

i
((xi)2 + xi),

s.t.

5
∑

i=1

xi =

5
∑

i=1

ri = 100, 0 6 xi 6 100, i = 1, . . . , 5.

A simulation is performed over an Erdős-Rényi random graph. Let us consider a graph set G containing
50 graphs, each of which is generated according to the E-R graph G(5, p), where the probability p is
selected independently and uniformly over [0.2, 0.3]. At each iteration, a graph is randomly selected from
the graph set G.

The perturbation signals {∆i
k}k>0 are chosen as independently and uniformly distributed random

variables over [−1,−0.5] ∪ [0.5, 1]. The resource observation noises {δik}k>0 and communication noises

{ξijk }k>0 and {ηijk }k>0 are assumed to be i.i.d. random variables with Gaussian distribution N(0, 1). We
choose the step sizes αk = 1

k
for algorithm (13) and βk = 1

k0.1 for the randomized differences (2).
The simulation results are shown in Figures 1–4. Figure 1 shows how the agents in the network

cooperatively determine the optimal resource allocation solution. Specifically, in Figure 1, the solid
lines denote the trajectories generated by the proposed gradient-free algorithm; the colored dashed lines
denote the estimates generated by the algorithms proposed in [14], which are gradient-based; and the
black dashed lines denote true values of the optimal resource allocation. Figure 2 compares the algorithm
in this paper with that proposed in [14] in terms of the error between the estimates and the optimal
resource allocation. Figure 3 shows the changes in the value of the global objective function as iteration
k increases, and Figure 4 shows those in the global resource after being allocated over the network. In
Figures 3 and 4, the solid lines denote the trajectories generated by the proposed gradient-free algorithm,
whereas the colored dashed lines denote the estimates generated by the algorithms proposed in [14].

Example 2. Consider a three-period demand response management problem over a time-varying net-
work with 10 agents, which can be formulated as

min
Pd

i
∈R3,i∈N

∑

i∈N

EΨi,θi

(

P d
i

T
(Qi +Ψi)P

d
i + (ci + θi)

TP d
i

)

,

s.t.
∑

i∈N

P d
i =

∑

i∈N

P
g
i , P d

i ∈ Ωi,

where P d
i indicates the load demand decision variables to be optimized later, P g

i indicates the randomly
generated scheduling variables, Qi and ci are the randomly generated positive definite matrix and vector,
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Figure 1 (Color online) Changes in agents’ allocated re-

sources.

Figure 2 (Color online) Changes in errors between agents’

estimates and the optimal solution of resource allocation.
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Figure 3 (Color online) Changes in the values of the global

objective function.

Figure 4 (Color online) Changes in the allocated global re-

sources.

respectively, and the entries of Ψi and θi are random variables with standard Gaussian distribution. Set
Ωi = {x|Rx 6 li} with li being randomly generated and

R =









−1 1 −1 1 0 0 −1 1 0 0 0 0

−1 1 1 −1 −1 1 0 0 −1 1 0 0

−1 1 0 0 1 −1 0 0 0 0 −1 1









T

.

It is directly verified that such a choice of Ωi meets the requirement in Assumption 2.

The simulation is still conducted over the Erdős-Rényi random graph. Consider a graph set G con-
taining 50 graphs, each of which is generated according to the E-R graph G(10, p), where the probability
p is selected independently and uniformly over [0.2, 0.3]. At each iteration, a graph is randomly selected
from the graph set G.

Assume that the resource observation noise {δik}k>0 and communication noises {ξijk }k>0 and {ηijk }k>0

are i.i.d. random variables with Gaussian distribution N(0, 2). We choose the perturbation signals
{∆i

k}k>0 as random vectors, with the entries being mutually independent and uniformly distributed over
[−1,−0.5]∪ [0.5, 1]. Set αk = 1

k0.6 and βk = 1
k0.2 .

In this simulation, we conduct five experiments, and Figure 5 shows the average trajectories of the
allocated resource of all agents during these experiments, where the colored solid lines denote the trajec-
tories generated by the proposed gradient-free algorithm and the black dashed lines denote the estimates
generated by the gradient-based algorithms present in [14]. In Figure 6, we show the performance ‖L̄Λ‖2
generated by the gradient-free algorithm and the gradient-based algorithms, respectively, which indicate
that the Lagrange multiplier of each agent achieves consensus.
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Figure 5 (Color online) Changes in the allocated resources of Agent1–Agent10.

From the above two simulations, we find that the performance of the proposed gradient-free algorithm
is comparable to the gradient-based algorithm proposed in [14].

5 Conclusion

This paper proposes a gradient-free distributed algorithm for resource allocation based on a randomized
difference technique. We established an almost certain convergence of the algorithm by applying the
ODE method and tested its performance through numerical examples. For further research, it will be
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Figure 6 (Color online) Changes in performance index ‖L̄Λ‖2 of gradient-based and gradient-free algorithms.

interesting to improve the convergence rate of the proposed algorithm and consider the time-varying
objective functions for distributed resource allocation.
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Appendix A

Proposition A1 ([25]). Let PΩ(·) be the projection operator onto a closed convex set Ω in R
p. Then, for all x, y ∈ R

p, the

nonexpansive inequality holds as follows:

‖PΩ(x) − PΩ(y)‖2 6 ‖x− y‖2.

Proposition A2 ([25]). Let (Ω,F , P ) denote the probability space. Let {Vk}k>0, {Uk}k>0, and {Wk}k>0 be non-negative

random variables, and Fk = σ{V1, . . . , Vk, U1, . . . , Uk,W1, . . . ,Wk}. Suppose that

E(Vk+1|Fk) 6 (1 + ωk)Vk − Uk + Wk (A1)

and
∑

∞
k=0 Wk < ∞ hold with probability one, and {ωk}k>0 is a deterministic non-negative scalar sequence with

∑

∞
k=0 ωk < ∞.

Then, {Vk}k>0 converges to a finite non-negative random variable and
∑

∞
k=0 Uk < ∞ with probability one.

Proposition A3 2). Let uk > 0 and

uk+1 6 (1 + ak)uk + bk

with ak > 0, bk > 0, and
∑∞

k=0 ak < ∞,
∑∞

k=0 bk < ∞. Then uk → u > 0.

Proposition A4 ([30]). Let us assume that the following conditions hold for the algorithm χk+1 = PΦ{χk + αkYk+1}, where

Φ is a compatible dimension convex constraint set:

(C1) supk E(‖Yk+1‖
2
2) < ∞;

(C2) There is a measurable function h(·) of χ and random variables ζk+1 such that E [Yk+1|χ0, Yi, i 6 k] = h(χk) + ζk+1;

(C3) h(·) is continuous;

(C4)
∑

∞
k=0 αk|ζk+1| < ∞ with probability one;

(C5) χk is bounded with probability one.

Suppose that Φ has the same form as Ωi, and Assumption 2 holds for Φ. Then, the sequence {χk} is associated with the

projected ODE:

χ̇ = h(χ) + z, (A2)

where z ∈ −NΦ(χ) is the projection term, which indicates the minimum force required to keep χ(·) in Φ. In addition, {χk}

converges to some limit set of ODE (A2) in Φ.

2) Polyak B T. Introduction to Optimization. New York: Optimization Software Inc., 1987.
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