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Abstract The high-accuracy drag-free control is one of the key technologies for gravity gradient satellites.

Since the range of the gravity gradiometer is limited, the measurement is subject to the saturation constraint.

This paper introduces a design method of the adaptive drag-free control law by employing the set-valued

identification approach. By inserting several thresholds in the constrained interval, the output observation

is transformed into the set-valued information under different thresholds, based on which and the weighted

optimization technique the identification algorithm for the unknown parameter is constructed. The adaptive

drag-free control law is designed via the certainty equivalence principle. It is shown that the identification

algorithm is strongly convergent and the convergence rate of the estimation error is obtained. The perfor-

mance of the closed-loop system is analyzed, and the asymptotic optimality of the adaptive controller is

proved. The numerical simulation is included to verify the effectiveness of the main results.
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1 Introduction

The gravity field and its changes reflect the spatial distribution and the movement of the earth’s surface
and interior material, and determine the fluctuation of the geoid. Therefore, finding the fine structure
of the earth’s gravity field is not only the needs of geodesy, oceanography, seismology, space science,
astronomy, planetary science, deep space exploration, and national defense construction, but also provides
important information for us to seek resources and protect the environment and predict disasters [1, 2].

The use of satellite technology to detect the earth’s gravity field is not affected by the terrain and
other natural conditions, which opens a new and effective way to solve the problem of global gravity
measurement with high coverage rate, high precision, high spatial resolution and high time repetition rate.
The drag-free control is one of the key technologies for gravity gradient satellites. Its main aim is to provide
a flight environment for gravity gradiometer under the pure gravity and meet the technical requirements
of payload normal operation for the platform, by controlling propellers to generate appropriate thrust
to offset the non-conservative forces such as atmospheric resistance or solar pressure. Owing to the
significance of both theory and practice, the research on the drag-free control has attracted wide attention
and many important achievements have been made [3–10].

Lange systematically studied drag-free satellites, and proposed the comprehensive application of the
drag-free satellite and its different forms. In his doctoral dissertation [3] in 1964, the motion equation of
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a 9-degree-of-freedom (9-DOF) drag-free satellite was derived, and its dynamics and control technology
were investigated. Ref. [4] decoupled the multi-input and multi-output system of a drag-free satellite,
then used the traditional proportion-integration-differentiation (PID) controller to control each single-
input and single-output system, and the genetic algorithm was used to optimize the gain of the controller.
Ref. [5] considered the periodic change of driving ability caused by the change of magnetic field along
the orbit direction and designed a new linear quadratic regulator controller with robustness. Ref. [6]
applied the embedded model control to the design of drag-free and attitude control for a gravity-field and
ocean-circulation-explorer (GOCE) satellite. Ref. [7] designed an H∞ controller by using linear matrix
inequality multi-objective optimization method. Many constraints were taken into account to ensure the
realization of the drag-free control task of the GOCE satellite and to make the controller robust. Using
the quantitative feedback theory, Ref. [8] designed and tuned the drag-free and attitude controllers used
on board in the Laser Interferometer Space Antenna (LISA) pathfinder science mission. Ref. [9] employed
the model predictive technology to deal with the constraints of drag-free satellite control. Considering the
actual capacity of the actuator, the quadratic programming method was used to calculate the predictive
control quantity. Ref. [10] introduced an active disturbance rejection control strategy to design the
controller for drag-free satellites.

The gravity gradiometer has high observation accuracy, but its range is relatively small. The accelera-
tion caused by non-conservative forces can exceed the observation range. Consequently, the observation
information is subject to saturation constraints, which restricts the design of the drag-free control law
to a large extent. The observation under saturation constraints is made up of two types of information.
One type is the accurate information (with some additive measurement noise) in the constrained interval,
and the other is the set-valued information outside the constrained interval. This is essentially different
from the one considered by the conventional control theory [11–13]. The information provided by the
observation under saturation constraints is relatively limited, and is substantially non-linear with respect
to the actual system input, state, and controlled output. The conventional methods developed for linear
and non-linear systems cannot be used directly. This makes us have to develop new system identification
and controller design methods according to the characteristics of saturation-constrainted data.

In recent years, the identification theory with set-valued observations has been greatly developed [14–
20], which offers a possible way to deal with the identification problem under saturation constraints. Many
important results have been obtained and some effective techniques have been proposed [21–28]. Under
the full-rank periodic input, Ref. [21] studied a series of problems such as the optimal identification
error and the time and space complexity of set-valued output systems by using an empirical measure
method, and discussed the influence of disturbance and unmodeled dynamics on identification precision.
Ref. [22] studied a parameter estimation problem of networked linear systems with fixed-rate quantization
under the minimum mean square error criterion. Ref. [23] considered parameter estimation with only
binary measurements of the input and output signals available, and several estimation schemes based
on empirical measures and stochastic approximation algorithms were proposed and analysed. Based on
the stationary ergodic normal input, Ref. [24] proposed a weighted least squares algorithm to estimate
the unknown parameters of FIR systems with binary-valued observations. Ref. [25] studied the iterative
estimation problem of systems with binary-valued observations via the expectation maximization method,
and the convergence rate of the algorithm was also given. Along with the gradual development and
improvement of identification methods the adaptive control for systems with set-valued observations has
also been addressed accordingly. Under binary-valued observations, Refs. [26, 27] handled the adaptive
tracking control of a class of first-order systems with fixed and variable thresholds respectively. The
design method of the adaptive control law was given, and the performance of the closed-loop system was
analyzed. For FIR systems with set-valued observations and periodic target signals, Ref. [28] designed a
two-scale adaptive tracking controller based on the empirical measure method and certainty equivalence
principle. Its asymptotic optimality was proved, and the convergence, the convergence rate, and the
asymptotic efficiency of parameter estimation were obtained.

This paper proposes a set-valued identification-based adaptive controller design method for drag-free
control under saturation-constrainted observations. By setting several thresholds in the constrained
interval, the observation is transformed into set-valued information under different thresholds. According
to the set-valued information provided by every thresholds, innovation sequences are constructed and a
set of stochastic approximation identification algorithms are derived. They are weighted and generate
a recursive projection identification algorithm to estimate the unknown parameter. Via the certainty
equivalence principle, the adaptive drag-free control law is designed. The strong convergence of the
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Figure 1 Saturation-constrainted observations.

identification algorithm is proved. Using the estimation method of the sum of weighted martingale
difference sequence (MDS), the convergence rate of estimation error is given. The performance of the
closed-loop system is analyzed, and the asymptotic optimality of the adaptive controller is shown by the
law of large numbers for the MDS.

The rest of the paper is organized as follows. Section 2 describes the drag-free control problem with
saturation constraints. Section 3 gives the identification algorithm and the adaptive control law. Sec-
tion 4 discusses the performance of the identification algorithm and the closed-loop system, including the
convergence, the convergence rate, and the asymptotic optimality of the adaptive controller. Section 5 is
a numerical simulation that shows the effectiveness of the main results. Section 6 summarizes the finding
of the paper and looks forward to future research work.

2 Problem formulation

Consider the motion of a drag-free satellite along the tangent direction of its orbit:

P −R = Ma, R =
1

2
CρSv2, (1)

where P ∈ [Pmin, Pmax] is the thrust and depends on the performance of the actuator, Pmin means the
minimum thrust and Pmax is the maximum one that can be achieved; R is the atmospheric drag; a is the
residual acceleration; M is the quality of the satellite; v is the speed of the satellite along the tangent
direction and can be obtained; C is the atmospheric drag coefficient, ρ is atmospheric density, S is the
windward area. All of these are unknown parameters. Letting y = a, according to (1), we can get

y =
P

M
−

v2

2M
CρS. (2)

Let u = P
M , α = − v2

2M , θ = CρS, and use k to indicate the sampling time. Then it is known that

yk =
(
uk αk

)( 1

θ

)
+ dk. (3)

Consequently, uk is the control input that can be designed, αk is a measurable variable, θ is the unknown
parameter to be identified, and dk is the system noise.

Owing to the range limitation of the gravity gradiometer, the observation of yk is limited by the
saturation constraint. That is, there is a saturation constraint interval [y, y] such that the value of yk
can be observed only when yk is in the interval. Thus, the available information is represented by the
following saturation function (as shown in Figure 1):

sk = S(yk) =





y, yk < y,

yk, yk ∈ [y, y],

y, yk > y.

(4)
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The aim of this paper is to design uk based on sk to ensure that yk is in the middle of [y, y], i.e.,

y∗ = 1
2 (y + y), and minimize the following index:

Jk =
1

k

k∑

j=1

(yj − y∗)
2
. (5)

To do this, we first need to construct an identification algorithm to estimate θ, then design an adaptive
control law based on the certainty equivalence principle, and finally complete the performance analysis
of the closed-loop system.

Assumption 1. The system noise {dk} is an independent and identically distributed (i.i.d.) Gaussian
random variable sequence, where the mean is 0 and the variance is σ2, i.e., dk ∼ N (0, σ2). Let F (·)
denote its distribution function and f(·) denote the density function.

Assumption 2. There exist two constants θ and θ such that θ > θ > 0 and θ ∈ [θ, θ] := Θ.

Remark 1. In view of (4), one can see that sk is made up of two types of information. One type is
the accurate information in [y, y], and the other is the set-valued information outside [y, y]. How to deal
with such information is the main difference from the traditional methods.

3 The identification algorithm and adaptive control law

For a given positive integer m > 2, we take m−2 real numbers between y and y, denoted by T2, . . . , Tm−1

from small to large, that is,
y = T1 < T2 < · · · < Tm−1 < Tm = y,

where T1 = y and Tm = y. Then, m sequences {s
{i}
k } can be constructed by use of the observation

sequence {sk}, which leads to

s
{i}
k = I{sk6Ti}, i = 1, . . . ,m− 1,

s
{m}
k = 1− I{sk=y},

(6)

where I{z∈A} represents the indicator function of the setA, i.e., I{z∈A} = 1 if z ∈ A; otherwise, I{z∈A} = 0.

We introduce the following algorithm to estimate θ, in which {s
{i}
k } is used to get θ̂

{i}
k , i = 1, . . . ,m,

and then they are weighted to get the estimate θ̂k of θ at time k,

θ̂k =

m∑

i=1

νiθ̂
{i}
k , (7)

θ̂
{i}
k = ΠΘ

{
θ̂
{i}
k−1 + βi

αk

k
s̃
{i}
k

}
, (8)

s̃
{i}
k = F

(
Ti − uk − αkθ̂

{i}
k−1

)
− s

{i}
k , (9)

where ν1, . . . , νm are weighting coefficients that satisfy
∑m

i=1 νi = 1; βi > 0 is a given constant used to

adjust the convergence rate; the initial value θ̂
{i}
0 can be arbitrarily selected in Θ; ΠΘ(·) is the projec-

tion operator, i.e., ΠΘ(z) = argminω∈Θ|ω − z|; F (·) is the distribution function of the noise, given by
Assumption 1.

When θ is known, the control law that minimizes the index (5) should satisfy

(
uk αk

)( 1

θ

)
= y∗, (10)

uk ∈ U =

[
Pmin

M
,
Pmax

M

]
. (11)

If the equations above are compatible (i.e., the solution of (10) satisfies the constraint in (11)), then
uk = y∗ − αkθ. Substituting it into (3), the closed-loop equation can be obtained:

Jk =
1

k

k∑

j=1

(yj − y∗)
2
=

1

k

k∑

j=1

d2j → σ2 a.s. k → ∞.
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When θ is unknown, according to the certainty equivalence principle, θ is replaced by θ̂k−1 in (10).
Together with (11) the adaptive control law is designed as follows:

uk = ΠU

{
y∗ − αkθ̂k−1

}
. (12)

Remark 2. In (6), the saturation-constrainted observation sk is transformed into a set of set-valued
information by inserting several thresholds in [y, y]. The advantage of this approach is that one can
uniformly deal with the accurate information in [y, y] and the set-valued information outside [y, y], which
makes it more convenient to fully utilize set-valued identification algorithms. However, it may waste the
observation information since some accurate information is reduced to set-valued information. An effective
way to remedy this deficiency is to design enough thresholds according to the desired control accuracy.
Another way is to employ the maximum likelihood estimation method for obtaining the identification
algorithm.

Remark 3. In (7)–(9), every θ̂
{i}
k is generated independently. In practical application, they can be

cross-updated, that is, Eqs. (8) and (9) use θ̂k−1 instead of θ̂
{i}
k−1 to generate θ̂

{i}
k . This cross-updated

algorithm may have a faster convergence rate, which will be shown in Section 5.

4 Performance of the identification algorithm and the closed-loop system

Lemma 1 ([26]). Suppose that {xk, k > 1} is a sequence of real numbers such that for all sufficiently
large k,

xk 6

(
1−

λ

k + a

)
xk−1 +

µ

(k − 1)2+δ
,

where a ∈ {x : x ∈ R, x 6= −1,−2, . . .}, λ > 0, δ > 0. Then

xk =





O

(
1

kλ

)
, 0 < λ < 1 + δ,

O

(
log k

k1+δ

)
, λ = 1 + δ,

O

(
1

k1+δ

)
, λ > 1 + δ.

Lemma 2 (Lemma 2.2 in [29]). Let {ak,Fk}, {bk,Fk} be two non-negative adaptive sequences. If
E[ak|Fk−1] 6 ak−1 + bk−1 and E

∑∞
k=1 bk < ∞, then ak almost everywhere converges to a finite limit.

Let θ̃
{i}
k = θ̂

{i}
k − θ, k = 0, 1, 2, . . . denote the estimation error, and Fk denote the σ-algebra generated

by d1, . . . , dk.

Theorem 1. Consider system (3) under saturation-constrainted observation (4). If
(i) Assumptions 1 and 2 hold,
(ii) there exist constants α > α > 0 such that α 6 |αk| 6 α,
(iii) uk is Fk−1-measurable, and there exists a constant u > 0 such that |uk| 6 u,

then θ̂k given by (7) strongly converges to the true value, i.e., θ̂k → θ, with probability 1 (w.p.1) k → ∞.

Proof. For i = 1, . . . ,m− 1, from (4) it can be seen that sk 6 Ti if and only if yk 6 Ti. According to
(3), (6) and Assumption 1, we can get

E
[
s
{i}
k |Fk−1

]
= Pr(sk 6 Ti|Fk−1)

= Pr(yk 6 Ti|Fk−1)

= Pr(uk + αθ + dk 6 Ti|Fk−1)

= F (Ti − uk − αθ)

and

E
[
s
{m}
k |Fk−1

]
= E

[
1− I{sk=y}|Fk−1

]
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= 1− Pr(sk = y|Fk−1)

= 1− Pr(yk > y|Fk−1)

= F (y − uk − αθ)

= F (Tm − uk − αθ).

Therefore, it follows that

E
[
s
{i}
k |Fk−1

]
= F (Ti − uk − αθ), i = 1, . . . ,m. (13)

By (8) and the property of the projection operator, it can be seen that

(
θ̃
{i}
k

)2
=
(
θ̂
{i}
k − θ

)2

=
(
ΠΘ

{
θ̂
{i}
k−1 + βi

αk

k
s̃
{i}
k

}
−ΠΘ {θ}

)2

6

({
θ̂
{i}
k−1 + βi

αk

k
s̃
{i}
k

}
− θ
)2

=
(
θ̃
{i}
k−1 + βi

αk

k
s̃
{i}
k

)2
.

Considering |s̃
{i}
k | 6 2 and the above, one can have

(
θ̃
{i}
k

)2
6

(
θ̃
{i}
k−1

)2
+ 2βi

αkθ̃
{i}
k−1

k
s̃
{i}
k + β2

i

4α2
k

k2
. (14)

Taking the conditional expectation with respect to Fk−1 on the both sides of the above, and combining
(9) and (13), we have

E
[
(θ̃

{i}
k )2|Fk−1

]

6

(
θ̃
{i}
k−1

)2
+ 2βi

αkθ̃
{i}
k−1

k
E
[
s̃
{i}
k |Fk−1

]
+ β2

i

4α2
k

k2

=
(
θ̃
{i}
k−1

)2
+ 2βi

αkθ̃
{i}
k−1

k

(
F
(
Ti − uk − αkθ̂

{i}
k−1

)
− E

[
s
{i}
k |Fk−1

])
+ β2

i

4α2
k

k2

=
(
θ̃
{i}
k−1

)2
+ 2βi

αkθ̃
{i}
k−1

k

(
F
(
Ti − uk − αkθ̂

{i}
k−1

)
− F (Ti − uk − αkθ)

)
+ β2

i

4α2
k

k2
. (15)

By virtue of the differential mean value theorem, there exists ξ
{i}
k between Ti−uk−αkθ̂

{i}
k−1 and Ti−uk−αkθ

such that

F
(
Ti − uk − αkθ̂

{i}
k−1

)
− F (Ti − uk − αθ)

= F ′
(
ξ
{i}
k

) [(
Ti − uk − αkθ̂

{i}
k−1

)
− (Ti − uk − αθ)

]

= −f
(
ξ
{i}
k

)
αkθ̃

{i}
k−1, (16)

and

|ξ
{i}
k | 6 |Ti|+ u+ αθ := ξ

{i}
. (17)

Since f(·) is an even function and monotonically decreasing on [0,∞), with (15) and α 6 |αk| 6 α we
have

E

[(
θ̃
{i}
k

)2
|Fk−1

]
6

(
θ̃
{i}
k−1

)2
− 2βif

(
ξ
{i}
k

) (αkθ̃
{i}
k−1)

2

k
+ β2

i

4α2

k2

6

(
1−

2βif(ξ
{i}

)α2

k

)(
θ̃
{i}
k−1

)2
+ β2

i

4α2

k2
. (18)
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Taking expectation on the above, it is known that

E
(
θ̃
{i}
k

)2
=

(
1−

2βif(ξ
{i}

)α2

k

)
E
(
θ̃
{i}
k−1

)2
+ β2

i

4α2

k2
.

Using this and Lemma 1 gives that

E
(
θ̃
{i}
k

)2
→ 0, k → ∞. (19)

In light of (18), it can be seen that

E

[(
θ̃
{i}
k

)2
|Fk−1

]
6

(
θ̃
{i}
k−1

)2
+ β2

i

4α2

k2
.

Note that
∑∞

k=1 β
2
i
4α2

k2 < ∞. From Lemma 2, we know that θ̃
{i}
k strongly converges to a finite limit.

By (19), there is a subsequence of θ̃
{i}
k that strongly converges to 0. Therefore, θ̃

{i}
k strongly converges

to 0, i.e., θ̂
{i}
k → θ, w.p.1, k → ∞.

Owing to
∑m

i=1 νi = 1 and (7), it follows that θ̂k → θ, w.p.1 k → ∞.

Lemma 3 (Theorem 1.3.10 in [30]). Consider an MDS {wk,Fk} and an adapted process {hk,Fk}. If
supk E [|wk+1|α|Fk] < ∞ a.s. α > 2, then we have

k∑

j=1

hjwj+1 = O
(
Hk(logHk)

δ
)

a.s. ∀δ >
1

2

with Hk = (
∑k

j=1 h
2
i )

1/2.

Theorem 2. Under the condition of Theorem 1, if

βi >
1

2f
(
|Ti|+ u+ αθ

)
α2

, i = 1, . . . ,m,

then (
θ̂k − θ

)2
= O

(
log k

k

)
a.s.

Proof. From (9) and (14), it can be seen that

k
(
θ̃
{i}
k

)2
− (k − 1)

(
θ̃
{i}
k−1

)2

6

(
θ̃
{i}
k−1

)2
+ 2βiαkθ̃

{i}
k−1s̃

{i}
k + β2

i

4α2
k

k

=
(
θ̃
{i}
k−1

)2
+ 2βiαkθ̃

{i}
k−1

(
F
(
Ti − uk − αkθ̂

{i}
k−1

)
− F (Ti − uk − αθ)

)

+2βiαkθ̃
{i}
k−1

(
F (Ti − uk − αkθ)− s

{i}
k

)
+ β2

i

4α2
k

k
.

On the basis of (16), (17) and α 6 |αk| 6 α, one can have

2βiαkθ̃
{i}
k−1

(
F
(
Ti − uk − αkθ̂

{i}
k−1

)
− F (Ti − uk − αθ)

)
6 −2βif

(
ξ
{i}
)
α2
(
θ̃
{i}
k−1

)2
.

And then

k
(
θ̃
{i}
k

)2
− (k − 1)

(
θ̃
{i}
k−1

)2

6

(
θ̃
{i}
k−1

)2
− 2βif

(
ξ
{i}
)
α2
(
θ̃
{i}
k−1

)2
+ 2βiαkθ̃

{i}
k−1

(
F (Ti − uk − αkθ)− s

{i}
k

)
+ β2

i

4α2
k

k

=
(
1− 2βif

(
ξ
{i}
)
α2
)(

θ̃
{i}
k−1

)2
+ 2βiαkθ̃

{i}
k−1

(
F (Ti − uk − αkθ)− s

{i}
k

)
+ β2

i

4α2
k

k
,
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which indicates that

k
(
θ̃
{i}
k

)2
6

(
1− 2βif

(
ξ
{i}
)
α2
) k∑

j=1

(
θ̃
{i}
j−1

)2
+ 2βi

k∑

j=1

αj θ̃
{i}
j−1

(
F (Ti − uj − αjθ) − s

{i}
j

)

+O(log k). (20)

In terms of (13), it is known that {F (Ti−uk−αkθ)−s
{i}
k ,Fk} is an MDS. Considering supk |αkθ̃

{i}
k−1| 6

2αθ < ∞ and using Lemma 3, we have

k∑

j=1

αj θ̃
{i}
j−1

(
F (Ti − uj − αjθ)− s

{i}
j

)

= O




√√√√
k∑

j=1

(
θ̃
{i}
j−1

)2

log

k∑

j=1

(
θ̃
{i}
j−1

)2



δ

 a.s. ∀δ >

1

2
.

Together with (20), it follows that

k
(
θ̃
{i}
k

)2
6

(
1− 2βif

(
ξ
{i}
)
α2 + o(1)

) k∑

j=1

(
θ̃
{i}
j−1

)2
+O(log k).

If βi >
1

2f(ξ
{i}

)α2
, then 1 − 2βif(ξ

{i}
)α2 < 0, so k(θ̃

{i}
k )2 6 O(log k). Therefore, one can have (θ̃

{i}
k )2 =

O( log k
k ). On account of (7), the theorem is proved.

Lemma 4 (Corollary 2 in [31]). Consider an MDS {wk,Fk, k > 1}. If E(
∑k

j=1 wj)
2 < ∞ and

∑∞
j=1

Ew2

j

j2 < ∞, then

1

k

k∑

j=1

wj → 0 a.s. k → ∞.

Theorem 3. Consider the adaptive control law (12) and the closed-loop system (3) under saturation-
constrainted observation (4). If Eq. (10) is compatible with (11), Assumptions 1 and 2 hold and there
exist constants α > α > 0 such that α 6 |αk| 6 α, then the adaptive control law (12) is asymptotically
optimal, i.e.,

Jk → σ2 a.s. k → ∞.

Proof. Let ∆j = ΠU{y∗ − αj θ̂j−1} − (y∗ − αjθ). By (3) and (12), it can be seen that

Jk =
1

k

k∑

j=1

(yj − y∗)2

=
1

k

k∑

j=1

(∆j + dj)
2

=
1

k

k∑

j=1

d2j + 2 ·
1

k

k∑

j=1

∆jdj +
1

k

k∑

j=1

∆2
j . (21)

From (7) and (12), we know that uk is Fk−1-measurable and |uk| 6
Pmax

M . According to Theorem 1,

θ̂k → θ, w.p.1 k → ∞. Since Eq. (10) is compatible with (11), one can have ∆j → 0, a.s. j → ∞. Thus,
it follows that

1

k

k∑

j=1

∆2
j → 0 a.s. k → ∞. (22)

Since ∆j is Fj−1-measurable, we have E[∆jdj |Fj−1] = ∆jE[dj |Fj−1] = 0, which means that {∆jdj ,Fj}
is an MDS. Owing to supj |∆j | 6

Pmax

M + |y∗|+ αθ, it is known that

∞∑

j=1

E(∆jdj)
2

j2
6

∞∑

j=1

(supj |∆j |)2Ed2j
j2

6

(
Pmax

M
+ |y∗|+ αθ

)2

σ2
∞∑

j=1

1

j2
< ∞.
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Figure 2 (Color online) Convergence of the identification algorithm.

By Lemma 4, it is obtained that

1

k

k∑

j=1

∆jdj → 0, k → ∞. (23)

Note that 1
k

∑k
j=1 d

2
j → σ2, k → ∞. Owing to (21)–(23), the proof is completed.

5 Numerical simulation

Consider a drag-free satellite, where the mass M = 1000 kg, the maximum thrust Pmax = 2 × 10−2 N,
the minimum thrust Pmin = 1× 10−3 N, the standard deviation of system noise is 1× 10−6 N, the speed
has a lower bound v = 7.7× 103 m/s and an upper bound v = 7.9× 103 m/s, and the measurement range
of the gravity gradiometer is [−6 × 10−6 m/s2, 6 × 10−6 m/s2]. To avoid round-off error caused by the

computer, we multiply (2) by 107 and set α = − v2

2M×103 , θ = CρS× 103. Therefore, the simulation takes

σ = 10, y = −60, y = 60, which means y∗ = 0, α = − (7.9×1000)2

2×1000×1000 , α = − (7.7×1000)2

2×1000×1000 , the constraint

set for uk is U = [ 1×10−2

1000 × 107, 1×10−3

1000 × 107] = [10, 200]. Assume that αk ∼ U = [α, α], θ = 5, θ = 1,

θ = 10, i.e., Θ = [1, 10].

5.1 Simulation of the identification algorithm for the open-loop system

Suppose that uk obeys a uniform distribution on U . The influence of m on the algorithm is simulated.
We divide the interval [y, y] into two equal parts, four equal parts, and six equal parts respectively, and
then the identification algorithm (7)–(9) is obtained for the case of m = 3, 5, 7, where the initial value is

θ̂
{i}
0 = 8, νi =

1
m , βi = 12, i = 1, . . . ,m. Figure 2 illustrates the convergence of the algorithm. Figure

3 shows the convergence rate of the algorithm. It can be seen that k(θ̂k − θ)2/ log k is bounded, which

means (θ̂k − θ)2 = O( log k
k ). In addition, we can see that the convergence rate of the algorithm is getting

faster as m becomes larger.

Replacing θ̂
{i}
k−1 by θ̂k−1 in (8) and (9), Figure 4 shows the convergence of the cross-updated algorithm.

For m = 5, Figure 5 compares the convergence rate of the cross-updated algorithm with the one of the
original algorithm. As we expected, the cross-updated algorithm has a faster convergence rate.

5.2 Performance simulation for the closed-loop system

For the closed-loop system under the adaptive control law (12), Figure 6 displays the convergence of the
identification algorithm (7)–(9) in three cases of m = 3, 5, 7, where the division of [y, y] and the initial

value are the same as above. In Figure 7, it can be seen that 1
k

∑k
j=1(yj − y∗)2 → σ2 = 100, which

illustrates the asymptotic optimality of the adaptive controller, which is consistent with Theorem 3.
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Figure 3 (Color online) Convergence rate of the identification algorithm.
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Figure 4 (Color online) Convergence of the cross-updated algorithm.
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Figure 5 (Color online) Cross-updated algorithm vs. original algorithm (m = 5): the solid blue line represents the convergence

rate of the algorithm (7)–(9), the black dotted line represents the convergence rate of the cross-updated algorithm.
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Figure 6 (Color online) Convergence of the identification algorithm in the close-loop system.
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Figure 7 (Color online) Asymptotic optimality of the control law.

6 Conclusion

To resolve the problem of saturation-constrainted observations in the drag-free control technology, this
paper introduces a set-valued-identification-based approach to design the adaptive control law. Firstly,
by setting several thresholds in the constrained interval, the observation is transformed into set-valued
information under different thresholds. Secondly, estimation algorithms for unknown parameters are
designed based on set-valued information provided by every threshold, and they are weighted to generate
an integrated algorithm. Finally, the adaptive drag-free controller is designed according to the certainty
equivalence principle. The performance of the parameter estimation algorithm and the closed-loop system
is discussed. There are still many other problems worth studying, such as the cases of high-order system
models (the adaptive control in multiple directions), quantized inputs, error-in-variable identification,
and colored noise.
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