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Abstract In this paper, we address simultaneous control of a flexible spacecraft’s attitude and vibrations

in a three-dimensional space under input disturbances and unknown actuator failures. Using Hamilton’s

principle, the system dynamics is modeled as an infinite dimensional system captured using partial differential

equations. Moreover, a novel adaptive fault tolerant control strategy is developed to suppress the vibrations

of the flexible panel in the course of the attitude stabilization. To determine whether the system energies,

angular velocities and transverse deflections, remain bounded and asymptotically decay to zero in the case

wherein the number of actuator failures is infinite, a Lyapunov-based stability analysis is conducted. Finally,

extensive numerical simulations are performed to demonstrate the performance of the proposed adaptive

control strategy.
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1 Introduction

Owing to their advantages such as light weight and low power consumption, flexible structures are applied
to modern spacecraft to achieve an increased functionality at a reduced launch cost. Such features
can significantly degrade the performance of spacecraft through the introduction of undesired coupling
between transverse defections and attitude dynamics. Therefore, the active control of the attitude and
the vibrations of flexible spacecraft has become a topic of primary interest. Moreover, several control
technologies have been reported in the literature [1–4]. However, the above-mentioned attitude and
vibration control schemes of flexible spacecraft are designed based on the truncation approximation
models, which suffer from spillovers and even cause instability of the systems. Therefore, to avoid such
situations, the flexible spacecraft can be modeled more accurately using an infinite dimensional system
of coupled partial differential equations (PDEs) and ordinary differential equations (ODEs) [5–9].

In recent decades, the control problems of flexible structures described by infinite dimensional sys-
tems have received considerable attention. Several control schemes have been developed for heat equa-
tions [10, 11], beam equations [12–14], string equations [15–18], and other common equations employed
in flexible systems. In particular, flexible spacecraft are generally described using Euler-Bernoulli beam
models. In [9], the flexible spacecraft is modeled as a flexible cantilever beam to which a rigid hub is at-
tached. Moreover, the vibration reduction and attitude control under external disturbances are addressed
through the utilization of disturbance observer-based control schemes. To reduce the vibrations of both
flexible panels in [6], which are installed on the central body of the flexible spacecraft comprising a rigid
hub with two flexible solar panels, disparate controllers are employed. However, all these studies address
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the dynamic analysis, vibration reduction, and attitude regulation of flexible spacecraft in a restricted
two-dimensional (2D) plane. The dynamics and control design in a three-dimensional (3D) space are
more complicated compared with the modeling and control problems in the 2D plane. With regard to
the flexible system operation in a 3D space, such modeling and control problems of flexible beams and
risers are relevant to this study. Several studies have investigated the modeling and control design of
beams and risers in a 3D space, and boundary control schemes to suppress vibrations have been proposed
in [19,20]. However, these studies only resolve the problem on vibration suppression of the beam or riser,
without involving the position or attitude control. The strong couplings of displacements in the Yb and
Zb directions, and the couplings in displacements and the attitude (see Section 2), need to be considered.
Moreover, most studies only deal with the vibration control, with assumption that no actuator faults or
failures exist. For the flexible spacecraft described by coupled PDEs and ODEs, the coupled mechanical
characteristics make it extremely difficult to design control laws and conduct stability analysis, especially
in the case of input disturbances and infinite number of actuator failures.

Owing to abrasion, aging, and manufacturing defect, actuators may experience failures during practical
operation. Faults on actuators may occur at unknown time instants with unknown values and patterns,
which result in the loss of system control or even catastrophic accidents. To guarantee good reliability
and safe operation of flexible spacecraft, actuator faults or failures during the entire attitude maneuvers
should be considered. In addition, a great deal of achievement has been made through the employment
of varieties of active approaches such as robust control, sliding mode control, adaptive control and other
methods [21–26]. Especially for flexible spacecraft, numerous measures have been taken to deal with
actuator failures [27–30]. In [27,31], a fault-tolerant control method for the flexible spacecraft is proposed
to deal with the partial loss of actuator effectiveness. For total loss of control failure, an observer-based
fault detection and diagnosis scheme, combined with the sliding mode control technology, is reported to
have the ability to control the attitude of a satellite under actuator faults in [28]. In [29], a fault-tolerant
control method using quaternion and angular velocity feedback is proposed to deal with actuator failures.
Moreover, in [30], a fault-tolerant fuzzy switching control scheme is developed for the attitude stabilization
of the flexible spacecraft with stochastic failures. These algorithms are not necessary to obtain the
detailed information of actuator failures with the fault detection part. However, these fault-tolerant
control schemes for flexible spacecraft are designed based on the truncation approximation models, which
may be ineffective in a PDE-based system. To reduce the undesirable influence of the failed actuators,
adaptive methods and the Nussbaum gain technique are generally employed to deal with the problem
on actuator fault-tolerant control of PDE-based systems [32,33]. Though effectively addressing actuator
failures, these methods fail to tackle countless failures and redundant actuators. The actuator failures
considered in [32] are offset using adaptive methods but limited to some constants for both actuator
efficiency factors and stuck faults. The Nussbaum gain technique is capable of handling a time-varying
actuator fault; however, it may not be feasible for redundant actuators. Considering all these studies,
the challenge for our study is the simultaneous suppression of the vibrations of the flexible panel and
stabilization of the attitude of the spacecraft that is subject possibly to countless unknown actuator
failures.

The research object of this paper is the consideration of the simultaneous control problem of the
attitude and deflections of the flexible spacecraft in a 3D space. An adaptive boundary control scheme
is designed based on the PDEs to stabilize the flexible spacecraft which is subject possibly to an infinite
number of unknown actuator failures. Adaptive boundary control of PDEs is a well-established field for
parabolic PDEs, including heat equations [34, 35], and hyperbolic PDEs, including wave equations [36].
The aforementioned studies only focus on a single second-order PDE describing vibrations in one direction.
Adaptive control laws have recently been proposed in [37] for the stabilization of a 2×2 one-order linear
hyperbolic system. However, the adaptive control of 2D Euler-Bernoulli beam vibrations is limited.
Moreover, there are challenges in the design of adaptive boundary control of the flexible spacecraft
described by the generalized Euler-Bernoulli beams due to the existence of strong couplings and actuator
failures.

In this study, an adaptive fault-tolerant control strategy with parameter update laws is developed
through a Lyapunov-based analysis to simultaneously control the attitude and suppress the vibrations
under unknown input disturbances and a possibly infinite number of unknown actuator failures. The
major contributions of the paper include the following:

(1) A new coupled model of the flexible spacecraft (which consists of a rigid body captured by an
ODE and the flexible panel described by two PDEs) is developed. The extended Hamilton principle is
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Figure 1 (Color online) Definition of the coordinate systems

in the flexible spacecraft fault-tolerant control.

Figure 2 (Color online) Diagram of a 3D flexible spacecraft.

employed to obtain the dynamic model of the coupled system, which considers both the attitude of the
spacecraft and vibrations of the flexible panel.

(2) An adaptive control scheme for an unknown failure compensation is reported to simultaneously
stabilize the attitude and suppress the vibrations of the flexible spacecraft under the condition that
actuators are allowed to switch between normal states and different types of failures for countless times.

(3) The proposed adaptive fault-tolerant control scheme ensures the asymptotic stability of the actuated
system; i.e., the attitude and deflections of the flexible spacecraft tend to zero. In addition, the proposed
control design is developed based on the Lyapunov direct method, which is easy to grasp and to be
applied to other flexible mechanical systems under unknown actuator failures.

The remainder of this paper is organized as follows. In Section 2, the dynamics of a spatial flexible
spacecraft described by PDEs coupled with ODEs is presented. A fault-tolerant control scheme and the
parameter update laws are described in Section 3. Then, in Section 4, a Lyapunov-based analysis is
conducted to evaluate the system energies, angular velocities, and deflections along the Yb and Zb axes,
which asymptotically decay to zeros. Numerical simulations are described in Section 5 to demonstrate
the effectiveness of both methods. Finally, Section 6 concludes the paper.

2 Problem formulation

We consider a typical flexible spacecraft consisting of a rigid body and a slender flexible panel as depicted
in Figures 1 and 2. The flexible spacecraft moves in geostationary Earth orbit, and the acceleration of
the Earth is assumed to be neglected. We firstly introduce an orbital frame OXoYoZo , with the origin
O shared with the body fixed frame OXbYbZb , the axis OXo tangent to the direction of the orbit, the
axis OYo normal to the orbital plane, and the axis OZo pointing to the center of the Earth. We suppose
that the undeformed panel is along the OXb axis, and the panel is inextensible (i.e., we merely consider
displacements of the flexible panel in the OYb and OZb directions). Let y = y(x, t) and z = z(x, t) be
deflections in OYb and OZb, respectively. Then, the position vector r of the point P on the panel is given
by

r = [x y z]T, (1)

where x is the distance measured from the origin O . x and t represent the independent spatial and
temporal variables, respectively. ω = [ω1 ω2 ω3]

T describes the angular velocities of the body-fixed frame
with respect to the orbital frame. The attitude of the flexible spacecraft is described by Euler angles
θ = [θ1 θ2 θ3]

T, which are defined as a rotation about Xb, Yb, and Zb, respectively.
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2.1 Dynamics analysis

In this paper, we assume that the spacecraft is maintained at the desired geosynchronous orbit with
suitable control, and only consider the following two types of motions: (1) rotational motion of the rigid
hub that changes the orientation of the flexible satellite, and (2) deformation of the flexible panel caused
by vibrations.

To develop the dynamical model of the flexible system, we firstly introduce the expression of kinetic
energy Ek,

Ek =
1

2
ωTIsω +

1

2
ρ

∫

Ω

[

dr

dt

]T
dr

dt
dx, (2)

where Is is the inertia tensor of the rigid body and is positive definite and not necessarily diagonal, ρ is
the uniformly linear mass of the panel, Ω = [0, L] with L defined as the length of the flexible panel, and
r = s0 + s. The position of P without deformation and with deformation relative to the body frame are
denoted by s0 = (x, 0, 0) and s = (0, y, z), respectively. The time rate of r relative to the orbital frame
OXoYoZo and the body fixed frame OXbYbZb are dr/dt and ṙ, respectively. We then can obtain

dr

dt
= ṙ + ω × r = ṡ+ ω × r. (3)

We neglect the gravitational energy of the considered system. Then the potential energy generated by
deformation of the panel is given by

Ep =
1

2

∫

Ω

[

EIyy
2
xx(x, t) + EIzz

2
xx(x, t)

]

dx, (4)

where EIy and EIz are the bending stiffness of the panel for deflections in OYb axis and OZb axis,
respectively.

The virtual work δW is calculated by

δW = (τ + d)
T
δθ − γb

∫

Ω

[

dr

dt

]T

δrdx, (5)

where d = [d1 d2 d3]
T ∈ R

3 is input disturbance, τ = [τ1 τ2 τ3]
T ∈ R

3 is the control torque, and γb is the
damping coefficient of the panel.

Based on the small deflection property of the panel, Hamilton’s principle is utilized to grasp the
equations of motion and is expressed by

∫ t2

t1

(δEk − δEp + δW ) dt = 0, (6)

where δ is the variational operator.
Notice that the virtual displacement δr and the virtual rate δ(dr/dt) of the panel relative to the orbital

frame are represented as

δr = δθ × r + δs, (7)

δ(dr/dt) = δω × r + δθ × (ω × r + ṡ) + (d/dt)(δs), (8)

where the virtual rotation rate of the body frame δω is given as follows:

δω = (d/dt)(δθ). (9)

The vibrations of (2) and (4) are

∫ t2

t1

δEkdt =

∫ t2

t1

δωT (Isω) dt+ ρ

∫ t2

t1

∫

Ω

δ

[

dr

dt

]T
dr

dt
dxdt

= −
∫ t2

t1

∫

Ω

(d/dt)(r × ṡ)Tδθdxdt − ρ

∫ t2

t1

∫

Ω

(s̈+̟)Tδsdxdt
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−
∫ t2

t1

(İbω + Itω̇ + ω × (Itω))
Tδθdt, (10)

in which ̟ = 2ω × ṡ + ω̇ × r + ω × (ω × r), and It = Is + Ib. It represents the total inertia tensor of
the rigid body with respect to the body axes and Ib denotes the panel inertia tensor with respect to the
body frame, with definitions

Ib =









Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz









, (11)

and

Ixx = ρ

∫

Ω

(

y2 + z2
)

dx, Ixy = ρ

∫

Ω

xydx, Iyy = ρ

∫

Ω

(

x2 + z2
)

dx, Ixz = ρ

∫

Ω

xzdx,

Izz = ρ

∫

Ω

(

x2 + y2
)

dx, Iyz = ρ

∫

Ω

yzdx.

Based on the assumption that the flexible panel is inextensible and considering (4), we can obtain

δEp =EIy
∂2y

∂x2

∂

∂x
δy|L0 − EIy

∂3y

∂x3
δy|L0 + EIy

∫

Ω

∂4y

∂x4
δydx

+ EIz
∂2z

∂x2

∂

∂x
δz|L0 − EIz

∂3z

∂x3
δz|L0 + EIz

∫

Ω

∂4z

∂x4
δzdx. (12)

In view of (7), (5) can be processed further as

δW = (τ + d)Tδθ − γb

∫

Ω

[

r × dr

dt

]T

δθdx − γb

∫

Ω

[

dr

dt

]T

δsdx. (13)

Considering the fact that the variations δθ1, δθ2, δθ3, δy, and δz are arbitrary, we obtain the coupled
governing equations of the flexible spacecraft as

Isω̇ + ω × (Isω) + µ = τ + d, (14)

ρ

[

ytt

ztt

]

+ γb

{[

yt

zt

]

+

[

0 −ω1

ω1 0

][

y

z

]

+

[

ω3

−ω2

]

x

}

+ ρφ̟ +

[

EIyyxxxx

EIzzxxxx

]

= 0, (15)

and the boundary conditions of the PDE-based equations as

y(0, t) = z(0, t) = 0, yx(0, t) = zx(0, t) = 0, yxx(L, t) = zxx(L, t) = 0, yxxx(L, t) = zxxx(L, t) = 0, (16)

where µ, φ, and ̟ are defined by

µ = [0 EIzzxx(0, t) −EIyyxx(0, t)]
T
, φ =

[

0 1 0

0 0 1

]

, (17)

̟ = 2









0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

















0

yt

zt









+









−
(

ω2
2 + ω2

3

)

ω1ω2 − ω̇3 ω1ω3 + ω̇2

ω1ω2 + ω̇3 −
(

ω2
1 + ω2

3

)

ω2ω3 − ω̇1

ω1ω3 − ω̇2 ω2ω3 + ω̇1 −
(

ω2
1 + ω2

2

)

















0

y

z









+









0

ω1ω2 + ω̇3

ω1ω3 − ω̇2









x. (18)

Remark 1. The equations of the motion of the spacecraft are described by a combination of PDEs and
ODEs. The PDEs (15) and the boundary conditions (16) indicate the dynamics of the flexible panel,
whereas (14) represents the attitude dynamics of the rigid hub.

When the deflections of the panel are zero, i.e., µ = 0, (14) can be expressed as a well-known dynamics
model of a rigid spacecraft [27]. Also (14)–(16) can reduce to the common equations for a 2D flexible
spacecraft [9], if the coupling of the deflections along Yb and Zb axes is not considered, i.e., the motion
of the flexible spacecraft is restricted to a 2D space.

Remark 2. In this study, we just consider the matched disturbance in order to simplify the control
design. When the disturbance or uncertainty appears at the uncontrolled end or the governing equations,
the control scheme can be designed based on PDE backstepping methods [38, 39].
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2.2 Problem formulation

For a flexible spacecraft, thruster and reaction wheels are used for attitude control where failures may
occur in drive motor, bearing, or electronics.

To ensure reliable and safe operation, redundant actuators are mounted on the flexible spacecraft,
which are defined by

τi =

mi
∑

j=1

̺i,jui,j , (19)

where ̺i,j ∈ R is a constant with unknown value yet known direction (the symbol of ̺i,j is known
but the specific value of it is unavailable), indicating the effect of specific actuator torque ui,j, and
ui = [ui,1 ui,2 . . . ui,mi

]T ∈ R
mi is the actual torque generated by all the mounted actuators for

j = 1, 2, . . . ,mi, i = 1, 2, 3.
We then consider the typical actuator failures:

ui,j(t) = σi,j(t)vi,j(t) + ui,j(t), (20)

where

σi,j(t) =

{

σi,j,h, if t ∈ [T s
i,j,h, T

e
i,j,h),

1, if t ∈ [T e
i,j,h, T

s
i,j,h+1),

ui,j(t) =

{

ui,j,h, if t ∈ [T s
i,j,h, T

e
i,j,h),

0, if t ∈ [T e
i,j,h, T

s
i,j,h+1),

(21)

σi,j,hui,j,h = 0. (22)

vi,j(t) and ui,j(t) represent the input and output signals of the (i, j)th (i = 1, 2, 3; j = 1, 2, . . . ,mi)
actuator, respectively. h ∈ N

+ denotes the number of decentralized actuator failures and may be infinite.
σi,j,h ∈ [0, 1] is the unknown actuator efficiency factor, and ui,j,h is an unknown constant indicating stuck
fault in the (i, j)th actuator. The start and end of the hth failure on the (i, j)th actuator are labeled
as T s

i,j,h and T e
i,j,h, respectively. If T

s
i,j,h+1 > T e

i,j,h, a failed actuator will operate normally again during
[T e

i,j,h, T
s
i,j,h+1). If T

s
i,j,h+1 = T e

i,j,h, the failure σi,j,h or ui,j,h changes to a new one, i.e., σi,j,h+1 or ui,j,h+1

at time T e
i,j,h (or T s

i,j,h+1). Eq. (22) implies the following three uncrossed cases:
(1) σi,j,h ∈ (0, 1) and ui,j,h = 0. In this case, ui,j(t) = σi,j,hvi,j(t), which indicates partial loss of

effectiveness (PLOE).
(2) σi,j,h = 0. It indicates that ui,j(t) can be no longer decided by the control signal vi,j(t). This

means ui,j(t) is stuck at an unknown constant ui,j,h (including ui,j,h = 0), which indicates total loss of
effectiveness (TLOE).

(3) σi,j,h = 1 and ui,j,h = 0. In this case, the actuator works without failure.

Remark 3. Compared with the failure models in [21,23,32], the failure types in (20) and (21) are more
general, because h could be infinite. In other words, some actuators can fail and recover alternately or
change among different failure types infinite times if the time intervals are long enough.

Assumption 1. If the kinetic and potential energies of the flexible parts are bounded for ∀t > 0, then
∂iy(x,t)

∂ti
or ∂iz(x,t)

∂ti
is supposed to be bounded, uniformly in t for ∀x ∈ [0, L) with i = 1, 2, 3, and ∂iy(x,t)

∂xi

or ∂iz(x,t)
∂xi is supposed to be bounded, uniformly in x for ∀t > 0 with i = 2, 3, 4.

Assumption 2. In the presence of any TLOE type failures in up to mi − 1 actuators, the system can
still achieve control objectives with the remaining actuators.

Assumption 3. For the PLOE type failures, there exist unknown constants σi,j satisfying the condition
σi,j,h > σi,j > 0.

Assumption 4. The unknown disturbances di (i = 1, 2, 3) are assumed to vary slowly with respect to
their estimation laws so that ḋi = 0.

Remark 4. Assumption 1 is important for system (14)–(16) to be internally stable and is deduced
from an engineering point of view, commonly adopted in PDE-based analyses [32, 40, 41]. Assumption 2
is a condition of actuator redundancy of the system, and is a basic assumption to ensure the existence of
a nominal solution for the actuator failure compensation problem [23, 24]. In Assumption 3, σi,j is the
lower bound of the actuator with PLOE type failures, which is utilized to guarantee the controllability
of the system and is commonly used in a majority of existing studies [32, 42, 43].
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Lemma 1 ([44]). Let p(x, t), q(x, t) ∈ R be functions defined on x ∈ [0, L] and t ∈ [0,+∞). Then the
following inequality holds:

p(x, t)q(x, t) 6
1

γ
p2(x, t) + γq2(x, t), ∀γ > 0. (23)

Lemma 2 ([42]). For any scalars ǫ > 0 and z ∈ R, the following inequality holds:

0 6 |z| − z2√
z2 + ǫ2

< ǫ. (24)

Lemma 3 ([10]). For any scalar function z ∈ H1(0, L) with z(0) = 0 or z(L) = 0, we have

∫ L

0

z2(x)dx 6 4L2
π
−2

∫ L

0

z2x(x)dx. (25)

Moreover, if z ∈ H2(0, L) with zx(0) = 0 or zx(L) = 0, then

∫ L

0

z2x(x)dx 6 4L2
π
−2

∫ L

0

z2xx(x)dx. (26)

The control objective in this paper is to design a controller to stabilize the flexible spacecraft, i.e.,
limt→+∞ ω = 0 and limt→+∞ y(x, t) = limt→+∞ z(x, t) = 0 in the presence of actuator failures and input
disturbances.

3 Adaptive controller design for failure compensation

In this section, the controller will be designed relying on a Lyapunov direct method such that the attitude
and the vibrations can be stabilized.

Firstly, substituting (20) into (19) yields

τi =

mi
∑

j=1

̺i,jui,j =

mi
∑

j=1

̺i,jσi,j(t)vi,j(t) +

mi
∑

j=1

̺i,jui,j(t). (27)

We then have

τi =

mi
∑

j=1

̺i,jσi,j(t)vi,j(t) + δTi (t)Imi
, (28)

where δi(t) = [̺i,1ui,1(t), . . . , ̺i,mi
ui,mi

(t)]T ∈ R
mi and Imi

= [1, . . . , 1]T ∈ R
mi .

From Assumption 3, it can be seen that
∑mi

j=1 |̺i,j |σi,j(t)> min {|̺i,1|σi,1, . . . , |̺i,mi
|σi,mi

} > 0 and

δi(t) is bounded for all t > 0. We further have inft>0

∑mi

j=1 |̺i,j |σi,j(t) > 0.
To deal with unknown actuator failures, we define the following variables:

li = inf
t>0

mi
∑

j=1

|̺i,j |σi,j(t), pi =
1

li
, gi = sup

t>0
‖δi(t)‖ , (29)

where pi contains both information of actuator efficiency factor ̺i,j and σi,j(t), and gi includes the
information of ̺i,j and stuck fault ui,j(t). We introduce a smooth, bounded, and strictly positive auxiliary
signal ζi(t) which satisfies the following condition:

∫ +∞

0

ζi(t)dt < +∞. (30)

In this study, ζi(t) is chosen as ζi(t) = σζie
−λζi

t with σζi and λζi being positive constants.
it follows from Lemma 2 and (29) that

ωiδ
T
i (t)Imi

6 gi |ωi| ‖Imi
‖ 6 giωiξi + giζi(t), (31)
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where ξi =
ωiI

T
mi

Imi
√

ω2
i
IT
mi

Imi
+ζ2

i
(t)

.

Let ĝi, p̂i, and d̂i be the estimates of gi, pi, and di, respectively. Consider a Lyapunov function

V1 = E1 + E2 +
1

2

3
∑

i=1

liγ
−1
pi

p̃2i +
1

2

3
∑

i=1

γ−1
gi

g̃2i +
1

2

3
∑

i=1

γ−1
di

d̃2i , (32)

where γpi
, γgi , and γdi

are positive constants, p̃i = p̂i − pi, g̃i = ĝi − gi, d̃i = d̂i − di, and

E1 =
1

2
ωTIsω +

1

2
ρ

∫

Ω

[

φ
dr

dt

]T [

φ
dr

dt

]

dx, E2 =
1

2
EIy

∫

Ω

y2xxdx+
1

2
EIz

∫

Ω

z2xxdx. (33)

By differentiating (32) with respect to time, we have

V̇1 =

3
∑

i=1

ωi (τi + di) + ∆1 +

3
∑

i=1

liγ
−1
pi

p̃i ˙̂pi +

3
∑

i=1

γ−1
gi

g̃i ˙̂gi +

3
∑

i=1

γ−1
di

d̃i
˙̂
di, (34)

where ∆1 = −γb
∫

Ω

[

φdr
dt

]T [

φdr
dt

]

dx.
By substituting (28) into (34), we obtain

V̇1 =
3

∑

i=1

mi
∑

j=1

ωi̺i,jσi,j(t)vi,j(t) +
3

∑

i=1

ωidi +
3

∑

i=1

ωiδ
T
i (t)Imi

+
3

∑

i=1

liγ
−1
pi

p̃i ˙̂pi

+

3
∑

i=1

γ−1
gi

g̃i ˙̂gi +

3
∑

i=1

γ−1
di

d̃i
˙̂
di +∆1. (35)

Using the inequality (31) yields

V̇1 6

3
∑

i=1

mi
∑

j=1

ωi̺i,jσi,j(t)vi,j(t) +

3
∑

i=1

liγ
−1
pi

p̃i ˙̂pi +

3
∑

i=1

ωidi +

3
∑

i=1

giωiξi +

3
∑

i=1

giζi(t)

+

3
∑

i=1

γ−1
gi

g̃i ˙̂gi +

3
∑

i=1

γ−1
di

d̃i
˙̂
di +∆1. (36)

We then define αi as
αi = ciωi + ĝiξi + d̂i. (37)

By considering (36) and (37), we have

V̇1 6

3
∑

i=1

mi
∑

j=1

ωi̺i,jσi,j(t)vi,j(t) +

3
∑

i=1

ωiαi −
3

∑

i=1

ciω
2
i +

3
∑

i=1

γ−1
gi

g̃i( ˙̂gi − γgiωiξi) +

3
∑

i=1

giζi(t)

+
3

∑

i=1

γ−1
di

d̃i(
˙̂
di − γdi

ωi) +
3

∑

i=1

liγ
−1
pi

p̃i ˙̂pi +∆1. (38)

Design a control scheme
vi,j(t) = − sign(̺i,j)vi, (39)

where vi =
ωip̂

2
iα

2
i√

ω2
i
p̂2
i
α2

i
+ζ2

i
(t)

, with parameter update laws

˙̂pi = γpi
ωiαi, ˙̂gi = γgiωiξi,

˙̂
di = γdi

ωi. (40)

It is worth pointing out that the feedback signals, involved in the proposed control scheme (39) and
(40), are capable to address uncertainties in unknown input disturbance di, actuator efficiency factor
̺i,j and σi,j(t), and stuck fault ui,j(t). Thus, the designed control law can be adapted to compensate
unknown input disturbances and actuator failures.
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Table 1 Adaptive fault tolerant control scheme for a 3D flexible spacecraft

Plant Description

Equations of motion Governing equations (14) and (15) and boundary conditions (16)

Assumptions Assumptions 1–3

Defined new variables li = inft>0

∑mi
j=1 |̺i,j |σi,j(t), pi = 1

li
, gi = supt>0 ‖δi(t)‖

Control input τi =
∑mi

j=1 ̺i,jui,j =
∑mi

j=1 ̺i,jσi,j(t)vi,j(t) +
∑mi

j=1 ̺i,jui,j(t)

Auxiliary signals ζi(t) satisfying
∫

+∞

0
ζi(t)dt < +∞

Designed control scheme vi,j(t) = − sign (̺i,j) vi, vi =
ωip̂

2
i
α2
i

√

ω2
i
p̂2
i
α2
i
+ζ2

i
(t)

Parameter update laws ˙̂pi = γpi
ωiαi, ˙̂gi = γgi

ωiξi,
˙̂
di = γdi

ωi

Design parameters ci (i=1,2,3), α, δ1 and δ2 satisfying (56) and (57)

Using Lemma 2, (29), and (39), we have

3
∑

i=1

mi
∑

j=1

ωi̺i,jσi,j(t)vi,j(t) = −
3

∑

i=1

mi
∑

j=1

ωi̺i,jσi,j(t) sign (̺i,j) vi

6 −
3

∑

i=1

liω
2
i p̂

2
iα

2
i

√

ω2
i p̂

2
iα

2
i + ζ2i (t)

6

3
∑

i=1

liζi(t)−
3

∑

i=1

lip̂iαiωi. (41)

Substituting (40) and (41) into (38) and using lip̃i − lip̂i = −1 yields

V̇1 6−
3

∑

i=1

ciω
2
i +

3
∑

i=1

liζi(t)−
3

∑

i=1

lip̂iαiωi +
3

∑

i=1

ωiαi +
3

∑

i=1

giζi(t) +
3

∑

i=1

liγ
−1
pi

p̃i ˙̂pi +∆1

=−
3

∑

i=1

ciω
2
i +

3
∑

i=1

(li + gi) ζi(t) + ∆1. (42)

Remark 5. The proposed control scheme is summarized in Table 1. Using the proposed control, the
attitude and vibration stabilization can be ensured even if there are TLOE type of faults, and infinite
number of actuator failures or faults.

Moreover, compared with the previous studies [29,30,45], the control scheme (39) and (40) is developed
based on the original PDEs and can avoid the spillover problems generated by traditional truncated
model-based approaches.

Remark 6. It is worth mentioning that, different from [32, 43] where the specific values of σi,j are
estimated via parameter update laws, the above design estimates the bounds of the uncertainties of
failures, which makes the Lyapunov function has no jump when failures occur. Therefore, the total number
of actuator faults is not restricted to be finite, and the mounted actuators are allowed to switch among
the healthy case and different type failures infinite times. In contrast with [43], the reported method relies
on a smooth, bounded, and strictly positive auxiliary signal ζi(t) to asymptotically regulate w, y(x, t)
and z(x, t) while [43] merely ensures the uniform boundedness of the vibration. Besides, by comparison
with [33], a redundant actuator case is considered via adaptive methods and without Nussbaum gain
technique, which extends the applicability of adaptive methods on time-varying actuator fault-tolerant
control of PDE-based systems involved redundant actuators.

4 Stability analysis

Theorem 1. Under Assumptions 1–3, we consider the system (14)–(16) subjected to various types
of actuator failures and input disturbances. With the developed control scheme (39) and parameter
update laws (40), the actuated system is asymptotically stable, i.e., limt→+∞ ω = 0, limt→+∞ y(x, t) =
limt→+∞ z(x, t) = 0.

Proof. We construct the following Lyapunov candidate function

V = V1 + V2, (43)
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where

V2 = αρ

∫

Ω

[

φ
dr

dt

]T

[φs]dx (44)

with a positively adjustable constant α.
We can see that (44) satisfies the following inequality:

|V2| 6
αρ

2

∫

Ω

[

φ
dr

dt

]T [

φ
dr

dt

]

dx+
αρ

2

∫

Ω

[φs]T[φs]dx 6
αρ

2

∫

Ω

M(x, t)dx +
αρ16L4

2π4

∫

Ω

(

y2xx + z2xx
)

dx

6 α1 (E1 + E2) 6 α1V1, (45)

where α1 = max[α, 16αρL4

π
4EIy

, 16αρL4

π
4EIz

], and M(x, t) = [φdr
dt ]

T[φdr
dt ].

Then, we have
− α1V1 6 V2 6 α1V1. (46)

Choosing α1 to satisfy 0 < α1 < 1, and defining the following two constants:

α2 = 1− α1 > 0, α3 = 1 + α1 > 1, (47)

it follows from (43) and (46) that
0 6 α2V1 6 V 6 α3V1. (48)

Calculating the derivative of (43) along the trajectories of the system yields

V̇ = V̇1 + V̇2. (49)

The second term is

V̇2 = αρ

∫

Ω

[

φ
d2r

dt2

]T

[φs]dx+ αρ

∫

Ω

[

φ
dr

dt

]T [

φ
ds

dt

]

dx. (50)

Simplifying the first term of (50) by integration by parts and utilizing the boundary conditions and
Lemma 3 yields

αρ

∫

Ω

[

φ
d2r

dt2

]T

[φs]dx 6
αγb
2δ1

∫

Ω

M(x, t)dx −
(

αEIy −
αγbδ116L

4

2π4

)
∫

Ω

y2xxdx

−
(

αEIz −
αγbδ116L

4

2π4

)
∫

Ω

z2xxdx. (51)

Similarly, the second term of (50) becomes

αρ

∫

Ω

[

φ
dr

dt

]T [

φ
ds

dt

]

dx 6

(

αρδ2
2

+ αρ

)
∫

Ω

[

φ
dr

dt

]T [

φ
dr

dt

]

dx+
αρL3

6δ2

(

ω2
2 + ω2

3

)

, (52)

where δ1 and δ2 are positive constants.
Substituting (51) and (52) into (50) yields

V̇2 6

(

αγb
2δ1

+
αρδ2
2

+ αρ

)
∫

Ω

M(x, t)dx+
αρL3

6δ2

(

ω2
2 + ω2

3

)

−
(

αEIy −
αγbδ116L

4

2π4

)
∫

Ω

y2xxdx−
(

αEIz −
αγbδ116L

4

2π4

)
∫

Ω

z2xxdx. (53)

By substituting (42) and (53) into (49), we obtain

V̇ 6− c1ω
2
1 −

3
∑

i=2

(

ci −
αρL3

6δ2

)

ω2
i +∆+

3
∑

i=1

(li + gi) ζi(t), (54)

where

∆ =−
(

γb −
αγb
2δ1

− αρδ2
2

− αρ

)
∫

Ω

M(x, t)dx−
(

αEIy −
αγbδ116L

4

2π4

)
∫

Ω

y2xxdx



Liu Z J, et al. Sci China Inf Sci May 2021 Vol. 64 152208:11

−
(

αEIz −
αγbδ116L

4

2π4

)
∫

Ω

z2xxdx. (55)

We design parameters ci (i = 1, 2, 3), α, δ1, and δ2 to satisfy the following inequalities:

γ1 = c1 > 0, γi = ci −
αρL3

6δ2
> 0, (i = 2, 3), γ4 = γb −

αγb
2δ1

− αρδ2
2

− αρ > 0, (56)

γ5 = αEIy −
αγbδ116L

4

2π4
> 0, γ6 = αEIz −

αγbδ116L
4

2π4
> 0. (57)

Then, (54) becomes

V̇ 6 −
3

∑

i=1

γiω
2
i +∆+

3
∑

i=1

(li + gi) ζi(t). (58)

We further obtain

V̇ 6 −λ1 (E1 + E2) +

3
∑

i=1

(li + gi) ζi(t), (59)

where λ1 = min[ 2min(γ1,γ2,γ3)
λmax(Is)

, 2γ4

ρ
, 2γ5

EIy
, 2γ6

EIz
].

Integrating both sides of (59) yields

V (t)−V (0) 6 −λ1

∫ t

0

(E1 + E2) dυ +

3
∑

i=1

∫ t

0

(li + gi) ζi(υ)dυ. (60)

According to (30), we can see
∑3

i=1

∫ +∞

0
(li + gi)ζi(υ)dυ < +∞. From (60), it is clear that E1 ∈ L∞,

E2 ∈ L∞, V ∈ L∞, and p̂i, ĝi, d̂i for i = 1, 2, 3 are bounded. Using (37), we can see that αi is
bounded. Then according to (20) and (39), we can prove that the control inputs ui,j(t) (j = 1, . . . ,mi) are
bounded. Then we can conclude that all signals of the closed-loop system are globally uniformly bounded.
Then based on Assumption 1 and above analysis, we can obtain that Ė1 ∈ L∞ and Ė2 ∈ L∞. Then
Lemma A.6 in [40] is used to shown that limt→+∞ E1 = 0 and limt→+∞ E2 = 0. Using Lemma A.12
in [40], the following inequalities can be developed:

E1 >
1

2
λmin (Is) ‖ω‖2 > 0, (61)

E2 >
1

2L3
EIyy

2(x, t) +
1

2L3
EIzz

2(x, t) > 0. (62)

Since E1 → 0 and E2 → 0 as t → +∞, we can conclude that ω → 0, y(x, t) → 0 and z(x, t) → 0 as
t → +∞, for ∀x ∈ [0, L]. This completes the proof.

Remark 7. Consider the proposed control scheme (39) and (40), the adjustable parameters include
ci, γpi

, γgi , γdi
, and ζi(t) determined by σζi and λζi . According to (40), increasing γpi

, γgi , and γdi

are able to speed up the updates of estimated parameters. From (59), the closed-loop performance can
be optimized by increasing ci and λζi , and decreasing σζi to accelerate the decay of Lyapunov function
V . However, improper values may cause the instability of the resulted system. Thus, appropriate values
are required to regulate the performance and simultaneously stabilize the system. Other parameters,
involving α, δ1, and δ2, are chosen to satisfy (56) and (57), which are independent of the reported control
laws (39) and (40).

Remark 8. Different from observer design in [9], the developed parameter update laws (40) resort
to adaptive technique and cannot asymptotically regulate the estimations to the real values due to the
asymptotical result just in the sense of ω(t), y(x, t), and z(x, t) in Theorem 1, which means the estimations
may be convergent to some irrelevant values.

5 Numerical simulation

In this study, the finite difference method is utilized to conduct the numerical simulations. For simplifi-
cation of the analysis, we assume that the satellite body inertia matrix is diagonal. The parameters of



Liu Z J, et al. Sci China Inf Sci May 2021 Vol. 64 152208:12

the 3D flexible spacecraft are listed in Table 2. According to Assumption 4, the proposed adaptive robust
control method is capable to address a perturbation with lower rate. To be close to theoretical analysis,
the input disturbances with constant values are given as











d1(t) = 2 N · ft,
d2(t) = 1 N · ft,
d3(t) = 6 N · ft.

(63)

The initial conditions are given as follows:










ω1(0) = 0.02 rad/s,

ω2(0) = 0.03 rad/s,

ω3(0) = 0.04 rad/s,

and

{

y(x, 0) = z(x, 0) = 0.1x/L, x ∈ Ω,

ẏ(x, 0) = ż(x, 0) = 0, x ∈ Ω.
(64)

To facilitate the subsequence numerical simulations, we set










τ1(t) = u1,1(t) + u1,2(t),

τ2(t) = u2,1(t) + u2,2(t),

τ3(t) = u3,1(t) + u3,2(t).

(65)

Besides, the unknown failures of the actuators are set as


















u1,1(t) = v1,1(t), u1,2(t) = 0.3v1,2(t), u2,1(t) = v2,1(t), u2,2(t) = v2,2(t), u3,1(t) = v3,1(t),

if t ∈ [2k, 2k + 1),

u1,1(t) = 0.5v1,1(t), u1,2(t) = 0, u2,1(t) = 0, u2,2(t) = v2,2(t), u3,1(t) = 0.6v3,1(t),

if t ∈ [2k + 1, 2k + 2),

and u3,2(t) =

{

v3,2(t), if t ∈ [0, 6),

u3,2(6), if t ∈ [6,+∞),

(66)

where k = 0, 1, 2, . . .. From (66) we can see that during every time interval [2k, 2k+1), the actuators u1,1,
u2,1, and u3,1 operate normally, but the actuator u1,2 loses 70% of its effectiveness. While during the
interval [2k + 1, 2k + 2), the actuators u1,1, u1,2, u2,1, and u3,1 lose 50%, 100%, 100%, and 40% of their
effectiveness, respectively. u2,2 operates normally during arbitrary time interval and u3,2 fails completely
after t = 6 s.

Because there is seldom literature on how to control the attitude and the vibrations of the 3D PDE
model simultaneously, PD control laws are adopted to demonstrate the effectiveness of the proposed
control scheme (39) and (40).

The PD control laws are designed as follows:

vi,j(t) = −kpiωi(t)− kdiω̇i(t), (67)

where i = 1, 2, 3, j = 1, 2.
In the control design, the designed parameters are chosen as ci = 15, γpi

= 18 and γgi = γdi
= 10, and

the auxiliary signals ζi(t) are given by ζi(t) = 0.5e−0.4t, where i = 1, 2, 3. The PD control gains are set
as kp1 = 100, and kd1 = kp2 = kd2 = kp3 = kd3 = 50.

The simulation results are shown in Figures 3–10. Figures 3–5 illustrate the effectiveness of the proposed
control strategy (39) in stabilizing the flexible spacecraft, even in the cases where the repeated unknown
failures occur on the actuators. Besides, we can see that all signals of the actuated system are bounded and
tend to zero asymptotically. Compared with the proposed control laws, an integrally disabled performance
generated by PD controllers is depicted by Figures 3 and 4, due to the dynamic coupling among three
dimensions and perturbation from failed actuators and input disturbances. Figures 6–8 show that all the
parameter estimations are bounded with the employed parameter update laws (40). The output signal
of the (i, j)th (i = 1, 2, 3; j = 1, 2) actuator and the control torque at the spherical driving devices in the
presence of the different types of actuator failures are depicted in Figures 9 and 10, respectively. Figure 9
shows that the amplitude of the control torque is reduced at the time instants when PLOE occurs and
remains unchanged at the time instants when TLOE in actuator takes place. However, the control torque
stays within a reasonable scope in all cases, and all states are regulated well within 12 s.
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Table 2 Parameters of a 3D flexible spacecraft

Parameter Description Value

L The length of the panel 18.8 ft

EIy The flexural rigidity of the panel in OYb axis 3550.8 lb·ft2

EIz The flexural rigidity of the panel in OZb axis 3550.8 lb·ft2

Is1 The inertia tensor of the rigid satellite in OXo axis 645 slug·ft2

Is2 The inertia tensor of the rigid satellite in OYo axis 100 slug·ft2

Is3 The inertia tensor of the rigid satellite in OZo axis 669 slug·ft2

ρ The mass density of the panel 2.86e-2 slug/ft

γb Panel damping 0.01 N·s/ft
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Figure 3 (Color online) Satellite angular velocities ωi (rad/s),

i = 1, 2, 3.

Figure 4 (Color online) Displacements of the panel’s free

point along the Yb and Zb axes.
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Figure 5 (Color online) Deflection evolution profiles of the

spacecraft along the Yb and Zb axes with the proposed con-

trollers.

Figure 6 (Color online) Parameter estimations for pi (i =

1, 2, 3).

6 Conclusion

This paper presented the modeling and simultaneous attitude and vibration control of the flexible space-
craft in a 3D space under input disturbances and unknown actuator failures. The system is described
by coupled PDEs and ODEs. When the panel deflections are zero, the system can be described as a
well-known dynamic model of a rigid spacecraft. Moreover, if the coupling of the deflections along the Yb

and Zb axes is not considered, the system can reduce to the common equations for flexible spacecraft in a
2D space. The reported control solution guarantees asymptotic regulation of the attitude and suppression
of the distributed deflections, even in the case of a possibly infinite number of unknown actuator fail-
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ĝ
3

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

t (s)

d̂
1

d̂
3

d̂
2

Figure 7 (Color online) Parameter estimations for gi (i =

1, 2, 3).

Figure 8 (Color online) Parameter estimations for di (i =

1, 2, 3).
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Figure 9 (Color online) The actual torque ui,j (N · ft), i =

1, 2, 3, j = 1, 2 generated by a single actuator.

Figure 10 (Color online) The control torque τi (N · ft), i =

1, 2, 3 at the spherical driving joints.

ures and input disturbances. The proposed control method can be applied to the time-varying actuator
fault-tolerant control of PDE-based systems, which are involved in redundant actuators. In future work,
we will use an intelligent control method [46–49] to design the attitude tracking and vibration control
scheme for flexible spacecraft based on PDEs.
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