
SCIENCE CHINA
Information Sciences

July 2021, Vol. 64 172210:1–172210:17

https://doi.org/10.1007/s11432-020-3078-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

Parametric output regulation using observer-based
PI controllers with applications in flexible spacecraft

attitude control

Guangren DUAN* & Tianyi ZHAO

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China

Received 15 May 2020/Revised 5 August 2020/Accepted 1 October 2020/Published online 18 May 2021

Abstract A parametric multiobjective design approach based on a proportional-integral (PI) controller

and a full-state observer is proposed for output regulation in a multivariable linear system. First, a complete

parametric form of the observer-based PI control law is established, which yields a closed-loop system with

the desired eigenstructure and ensures that the regulated output asymptotically tracks a given constant

signal in the presence of constant but unknown disturbances. All design degrees of freedom are preserved

and characterized using a set of parameter vectors. Second, a separation principle of eigenvalue sensitivities

is proven, and based on this result, the parameters of the closed-loop system are comprehensively optimized

to reduce the eigenvalue sensitivity and the control gain, and also to enhance the tolerance to time-varying

disturbances. Finally, the proposed method is applied to attitude control of a flexible spacecraft. Moreover,

numerical simulations based on practical engineering parameters are performed to verify the superiority of

the proposed method over traditional proportional-integral-derivative (PID) control methods.
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1 Introduction

Output regulation is a central issue in control theory that originates from servomechanism and process
control. Generally, when a desired output value gradually changes or remains constant and the main task
is to reject the disturbance effect, the servo control problem is known as output regulation [1]. To address
this problem, in 1968, Johnson [2] designed a proportional-integral (PI) regulator based on the optimal
linear-quadratic theory. Under the proposed control law, the system output could asymptotically track
constant reference signals in the presence of constant but unknown disturbances. In 1985, in addition
to output regulation, eigenstructure assignment was also considered [3] and a new design method was
proposed, where the resulting PI control law could also assign the closed-loop poles of the augmented
system to the desired locations. The method outlined in [3] was further modified by Saif in 1992 [4, 5],
who considered the problem of PI-based output regulation using two types of controllers, one of which
was state feedback and the other was based on a Luenberger-type unknown input observer. The design
of the state feedback controller was computationally simpler than that proposed in [3]. Notably, the
results in [4,5] only provide a specific solution to the PI regulator design for a given eigenstructure in the
augmented system, and the desired closed-loop poles must also be distinct.

Owing to the advantages inherent to completely decoupling the effect of constant disturbances, this
type of PI regulation strategy has always garnered attention from scholars and has been developed in
different applications. The PI regulation law was combined with an adaptive controller in [6], with the
case of time-delay also considered in [7]. The authors in [8] proposed a predictive PI method for linear
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Table 1 Symbols

Symbol Meaning

diag (s1, s2, . . . , sn) Diagonal matrix with s1, s2, . . . , sn as diagonal elements

λi(M) The i-th eigenvalue of matrix M

trace(M) Sum of diagonal elements of matrix M

blockdiag (M1,M2, . . . ,Mn) Block diagonal matrix with M1,M2, . . . ,Mn as diagonal elements

vec([ η1 η2 · · · ηn ]) [ ηT

1
ηT

2
· · · ηT

n
]T

unvec([ ηT

1
ηT

2
· · · ηT

n
]T) [ η1 η2 · · · ηn ]

A ⊗ B Kronecker product of A and B

In Identity matrix of n-order

eig(M) Set of eigenvalues of matrix M

systems under positional and incremental input saturation. Moreover, this PI regulator was generalized
to handle linear infinite dimensional systems [9–11], some types of nonlinear systems [12–17], and some
practical systems, such as electrical [18–20], vehicle dynamic [21], and optical communication systems [22].

This paper considers attitude control in flexible satellites. The PI regulator proposed in [5] may meet
the mission requirements for satellite attitude maneuvering. However, it could not cope with the following
several necessary aspects required in many practical applications.

(1) In outer space, unpredictable external disturbances often occur, such as electromagnetic pulses and
solar wind. Furthermore, in modeling a satellite attitude system with flexible attachments, high-order
unmodeled dynamics are often inevitable. Thus, it is necessary for designs to consider the attenuation of
complicated time-varying disturbances.

(2) In long-term satellite operation periods, the effect of parameter perturbations cannot be overlooked.
To preserve robust stability, it is also necessary to make closed-loop eigenvalues insensitive to parameter
perturbations.

(3) Because of limited and valuable energy resources in satellite and the limitation in the output
capacity of the actuator, the control torque must be as small as possible, which is equivalent to minimizing
the gains of a controller and/or observer.

In our recent work [23], we proposed a parametric multiobjective design method for the stabilizing
controller of a flexible satellite attitude system, which comprehensively considered the above three re-
quirements. In this paper, the idea in [23] is modified and generalized to the output regulator design
by adding the integration of the regulation error signal to the control law. The basic steps of the pro-
posed method are to first establish a completely parametric expression of the PI output regulator, and
then optimize the parameters to satisfy the above three multiobjective design requirements. The main
contributions of this study can be summarized as follows.

(1) All PI regulators that yield a closed-loop system with the desired eigenstructure are obtained. Full
degrees of freedom, characterized by a set of parameter vectors, are preserved. Moreover, the restriction
of distinct closed-loop poles [4, 5] is removed.

(2) The design degrees of freedom are used to meet the three multiobjective design requirements,
namely, lower closed-loop eigenvalue sensitivities, smaller control gains, and greater tolerance to compli-
cated external disturbances.

(3) The separation principle for closed-loop eigenvalue sensitivities is proven, which performs an im-
portant role in the design process.

The symbols used in this paper are listed in Table 1. The remainder of this paper is organized as
follows. Section 2 provides a description of the problem to be considered. Some preliminary results are
presented in Section 3, including the separation principle of closed-loop poles, and closed-loop eigenstruc-
tures. A complete parametric form of the observer-based control law is outlined in Section 4. Then,
in Section 5, the separation principle of eigenvalue sensitivities is derived, and the parameters are fur-
ther optimized by minimizing the considered multiobjective design requirements. Finally, in Section 6,
the proposed method is applied to attitude control of a flexible spacecraft, which is followed by a brief
conclusion.
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2 Problem formulation

2.1 The model

Consider the following linear system:















ẋ(t) = Ax(t) +Bu(t) +Dtd(t) +Dcdc,

y(t) = Cx(t),

yp(t) = Cpy(t),

(1)

where x(t) ∈ Rn and u(t) ∈ Rr are the state and the control input of the system, respectively; d(t) ∈ Rv

and dc ∈ R
w are time-varying and constant disturbances, respectively; y(t) ∈ R

m is a measured output,
yp(t) ∈ Rp is a controlled output which is expected to track a given constant signal yr; and A, B, C, Cp,
Dt, and Dc are known real coefficient matrices with appropriate dimensions satisfying Assumptions 1
and 2.

Assumption 1. (A, B) is controllable and (A, C) is observable.

Assumption 2. rank[ A B

CpC 0
] = n+ p.

2.2 The control law

The observer-based PI control law considered in this paper takes the form of















q̇(t) = yp(t)− yr,
.

x̂(t) = Ax̂(t) +Bu(t) + L (Cx̂(t)− y(t)) ,

u(t) = K1x̂(t) +K2q(t),

(2)

where yr ∈ Rp is the constant reference signal to be tracked; q(t) ∈ Rp and x̂(t) ∈ Rn are two newly
introduced state variables; and K1 ∈ Rr×n, K2 ∈ Rr×p, and L ∈ Rn×m are gain matrices to be designed.
The structure of the control system is shown in Figure 1.

Let

X =









x

q

x̂









, yrz =









0

yr

0









, (3)

then the closed-loop system of (1) with the controller (2) is obtained as

{

Ẋ = AzX +Dtzd+Dczdc − yrz,

yp = CpzX,
(4)

where

Az =









A BK2 BK1

CpC 0 0

−LC BK2 A+BK1 + LC









, Cpz =
[

CpC 0p×(n+p)

]

, (5)

and

Dtz =

[

Dt

0(n+p)×v

]

, Dcz =

[

Dc

0(n+p)×w

]

. (6)

2.3 The problem

The problem to be investigated can be stated as follows.
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Figure 1 Control system structure.

Problem 1. Suppose that the system (1) satisfies Assumptions 1 and 2. Let yr ∈ Rp be a constant
reference signal. Determine the gain matrices K1, K2, and L in the control law (2) such that the following
design requirements are met simultaneously:

(1) Az is nondefective, and all its eigenvalues are located in a desired region Ω ⊂ C−;

(2) When d(t) = 0, the controlled output yp asymptotically tracks the given constant reference signal
yr, that is

lim
t→∞

(yp(t)− yr) = 0;

(3) The controlled output yp is statically decoupled from the constant disturbance input dc, that is,
the final value yp (∞) is independent of the constant disturbance dc;

(4) The H2-norm of the transfer function Gdyp
(s), from the time-varying disturbance d(t) to the output

yp, given by

Gdyp
(s) = Cpz (sI −Az)

−1
Dtz (7)

is as small as possible;

(5) The closed-loop poles, that is, the eigenvalues of Az , are as insensitive as possible to parameter
perturbations in the system coefficient matrices A, B, and C;

(6) The 2-norm of the gain matrices K = [K1 K2 ] and L are as small as possible.

3 Preliminaries

3.1 Separation principle of closed-loop poles

If we take the following full state feedback control law

u(t) = K1x(t) +K2q(t), (8)
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and let

η =

[

x

q

]

, ỹr =

[

0

yr

]

, (9)

then, when the above controller (8) is applied to system (1), a closed-loop system is obtained as

η̇ = Acη + D̃td(t) + D̃cdc − ỹr, (10)

where














Ac = Ã1 + B̃K,

Ã1 =

[

A 0

CpC 0

]

, B̃ =

[

B

0

]

, K = [K1 K2 ],
(11)

and

D̃t =

[

Dt

0

]

, D̃c =

[

Dc

0

]

. (12)

The expression of Ac given in (11) suggests us to consider the controllability of (Ã1, B̃).

Lemma 1 ([24]). Suppose that system (1) satisfies Assumption 1. Let Ã1 and B̃ be given by (11).
Then (Ã1, B̃) is controllable if and only if Assumption 2 is satisfied.

On the other hand, the observer (2) can be rewritten as

.

x̂(t) = Aox̂(t) +Bu(t)− Ly(t), (13)

where

Ao = A+ LC. (14)

Motivated by the well-known separation principle in the conventional observer-based state feedback con-
trol theory, we naturally wonder if the following relation holds:

eig(Az) = eig(Ac) ∪ eig(Ao), (15)

where Az is given by (5).

Theorem 1 (Separation principle of closed-loop poles). Let the system be given by (1), and the control
law be taken as (2), then the relation (15) holds.

Proof. Let

P =

[

In+p 0

P21 −In

]

, P21 = [ In 0 ], (16)

then, it can be verified that

Aξ = PAzP
−1, (17)

where

Aξ =

[

Ac Ã2

0 Ao

]

(18)

with

Ã2 =

[

−BK1

0

]

. (19)

It follows from (18) that the eigenvalues of Aξ consist of those of Ac and Ao. Thus, it follows from (17)
and the non-singularity of P that the conclusion holds. Then the proof is completed.
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3.2 Closed-loop eigenstructure

The following result further gives the eigenstructure of Az.

Theorem 2. Suppose that the matrices Ac and Ao given by (11) and (14), respectively, are both
nondefective and do not have common eigenvalues. Let

(1) Λc be a Jordan form of Ac, and Tc and Vc be the corresponding pair of normalized left and right
eigenvector matrices of Ac associated with Λc;

(2) Λo be a Jordan form of Ao, and To and Vo be the corresponding pair of normalized left and right
eigenvector matrices of Ao associated with Λo.

Then, the matrix Az given by (5) is also nondefective and has the following Jordan form:

Λz = blockdiag (Λc,Λo) , (20)

and the corresponding normalized left and right eigenvector matrices take the forms of

TT
z =

[

TT
c −Q∗T

T
o P21 Q∗T

T
o

TT
o P21 −TT

o

]

(21)

and

Vz =

[

Vc VcQ∗

P21Vc P21VcQ∗ − Vo

]

, (22)

respectively, where P21 is given by (16),

Q∗ = unvec(n+p),n

[

Φ−1vec
(

TT
c Ã2Vo

)]

(23)

with Ã2 being given by (19), and

Φ = (Λo ⊗ In+p)− (In ⊗ Λc) . (24)

Proof. It is known from the assumptions that

TT
c AcVc = Λc, TT

c Vc = I, (25)

and
TT
o AoVo = Λo, TT

o Vo = I. (26)

Thus, in view of (17), (21), and (22), we can verify

TT
z Vz = I, (27)

and

TT
z AzVz =

[

Λc ΛcQ∗ −Q∗Λo + TT
c Ã2Vo

0 Λo

]

. (28)

Since Ac and Ao do not have common eigenvalues, neither do Λc and Λo. Therefore, it follows from
matrix equation theory that there exists a unique solution to the following linear matrix equation with
respect to Q:

QΛo − ΛcQ = TT
c Ã2Vo. (29)

With the help of matrix vectorization operations, it can be verified that Q∗ given by (23) is the unique
solution of the matrix equation (29). Thus, the relation (28) becomes

TT
z AzVz = Λz. (30)

Combining (27) and (30) gives the result. The proof is completed.
According to Theorems 1 and 2, the first design requirement in Problem 1 can be transformed into two

eigenstructure assignment subproblems, that is, to find the gain matrices K and L such that Ã1 + B̃K
and A+ LC possess desired nondefective eigenstructure.
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3.3 Eigenvalue sensitivities

The following lemma provides a base for insensitive pole assignment.

Lemma 2 ([25]). Let M(δ) ∈ Rn×n be a nondefective matrix associated with a parameter vector δ.
Then, for every eigenvalue λi(M(0)), there exist a pair of normalized left and right eigenvectors xi and
yi satisfying

xT
i M(0)yi = λi(M(0)), xT

i yi = 1, (31)

and the sensitivities of the eigenvalues of the matrix M(δ) with respect to the parameter vector δ are
given by

∂λi(M(δ))

∂δ
≈ xT

i

∂M(δ)

∂δ
yi. (32)

With Lemma 2, we can give a definition of eigenvalue sensitivity function as follows.

Definition 1. Let M(δ) ∈ R
n×n be a nondefective matrix associated with a parameter vector δ.

Let λi(M(0)), i = 1, 2, . . . , n, be eigenvalues of M(0) and xi, yi, i = 1, 2, . . . , n given by (31) be the
corresponding normalized left and right eigenvectors. Then,

[

∂λi(M(δ))

∂δ

]

0

= xT
i

∂M(δ)

∂δ
yi (33)

is called a sensitivity function of the eigenvalue λi(M) with respect to the parameter δ.

4 Parameterization of the control law

Clearly, Problem 1 can be solved in two steps. The first step is controller parameterization, that is, to
find a complete parametric form of the gain matrices K1, K2, and L in the control law (2) such that the
design requirements 1–3 in Problem 1 are satisfied. The second step is parameter optimization, that is,
to optimize the obtained parameters to meet the design requirements 4–6 in Problem 1.

4.1 Parameterization of K

This subsection considers the parametric design of the gain matrix K. Let

Λc = diag
(

sc1, s
c
2, . . . , s

c
n+p

)

(34)

be the desired diagonal Jordan form of Ã1 + B̃K, where sci , i = 1, 2, . . . , n+ p, are a set of self-conjugate
complex numbers with negative real parts. Then, the eigenstructure assignment of Ac can be solved by
finding a complete parametric form of K and a nonsingular eigenvector matrix V satisfying

AcV = V Λc. (35)

In view of Assumptions 1 and 2, it follows from Lemma 1 that the matrix pair (Ã1, B̃) is controllable.
Therefore, according to [26], there exist a pair of polynomial matrices N(s) ∈ R(n+p)×r[s] and D(s)
∈ Rr×r[s] satisfying the following right coprime factorization (RCF):

(sI − Ã1)N(s) = B̃D(s). (36)

Furthermore, according to the eigenstructure assignment result in [26], all the matricesK and V satisfying
(35) can be given by















K = WV −1,

V = [N(sc1)f1 N(sc2)f2 · · · N(scn+p)fn+p ],

W = [D(sc1)f1 D(sc2)f2 · · · D(scn+p)fn+p ],

(37)

where fi ∈ Cr, i = 1, 2, . . . , n+ p, are a set of parameters satisfying the following constraints:

Constraint C1. det[N(sc1)f1 N(sc2)f2 · · · N(scn+p)fn+p ] 6= 0.

Constraint C2. fi = f̄l, if si = s̄l and Im (si) 6= 0, i, l = 1, 2, . . . , n+ p.
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4.2 Parameterization of L

Parallel to the parameterization of K, the gain matrix L can be also parameterized in a similar manner.
Denote the desired Jordan form of Ao = A+ LC by

Λo = diag (so1, s
o
2, . . . , s

o
n) , (38)

where soi , i = 1, 2, . . . , n, are a set of self-conjugate complex numbers with negative real parts. To solve
the problem of eigenstructure assignment in Ao, we need to find a complete parametric form of the gain
matrix L and a corresponding nonsingular left-eigenvector matrix T satisfying

TTAo = ΛoT
T. (39)

It follows from Assumption 1 that (A,C) is observable, thus (AT, CT) is controllable. Then, according
to [26] again, there exist a pair of polynomial matrices H(s) ∈ Rn×m[s] and L(s) ∈ Rm×m[s] satisfying
the following RCF:

(sI −AT)H(s) = CTL(s), (40)

and all the matrices L and T satisfying (39) are given by















L = T−TGT,

T = [H(so1)g1 H(so2)g2 · · · H(son)gn ],

G = [L(so1)g1 L(so2)g2 · · · L(son)gn ],

(41)

where gi ∈ Cm, i = 1, 2, . . . , n, are parameters satisfying the following constraints.

Constraint C3. det[H(so1)g1 H(so2)g2 · · · H(son)gn ] 6= 0.

Constraint C4. gi = ḡl, if si = s̄l and Im(si) 6= 0, i, l = 1, 2, . . . , n.

4.3 Main result

Based on the separation principle of closed-loop poles obtained in Subsection 3.1 and the above parametric
expressions of K and L given by (37) and (41), respectively, Theorem 3 can be finally obtained.

Theorem 3. Suppose that system (1) satisfies Assumptions 1 and 2. Let Γc = {sci , i = 1, 2, . . . , n+ p}
and Γo = {soj , j = 1, 2, . . . , n} be two sets of self-conjugate complex numbers with negative real parts,
Γc ∩ Γo = ∅, and yr ∈ Rp be a constant reference signal. Then, all the gain matrices K and L which
(1) make Az nondefective and eig(Az) = Γc ∪ Γo, and (2) guarantee the second and third design require-
ments in Problem 1, are given by (37) and (41), respectively, where fi ∈ Cr, i = 1, 2, . . . , n + p, and
gi ∈ Cm, i = 1, 2, . . . , n, are parameters satisfying Constraints C1–C4.

Proof. It follows from Subsections 4.1 and 4.2 that, when K and L are taken as (37) and (41),
respectively, Λc and Λo are the nondefective Jordan matrices of Ac and Ao, respectively. Therefore, the
requirement (1) in Theorem 3 holds following from Theorems 1 and 2.

Taking differentials with respect to t on both sides of the first equation in (4), it gives that when
d(t) = 0,

ż = Azz, (42)

where

z = Ẋ. (43)

Considering that both Ac and Ao are stable, we know from Theorem 1 that Az is also stable. Thus we
have

lim
t→∞

z = 0. (44)

This implies, in view of (3),

lim
t→∞

q̇ = 0. (45)

Therefore, it follows from the first equation in (2) that the second and third design requirement in Pro-
blem 1 is satisfied. Then the proof is completed.
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5 Multiobjective design

The first step to solve Problem 1 is provided in Section 4. In this section we further treat the second
step, that is, to optimize the obtained parameters to meet the design requirements 4–6 in Problem 1.

5.1 Disturbance attenuation

For the robustness consideration, the effect of the time-varying disturbance d(t) on the controlled output
yp(t) is expected to be as small as possible, which suggests us to minimize the H2-norm of the transfer
function Gdyp

(s) given by (7). With the help of Theorem 2, an explicit expression of ‖Gdyp
(s)‖2 can be

obtained.

Theorem 4. Suppose that the system (1) satisfies Assumptions 1 and 2. Let Λc and Λo be given by (34)
and (38), respectively, with eig(Λc) = {sci , i = 1, 2, . . . , n+ p} and eig(Λo) = {soj , j = 1, 2, . . . , n} being
two sets of self-conjugate complex numbers with negative real parts, and satisfying eig(Λc)∩ eig(Λo) = ∅.
Then, when K and L are taken as (37) and (41), respectively, and Constraints C1–C4 hold, we have

∥

∥Gdyp
(s)

∥

∥

2
=

(

trace
(

Γ2P
∗
1 Γ

T
2

))
1

2 =
(

trace
(

ΓT
1 P

∗
2 Γ1

))
1

2 (46)

with














































P ∗
1 = unvec(2n+p),(2n+p)

[

−Ψ−1vec(Γ1Γ
T
1 )
]

,

P ∗
2 = unvec(2n+p),(2n+p)

[

−Ψ−1vec(ΓT
2 Γ2)

]

,

Γ1 =

[

V −1D̃t −Q∗T
TP21D̃t

TTP21D̃t

]

,

Γ2 = [ C̃pV C̃pV Q∗ ],

Q∗ = unvec(n+p),n

[

Φ−1vec(V −1Ã2T
−T)

]

,

(47)

where V and T are given by (37) and (41), respectively, D̃t, P21, and Φ are given by (12), (16), and (24),
respectively, and

C̃p = [CpC 0 ], (48)

Ψ = (I2n+p ⊗ Λz) + (Λz ⊗ I2n+p) (49)

with Λz being given by (20).

Proof. As shown in Subsections 4.1 and 4.2, when K and L are respectively taken as (37) and (41),
matrices V −1 and V form a pair of normalized left and right eigenvector matrices of Ac, and TT and T−T

form a pair of normalized left and right eigenvector matrices of Ao. Therefore, according to Theorem 2,
Λz is the Jordan form of Az, and the corresponding normalized left and right eigenvector matrices are
given by

Vz =

[

V V Q∗

P21V P21V Q∗ − T−T

]

, TT
z =

[

V −1 −Q∗T
TP21 Q∗T

T

TTP21 −TT

]

, (50)

which means that (27) and (30) hold. Thus, ‖Gdyp
(s)‖2 can be transformed as

∥

∥Gdyp
(s)

∥

∥

2
=

∥

∥CpzVz(sI − Λz)
−1TT

z Dtz

∥

∥

2
.

Since Λc and Λo are stable, we know from Subsections 4.1 and 4.2 that Ac and Ao are also stable when
K and L are taken as (37) and (41), respectively. Then, it follows from Theorem 1 that Az is stable.
Therefore, according to the Lemma 4.1 in [27], there exists unique symmetric positive definite solutions
P1 and P2 to the following Lyapunov matrix equations

ΛzP1 + P1Λz = −TT
z DtzD

T
tzTz, (51)

ΛzP2 + P2Λz = −V T
z CT

pzCpzVz, (52)

and ‖Gdyp
(s)‖2 is given by

∥

∥Gdyp
(s)

∥

∥

2
=

(

trace
(

CpzVzP1V
T
z CT

pz

))

1

2
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=
(

trace
(

DT
tzTzP2T

T
z Dtz

))

1

2 . (53)

With the help of matrix vectorization operations and in view of (50), it can be verified that P ∗
1 and P ∗

2

given by (47) are the unique solutions to (51) and (52), respectively. Thus the result (46) can be obtained.
The proof is completed.

Based on Theorem 4, we can attenuate the influence of disturbance d(t) on the controlled output yp(t)
by minimizing the following index:

Jd
(

fi, s
c
i , i = 1, 2, . . . , n+ p, gj, s

o
j , j = 1, 2, . . . , n

)

=
[

trace
(

Γ2P
∗
1 Γ

T
2

)]
1

2 . (54)

5.2 Closed-loop eigenvalue sensitivities

In order to handle the fifth design requirement in Problem 1, let us first reveal an important fact about
the closed-loop eigenvalue sensitivities.

5.2.1 Separation principle for eigenvalue sensitivities

In view of Theorem 1, without loss of generality, we assume

λi(Az) = λi(Ac), i = 1, 2, . . . , n+ p, (55)

and
λi+n+p(Az) = λi(Ao), i = 1, 2, . . . , n. (56)

The sensitivities of these closed-loop eigenvalues are given in the following result.

Theorem 5 (Separation principle for eigenvalue sensitivities). Let Ac and Ao be given by (11) and
(14), respectively, which are both nondefective and do not have common eigenvalues. Then, we have

[

∂λi(Az)

∂δ

]

0

=

[

∂λi(Ac)

∂δ

]

0

, i = 1, 2, . . . , n+ p, (57)

and
[

∂λi+n+p(Az)

∂δ

]

0

=

[

∂λi(Ao)

∂δ

]

0

, i = 1, 2, . . . , n, (58)

where Az is given by (5).

Proof. Let Λc and Λo denote the Jordan matrices of Ac and Ao, respectively;

Tc = [ tc1 tc2 · · · tcn+p ] and Vc = [ vc1 vc2 · · · vcn+p ] (59)

be the corresponding pair of normalized left and right eigenvector matrices of the matrix Ac; and

To = [ to1 to2 · · · ton ] and Vo = [ vo1 vo2 · · · von ] (60)

be the corresponding pair of normalized left and right eigenvector matrices of the matrix Ao. let [M ]ij
denote the i-th row and j-th column element of a matrix M , then, in view of (59) and (60), we have

[

∂λi(Ac)

∂δ

]

0

= (tci)
T ∂Ac

∂δ
vci =

[

TT
c

∂Ac

∂δ
Vc

]

ii

, i = 1, 2, . . . , n+ p, (61)

and
[

∂λi(Ao)

∂δ

]

0

= (toi )
T ∂Ao

∂δ
voi =

[

TT
o

∂Ao

∂δ
Vo

]

ii

, i = 1, 2, . . . , n. (62)

According to Theorem 2, when Ac and Ao are both nondefective and do not have common eigenvalues,
the matrix Λz given by (20) forms the Jordan matrix of Az, and Tz and Vz given by (21) and (22),
respectively, form the corresponding pair normalized left and right eigenvector matrices. Thus, similar
to (61) and (62), we have

[

∂λi(Az)

∂δ

]

0

=

[

TT
z

∂Az

∂δ
Vz

]

ii

, i = 1, 2, . . . , 2n+ p, (63)
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which, in view of (17), can be rewritten as

[

∂λi(Az)

∂δ

]

0

=

[

TT
z P−1 ∂Aξ

∂δ
PVz

]

ii

, i = 1, 2, . . . , 2n+ p, (64)

where Aξ and P are given by (18) and (16), respectively. It follows from (21) and (22) that Eq. (64) can
be further transformed into

[

∂λi(Az)

∂δ

]

0

=







TT
c

∂Ac

∂δ
Vc ∗

0 V T
o

∂Ao

∂δ
To







ii

, i = 1, 2, . . . , 2n+ p. (65)

Combining (61), (62) and (65) produces (57) and (58). Then the proof is completed.

Remark 1. It follows from the separation principle of closed-loop eigenvalues (Theorem 1) that the
closed-loop eigenvalues are composed of those of the PI control system and those of the observer system,
while the above result further states another important fact: as an eigenvalue of the overall closed-loop
system, an eigenvalue of the PI control system has a sensitivity defined with the overall system, which
is equal to its sensitivity defined with the PI control system; meanwhile, as also an eigenvalue of the
overall closed-loop system, an eigenvalue of the observer system has a sensitivity defined with the overall
system, which is equal to its sensitivity defined with the observer system. This is why the result is called
the separation principle of eigenvalue sensitivities. This result is actually a generalization of the one
introduced in [28]. In fact, the result reduces to the one in [28] when the integral part in the controller
is removed.

5.2.2 Explicit expressions

Assume that the coefficients A, B, and C in (1) are perturbed by

∆A(δ) =

l
∑

i=1

Aiδi, ∆B(δ) =

l
∑

i=1

Biδi, ∆C(δ) =

l
∑

i=1

Ciδi, (66)

where δ = [ δ1 δ2 · · · δl ]
T, and the perturbed coefficients are described by

A(δ) = A0 +∆A(δ), B(δ) = B0 +∆B(δ), C(δ) = C0 +∆C(δ). (67)

Theorem 5 allows us to only treat [∂λi(Ac)
∂δ

]0 and [∂λi(Ao)
∂δ

]0 instead of [∂λi(Az)
∂δ

]0.

Firstly, let us find the explicit form of [∂λi(Ac)
∂δ

]0. It is known from Subsection 4.1 that when K is
taken as (37), the matrices V −1 and V are a pair of normalized left and right eigenvector matrices of Ac.
Therefore, according to Definition 1, we have

[

∂λi(Ac)

∂δj

]

0

=

[

V −1 ∂Ac

∂δj
V

]

ii

= eTi V
−1 ∂Ac

∂δj
V ei, i = 1, 2, . . . , n+ p, j = 1, 2, . . . , l, (68)

where ei represents a vector with the i-th element being 1, and the remaining elements being 0. Substi-
tuting (11) into (68) yields

[

∂λi(Ac)

∂δj

]

0

= eTi V
−1ΩjV ei, i = 1, 2, . . . , n+ p, j = 1, 2, . . . , l, (69)

where

Ωj =

[

Aj +BjK1 BjK2

CpCj 0

]

. (70)

Secondly, let us consider [∂λi(Ao)
∂δ

]0. Similarly, as shown in Subsection 4.2, when L is taken as (41), the
matrices TT and T−T become a pair of normalized left and right eigenvector matrices of Ao. Thus we
know

[

∂λi(Ao)

∂δj

]

0

=

[

TT∂Ao

∂δj
T−T

]

ii

= eTi T
T ∂Ao

∂δj
T−Tei, i = 1, 2, . . . , n, j = 1, 2, . . . , l. (71)
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Substituting (14) into (71), in view of (67) and (66), gives

[

∂λi(Ao)

∂δj

]

0

= eTi T
T (Aj + LCj)T

−Tei, i = 1, 2, . . . , n, j = 1, 2, . . . , l. (72)

Based on the expressions (69) and (72), in order to attenuate the influence of the parameter perturba-
tion δ on the eigenvalues of Ac and Ao, we can minimize the following two indices:

Jrc (fi, s
c
i , i = 1, 2, . . . , n+ p) =

n+p
∑

i=1

l
∑

j=1

∣

∣eTi V
−1ΩjV ei

∣

∣ , (73)

and

Jro (gi, s
o
i , i = 1, 2, . . . , n) =

n
∑

i=1

l
∑

j=1

∣

∣eTi T
T (Aj + LCj)T

−Tei
∣

∣ . (74)

5.3 The algorithm

To reduce the amplitude of the control inputs, the following two indices also need to be minimized:

JK (fi, s
c
i , i = 1, 2, . . . , n+ p) = ‖[K1 K2 ]‖2 = ‖K‖2 , (75)

and

JL (gi, s
o
i , i = 1, 2, . . . , n) = ‖L‖2 , (76)

where K and L are given by (37) and (41), respectively, and Constraints C1–C4 hold.

With all above explicit expressions for indices (54), (73)–(76), a procedure for solving Problem 1 can
be stated as follows:

(1) Establish the complete parametric forms (37) and (41) of the gain matrices K1, K2, and L in the
proposed observer-based control law (2).

(2) Define an index function as

J
(

fi, s
c
i , i = 1, 2, . . . , n+ p, gj , s

o
j , j = 1, 2, . . . , n

)

= αroJro + αrcJrc + αdJd + αKJK + αLJL, (77)

where Jd, Jrc, Jro, JK and JL are given by (54), (73)–(76), respectively, and αd, αrc, αro, αK , and αL

are proper weighting factors.

(3) Determine the ranges of the closed-loop poles Sc and So according to practical requirements.

(4) Solve the following optimization problem:

min J
(

fi, s
c
i , i = 1, 2, . . . , n+ p, gj , s

o
j , j = 1, 2, . . . , n

)

,

s.t. Constraints C1–C4,
(

sc1, s
c
2, . . . , s

c
n+p

)

∈ Sc, (so1, s
o
2, . . . , s

o
n) ∈ So,

(78)

and obtain a sub-optimal solution f∗
i , s

c∗
i , i = 1, 2, . . . , n+ p, g∗j , s

o∗
j , j = 1, 2, . . . , n.

(5) Substitute the optimal solution f∗
i , s

c∗
i , i = 1, 2, . . . , n + p, g∗j , s

o∗
j , j = 1, 2, . . . , n, into (37) and

(41) to obtain the gain matrices K∗ and L∗, and further partition K∗ as

K∗ = [K∗
1 K∗

2 ], K∗
1 ∈ R

r×n, K∗
2 ∈ R

r×p.

Then, by replacing K1, K2, and L in (2) with K∗
1 , K

∗
2 , and L∗, respectively, the designed observer-based

control law is obtained.

Remark 2. The nonlinear programming (78) can be solved offline by some nonlinear optimization
algorithms. The optimization toolbox in MATLAB is a ready-used choice.
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6 Flexible satellite attitude control

6.1 The system model

Consider the pitch channel of the attitude system of a flexible satellite, whose model can be arranged
into the state space model described by (1) [23, 29], with

x(t) =
[

θ qy θ̇ q̇y
]T

,


































































A = A0 +A1δ1 +A2δ2,

A0 =













0 0 1 0

0 0 0 1

0 −0.0111 0 −0.0001

0 −2.1111 0 −0.0223













,

A1 = [ 0 ζ 0 0 ],

A2 = [ 0 0 0 ζ ],

ζ = [ 0 0 0.0109 2.0667 ]T,

B = Dc =













0

0

0.0001

0.0124













, Dt =













0 0

0 0

0.0001 0.0124

0.0124 2.3452













,

C =

[

1 0 0 0

0 0 1 0

]

, Cp = [ 1 0 ],

and
d(t) =

[

0.1 sin (2πt) 0.1q
(3)
y

]T
, dc = 0.12,

where θ is the attitude angle, and qy is the flexible mode. The first component of d(t) is the time-varying
part of the disturbance torque, and the second component is the high-order unmodeled dynamics; dc is
the constant part of the disturbance torque. The regulation requirement is to realize the asymptotically
tracking of yp = θ to yr = −0.3◦.

6.2 Control system design

It can be easily verified that the system satisfies Assumptions 1 and 2. Then, the polynomial matrices
H(s) and L(s) satisfying RCF (40) are [23]

H(s) =













1 0

0 0.0111s

0 −s2 − 0.0223s− 2.1111

0 0.0001s+0.0111













, (79)

and

L(s) =

[

s 0

−1 −s3 − 0.0223s2 − 2.1111s

]

, (80)

respectively, and N(s) and D(s) satisfying RCF (36) can be given by

N(s) =



















−0.0001s3 − 1.0766× 10−6s2 − 0.0001s

−0.0124s3

−0.0001s4 − 1.0766× 10−6s3 − 0.0001s2

−0.0124s4

−0.0001s2 − 1.0766× 10−6s− 0.0001



















, (81)
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and
D(s) = −s5 − 0.0223s4 − 2.1111s3, (82)

respectively.
According to the practical requirements, determine the desired regions of closed-loop poles















sc1 ∈ [−0.0552,−0.0408] ,

sc2,3 = −αc
2 ± αc

3 i, αc
2 ∈ [0.0684, 0.0926] , αc

3 ∈ [1.1514, 1.5578] ,

sc4,5 = −αc
4 ± αc

5 i, αc
4 ∈ [0.0992, 0.1343] , αc

5 ∈ [0.0883, 0.1194] ,

(83)

and

{

so1,2 = −αo
1 ± αo

2 i, αo
1 ∈ [0.1416, 0.1915] , αo

2 ∈ [0.2226, 0.3011] ,

so3 ∈ [−4.2748,−3.1596] , so4 ∈ [−0.1159,−0.0857] .
(84)

Setting the weighting factors as

αro = αrc = 10−4, αd = 100, αK = αL = 10−3, (85)

we can obtain a sub-optimal solution to the optimization problem (78) as follows:



































sc∗1 = −0.0459, sc∗2,3 = −0.0712± 1.2135 i, sc∗4,5 = −0.0996± 0.1008 i,

so∗1,2 = −0.1538± 0.2679 i, so∗3 = −3.5340, so∗4 = −0.1005,

g∗1,2 =

[

−67.618∓ 65.707 i

94.905∓ 32.796 i

]

, g∗3 =

[

1.5340

−10.036

]

, g∗4 =

[

−297.75

−7.9399

]

,

f∗
1 = 1, f∗

2,3 = 1± 1 i, f∗
4,5 = 1± 1 i,

(86)

which gives the index value J∗ = 13.2877. In this case the corresponding gain matrices are

K∗ = [−423.76 50.279 −3575.2 3.2751 −13.321 ], (87)

and

L∗ =













−0.10654 −1.6039

−0.29415 −85.828

6.2805× 10−4 −3.8135

0.31620 −694.12













. (88)

Remark 3. Since the system is single-input, the expression of K depends only on sci , i = 1, 2, 3, 4, 5
and is independent of fi, i = 1, 2, 3, 4, 5 (see [26]). In fact, we can also prove that the index (77) is also
independent of fi, i = 1, 2, 3, 4, 5. Therefore, here we simply set these parameters to 1 or 1± 1 i.

Partitioning K∗ as

K∗ = [K∗
1 K∗

2 ], K∗
1 ∈ R

1×4, K∗
2 ∈ R,

and replacing K1, K2, and L in (2) with K∗
1 , K

∗
2 , and L∗, respectively, gives the final designed controller.

For exactly the same system, three control laws are presented in [23], namely, an observer-based
controller, a dynamic compensator, and a PID controller with structural filters. Since the first two
control methods aim at the stabilization problem, they failed in the asymptotically tracking task in this
paper. Therefore, for comparison, we only consider the third method in [23], that is, the traditional PID
controller, which takes the structure in Figure 2, where

G(s) =
60s+ 1

1.5625s2 + 3.5s+ 1
, (89)

Kp = Kd = 15, Ki = 0.03. (90)
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Figure 2 Structure of classic PID controller.
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Figure 3 (Color online) The index values Jsen under the two control methods.

6.3 Numerical simulation

6.3.1 Verification of closed-loop pole sensitivities

In order to quantify the degree to which the closed-loop poles are affected by parameter perturbations,
the following index is introduced:

Jsen =
1

n

√

√

√

√

n
∑

i=1

(speri − snomi )
2
,

where snomi , i = 1, 2, . . . , n, are the nominal closed-loop poles, speri , i = 1, 2, . . . , n, represent the closed-
loop poles when the coefficient matrix A is perturbed, and n is the number of closed-loop poles, which
equals 7 or 9 corresponding to the PID controller or the proposed method. Obviously, the smaller the
value of Jsen, the less sensitive the closed-loop poles are to parameter perturbations.

In order to avoid the contingency of the experimental results, we generate 100 sets of random parameter
perturbations as follows:

{

δ1k = WGN
(

2× 10−6k, 0
)

,

δ2k = WGN
(

2× 10−8k, 0
)

,
k = 1, 2, . . . , 100, (91)

where WGN(σ2, µ) generates a white Gaussian noise with variance σ2 and mean µ. For each of these 100
cases, we calculate the index values corresponding to the two control methods, and connect the scattered
points into two curves, as shown in Figure 3, which apparently reflects the superiority of the proposed
method.

6.3.2 Simulation results

Same as [23, 29], the initial values of the attitude angle and its estimation are taken as θ0 = θ̂0 = 0.06◦,
and those of the attitude angular velocity and its estimation are ω0 = ω̂0 = −0.003◦/s. The initial values
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Figure 4 (Color online) Dynamic responses. (a) Pitch angle; (b) pitch anglular velocity; (c) control input.

of the remaining state variables are set to be zeros. The specific values of the parameter perturbations
are chosen to be

δ1 = −0.7766, δ2 = −6.8048× 10−4,

which corresponds to the case of k = 15 in the 100 sets of random parameter perturbations (91). At this
point, the index Jsen corresponding to the proposed method and the PID method are

JOB
sen = 0.0928 and JPID

sen = 0.7061,

respectively. The version of MATLAB software used in the simulation is 2014a. The numerical simulation
algorithm is the well-known Runge-Kutta method, which corresponds to the “ode4” function in MATLAB.
The fixed-step size is 0.5 s, and the simulation results are shown in Figure 4.

It is shown in Figures 4(a) and (b) that the proposed method has a higher steady-state accuracy than
the PID control method. As for transient performance, the proposed method is far superior to the PID
method. The convergence time of the proposed method is about 150 s, while that of the PID method is
about 2200 s.

As shown in Figure 4(c), the peak value of the control torque of the proposed method is within
0.5 Nm, while that of the PID controller is about 4 Nm.

7 Conclusion

A parametric multiobjective design approach is proposed for output regulation in a multivariable linear
system based on a PI controller and full-state observer. The superiority of the proposed method is
primarily reflected in the following characteristics.

(1) The complete parametric expressions of the gains of both PI controller and observer are established,
and all design degrees of freedom are obtained, which are characterized by a set of parameter vectors.
Moreover, the restriction of distinct closed-loop poles, which is often assumed as in [4, 5], is removed.

(2) The design degrees of freedom are used to ensure that the closed-loop system has lower eigenvalue
sensitivities, smaller control gains and greater tolerance to time-varying disturbances. The separation
principle for eigenvalue sensitivities is proven, which is crucial in the multiobjective design process.
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(3) The proposed method is successfully applied to attitude control of a flexible satellite. Its superiority
over the traditional PID controller in [23] is well demonstrated using the simulation results.

The above facts clearly indicate the merits of the proposed method in both theory and application.
More successful practical applications of the proposed method are definitely expected, particularly in
cases where the disturbances are primarily constant or gradually time-varying in nature, which often
occurs in industrial systems.
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16 Açıkmeşe A B, Corless M. Robust tracking and disturbance rejection of bounded rate signals for uncertain/non-linear systems.

Int J Control, 2003, 76: 1129–1141

17 Konstantopoulos G C, Baldivieso-Monasterios P R. Nonlinear PI controller for systems with state constraint requirements.

In: Proceedings of the 18th European Control Conference, Naples, 2019. 1642–1647

18 Milasi R M, Moallem M. Adaptive PI control of a three phase AC/DC PWM converter. In: Proceedings of 40th Annual

Conference of the IEEE Industrial Electronics Society, Dallas, 2014. 65–70

19 Hackl C M. Current PI-funnel control with anti-windup for synchronous machines. In: Proceedings of the 54th IEEE Confer-

ence on Decision and Control, Osaka, 2015. 1997–2004

20 Mokhtar M, Marei M I, El-Sattar A A. An adaptive droop control scheme for dc microgrids integrating sliding mode voltage

and current controlled boost converters. IEEE Trans Smart Grid, 2019, 10: 1685–1693

21 Zhang H, Wang J M. Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach. IEEE Trans

Veh Technol, 2016, 65: 489–494

22 Duan G R, Wang J Y, Zhao T Y, et al. Parametric comprehensive optimization design of high accuracy tracking control

system for satellite optical communication (in Chinese). Control Theory Appl, 2020, 37: 469–480

23 Duan G R, Zhao T Y. Observer-based multi-objective parametric design for spacecraft with super flexible netted antennas.

Sci China Inf Sci, 2020, 63: 172002

24 Duan G R. Theory of Linear Systems: Volume II (in Chinese). Beijing: Science Press, 2016

25 Duan G R. Robust eigenstructure assignment via dynamical compensators. Automatica, 1993, 29: 469–474

26 Duan G R. Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems. IEEE

Trans Autom Control, 1993, 38: 276–280

27 Duan G R, Liu G P, Thompson S. Disturbance attenuation in Luenberger function observer designs — a parametric approach.

IFAC Proc Vol, 2000, 33: 41–46

28 Duan G R, Thompson S, Liu G P. Separation principle for robust pole assignment-an advantage of full-order state observers.

In: Proceedings of the 38th IEEE Conference on Decision and Control, 1999. 76–78

29 Wu Y L, Lin B, Zeng H B. Parametric multi-objective design for spacecrafts with super flexible netted antennas (in Chinese).

Control Theory Appl, 2019, 36: 766–773

https://doi.org/10.1109/TAC.1968.1098947
https://doi.org/10.1049/ip-d.1985.0040
https://doi.org/10.1049/ip-d.1993.0012
https://doi.org/10.1109/9.668848
https://doi.org/10.1049/ip-cta:19971526
https://doi.org/10.1016/S0005-1098(00)00065-0
https://doi.org/10.1109/TAC.1982.1102887
https://doi.org/10.1137/0330033
https://doi.org/10.1080/00207179508921891
https://doi.org/10.1109/TAC.1985.1104078
https://doi.org/10.1016/0005-1098(90)90081-R
https://doi.org/10.1016/S0005-1098(02)00071-7
https://doi.org/10.1080/0020717031000124156
https://doi.org/10.1109/TSG.2017.2776281
https://doi.org/10.1109/TVT.2015.2391184
https://doi.org/10.1007/s11432-020-2916-8
https://doi.org/10.1016/0005-1098(93)90140-O
https://doi.org/10.1109/9.250470
https://doi.org/10.1016/S1474-6670(17)36202-X

	Introduction
	Problem formulation
	The model
	The control law
	The problem

	Preliminaries
	Separation principle of closed-loop poles
	Closed-loop eigenstructure
	Eigenvalue sensitivities

	Parameterization of the control law
	Parameterization of K
	Parameterization of L
	Main result

	Multiobjective design
	Disturbance attenuation
	Closed-loop eigenvalue sensitivities
	Separation principle for eigenvalue sensitivities
	Explicit expressions

	The algorithm

	Flexible satellite attitude control
	The system model
	Control system design
	Numerical simulation
	Verification of closed-loop pole sensitivities
	Simulation results


	Conclusion

