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Abstract Based on the identity-based encryption (IBE) from lattices by Agrawal et al. (Eurocrypt’10),

Micciancio and Peikert (Eurocrypt’12) presented a CCA1-secure public-key encryption (PKE), which has the

best known efficiency in the standard model and can be used to obtain a CCA2-secure PKE from lattices by

using the generic BCHK transform (SIAM J Comput, 2006) with a cost of introducing extra overheads to

both computation and storage for the use of other primitives such as signatures and commitments. In this

paper, we propose a more efficient standard model CCA2-secure PKE from lattices by carefully combining

a different message encoding (which encodes the message into the most significant bits of the LWE’s “secret

term”) with several nice algebraic properties of the tag-based lattice trapdoor and the LWE problem (such as

unique witness and additive homomorphism). Compared to the best known lattice-based CCA1-secure PKE

in the standard model due to Micciancio and Peikert (Eurocrypt’12), we not only directly achieve the CCA2-

security without using any generic transform (and thus do not use signatures or commitments), but also

reduce the noise parameter roughly by a factor of 3. This improvement makes our CCA2-secure PKE more

efficient in terms of both computation and storage. In particular, when encrypting a 256-bit (respectively,

512-bit) message at 128-bit (respectively, 256-bit) security, the ciphertext size of our CCA2-secure PKE is

even 33%–44% (respectively, 36%–46%) smaller than that of their CCA1-secure PKE.
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1 Introduction

In the seminal work of [1], Diffie and Hellman introduced the concept of public-key cryptography. Soon

afterwards, Rivest, Shamir and Adleman [2] proposed the first public-key encryption (PKE), which is

known as RSA. Since then, PKE has aroused widespread public attention from the community, and has

become one of the most fundamental and widely used cryptographic primitives. The basic security notion

for PKE (i.e., CPA-security) which was formalized by Goldwasser and Micali [3] roughly requires that

it should be computationally infeasible for a passive adversary to obtain any useful information from a

honestly generated challenge ciphertext. Later, this notion was enhanced by Naor and Yung [4] to deal

with the “lunchtime attack”. Specifically, they [4] considered the security against non-adaptive chosen

ciphertext attacks (i.e., CCA1-security) for PKE, where the adversary can access a decryption oracle to
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decrypt any ciphertext of his choice before seeing the challenge ciphertext. Now, the de facto standard

security for PKE is CCA2-security [5], where the adversary can adaptively access the decryption oracle

during the whole attack period (with a restriction that the decryption oracle cannot be directly used

to decrypt the challenge ciphertext). For example, the National Institute of Standards and Technology

(NIST) considered CCA2-security as a basic security requirement for the PKE submissions to the post-

quantum cryptography (PQC) standardization [6].

By definition, CCA2-security is stronger than CCA1-security, which in turn is stronger than CPA-

security. One of the main problems in this area is to construct CCA2-secure PKEs from primitives as

weak as possible (e.g., a CPA-secure one). Using the Random Oracle (RO) heuristic, one can efficiently

boost a CPA-secure PKE into a CCA2-secure one [7–9]. However, a scheme provably secure in the RO

model may not be secure in the real world [10], and it is of great theoretical and practical interest to

construct CCA2-secure PKE in the standard model. But this task becomes very challenging and highly

non-trivial. In fact, Gertner et al. [11] showed that it is hard, if not impossible, to even construct a

CCA1-secure PKE solely from a CPA-secure one in the standard model.

By relying on primitives with “stronger” functionality or security, there are roughly four approaches

to CCA2-secure PKEs in the standard model. The first one is due to Naor and Yung [4], who showed a

paradigm for transforming CPA-secure PKEs into CCA1-secure ones by using the non-interactive zero-

knowledge (NIZK) proofs, which was further extended to achieve CCA2-security [12,13]. The second one

is a framework under the name of hash proof systems (HPS) or extractable HPS [14,15], which essentially

stems from high-level abstraction of some existing schemes. The third one is the BCHK transform [16]

from identity-based encryption (IBE), which was later extended to the more general tag-based encryption

(TBE) by Kiltz [17]. The last one follows the generic constructions from special types of injective trapdoor

functions [18–20], such as lossy trapdoor functions [18] and adaptive trapdoor functions [20].

The above approaches have been shown very useful in constructing CCA2-secure PKEs from various

hardness assumptions, but most of the instantiations were based on traditional number theoretic problems

such as discrete logarithm and integer factorization, which are not quantum resistant [21]. Compared

to the big success in the traditional setting, the progress on designing lattice-based CCA2-secure PKE

in the standard model was relatively slow. For example, many practical CCA2-secure PKEs in the

traditional setting were obtained by using the generic framework from HPS (e.g., [22]), but it is still hard

to construct an HPS from lattices [23–26]. Moreover, it is also unclear how to obtain NIZKs from lattices

in the standard model [25, 27, 28]. This means that we currently cannot use the first two approaches to

construct standard model CCA2-secure PKEs from lattices.

In fact, almost all existing standard model CCA2-secure PKEs from lattices are, to the best of

our knowledge, obtained either by using the techniques from special types of injective trapdoor func-

tions [18, 29–31] which are typically very inefficient (e.g., having large public key and ciphertext sizes

due to the use of Dolev-Dwork-Naor like technique [13, 32]), or by applying the BCHK transform from

IBEs/TBEs [33–39]. Based on the standard model IBE from lattices due to Agrawal et al. [33], Micciancio

and Peikert [40] presented the best known standard model (tag-based) CCA1-secure PKE from lattices

by using a more efficient trapdoor technique and a new message encoding. They [40] also mentioned that

the CCA2-security can be achieved by using the generic BCHK transform [16], which has two modes:

BCHK-SIG [41] and BCHK-MAC [42]. BCHK-SIG requires (one-time) signatures, and typically incurs

noticeable overheads to both computation and storage [16]. This becomes even worse on lattices, since

the resulting ciphertext should include a verification key of the (one-time) signature, which, to the best

of our knowledge, has at least one matrix [43]. In contrast, BCHK-MAC [42] makes use of message

authentication codes (MAC) and commitments, and thus can reduce the extra overheads, e.g., it only

adds a MAC tag and a commitment to the resulting ciphertext.

Given the difficulties in adapting traditional techniques to the lattice setting, and the insufficiencies

of existing CCA2-secure PKEs from lattices, it is natural to ask: Can we directly construct a standard

model CCA2-secure PKE from lattices (possibly by carefully exploiting the rich algebraic properties of

lattices), such that it has better performance than those following generic approaches?
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Table 1 A concrete comparison of the ciphertext size of our CCA2-secure PKE and the CCA1-secure one in [40] for

encrypting a 256-bit (respectively, 512-bit) message at 128-bit (respectively, 256-bit) security

Scheme LWE parameter (n,m, q, αq) Ciphertext size Decryption error Security strength

MP12 [40]
(450, 11905, 310, 2.45) 24.74 KB (20.89 KB†) 2−88 2128

(660, 19041, 311, 5.2) 44.19 KB (37.10 KB†) 2−115 2257

This paper
(450, 10740, 39, 1.5) 13.80 KB (33%–44% ↓) 2−100 2131

(660, 17333, 310, 3.1) 23.47 KB (36%–46% ↓) 2−138 2260

1.1 Our results

In this paper, we construct a standard model CCA2-secure PKE from lattices, which does not follow the

generic approaches mentioned above. Technically, our PKE is obtained by carefully combining a different

message encoding with several nice algebraic properties of the tag-based lattice trapdoor and the learning

with errors (LWE) problem (e.g., unique witness and additive homomorphism). Unlike previous LWE-

based PKEs which typically encode the message into the LWE’s “error term”, we encode the message into

the most significant bits of the LWE’s “secret term”, which not only provides a better way to control the

error size in the decryption, but also allows us to directly achieve CCA2-security. Compared to the best

known standard model CCA1-secure PKE [40], our CCA2-secure PKE reduces the noise parameter for

encryption roughly by a factor of 3, and thus improves the efficiency in both computation and storage.

In the supplemental material, we also extend our techniques to a special type of rings and obtain an

efficient CCA2-secure PKE from ring-LWE in the standard model.

In Table 1, we give a concrete comparison of the ciphertext size of our CCA2-secure PKE and the

best known standard model CCA1-secure PKE from lattices [40] (note that the authors of [40] only

mentioned to achieve CCA2-security by using generic approaches such as the BCHK transform [16]).

For better efficiency, we set q as a power of 3 for both schemes. The LWE parameter (n,m, q, αq) was

chosen by taking account of the probability of decryption error and the security strength, where n is the

LWE dimension, m is the number of LWE samples, q is the LWE modulus and αq is the LWE Gaussian

parameter. Since the noise parameter of our encryption algorithm is equal to the underlying LWE

Gaussian parameter αq and that of their encryption algorithm is about 3 times larger than αq (as we will

discuss later), we have to choose different parameter sets to roughly achieve the same degree of correctness

and security. The concrete decryption error and security strength for the parameter sets given in Table 1

are estimated by using a Python script and the online LWE estimator [44], respectively. The ciphertext

sizes at rows 1 and 3 (respectively, rows 2 and 4) correspond to encrypting a 256-bit message at 128-bit

security (respectively, a 512-bit message at 256-bit security), where ‘↓’ means reduction of ciphertext

sizes. We also apply known ciphertext compressing techniques to the PKE in [40], and estimate the final

ciphertext sizes (marked by ‘†’)1). Since the key sizes and the computational costs of both schemes are

essentially dominated by the LWE parameter (n,m, q, αq), our PKE also has advantages in these two

aspects due to the smaller m and αq. For example, the public key size of the PKE in [40] for 128-bit

security is about 3.86 MB, while ours for 131-bit security is about 3.26 MB (i.e., a 15% reduction). In

all, our CCA2-secure PKE is more efficient than the CCA1-secure PKE in [40].

1.2 Overview of techniques

As the lattice-based CCA2-secure PKEs in the standard model [29, 30, 33, 40], our scheme also relies on

the lattice trapdoor technique, which dates back to the seminal work of Ajtai [45]. In 2008, Gentry et

al. [46] first showed how to combine the lattice trapdoor technique and the LWE problem in designing

encryption schemes. Technically, they [46] introduced the dual variant of the first LWE-based encryption

due to Regev [47], which is nicely compatible with the trapdoor technique. Briefly, the public key of

the dual encryption consists of two matrices pk = (A,U) ∈ Z
n×m
q × Z

n×ℓ
q . In order to encrypt a

message µ ∈ {0, 1}ℓ, the encryption algorithm randomly chooses s
$← Z

n
q , e1

$← DZm,αq, e2
$← DZℓ,αq,

1) Note that Ref. [40] actually did not give a concrete choice of parameters, and did not consider any ciphertext

compressing technique.
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and computes the ciphertext C = (c1, c2), where DZm,αq is the Gaussian distribution with parameter αq

(and we call αq the noise parameter for encryption), and

c1 = ATs+ e1 ∈ Z
m
q , c2 = UTs+ e2 + µ · q

2
∈ Z

ℓ
q.

As Regev’s LWE-based PKE [47], the message µ ∈ {0, 1}ℓ is encoded into the most significant bits of the

LWE’s “error term”. In this case, the secret key can either be a small norm matrix E ∈ Z
m×ℓ satisfying

AE = U , or a trapdoor of the matrix A which can be used to extract a required matrix E, so that one

can recover the message from the most significant bits of the noise vector c2−ETc1 = µ · q2 +e2−ETe1

as long as the l∞ norm ‖e2 −ETe1‖∞ < q/4.

The dual encryption [46] was latter employed by Peikert [29] to construct a standard model CCA2-

secure PKE from lattices with similar techniques in spirit to the ones in [18, 19], and by Agrawal et

al. [33] to construct an efficient IBE which can be transformed into a CCA2-secure by using the generic

approaches such as the BCHK transform [16]. Specifically, Agrawal et al. [33] proved that the matrix

(A‖AR + CB) ∈ Z
n×(m1+m2)
q is a trapdoor matrix if (1) A ∈ Z

n×m1

q is a trapdoor matrix, or (2)

B ∈ Z
n×m2

q is a trapdoor matrix, R ∈ Z
m1×m2 is a small norm matrix and C ∈ Z

n×n
q is invertible. By

combining this technique with a full-rank difference (FRD) encoding FRD : {0, 1}κ → Z
n×n
q , Agrawal et

al. [33] obtained an efficient IBE secure against selective identity and chosen ciphertext attacks, where

the public key has four matrices pk = (A1,A2,B,U), and the ciphertext C = (c1, c2, c3) under a user

identity id ∈ {0, 1}κ has three vectors:

c1 = AT
1 s+ e1 ∈ Z

m1

q , c2 = (A2 + FRD(id)B)Ts+RTe1 ∈ Z
m2

q ,

c3 = UTs+ e2 + µ · q2 ∈ Z
ℓ
q,

where s
$← Z

n
q , e1

$← DZm1 ,αq,R
$← D

Zm1×m2 ,ω(
√
logn) and e2

$← DZℓ,αq. The secret key is a trapdoor

of the matrix A1, which can be used to extract a small norm matrix E satisfying AidE = (A1‖A2 +

FRD(id)B)E = U . In the security proof, the matrix A1 is uniformly chosen at random, while the matrix

A2 is set to be A2 = A1R−FRD(id∗)B for a small norm matrix R
$← D

Zm1×m2 ,ω(
√
logn) and a challenge

identity id∗
$← {0, 1}κ. By doing this, on the first hand, we have that Aid = (A1‖A2+FRD(id)B) for any

id 6= id∗ is trapdoor matrix, and thus any ciphertext associated with identity id 6= id∗ can be decrypted by

using R and the trapdoor of B. On the other hand, we have that Aid∗ = (A1‖A1R) and the distribution

of c∗2 of the challenge ciphertext C∗ = (c∗1, c
∗
2, c
∗
3) is essentially statistically close to the distribution of

RTc∗1. Thus, in the security proof one can safely replace c∗2 with RTc∗1, and base the security of the IBE

scheme on the hardness of the LWE instances (A1, c
∗
1 = AT

1 s
∗ + e∗1) and (U ,UTs∗ + e∗2).

Let G ∈ Z
n×nk
q be the public known primitive matrix [40], and S ∈ Z

nk×nk
q be any basis of the lattice

Λq(G) = {y ∈ Z
nk
q : y = GTx mod q,x ∈ Z

n
q }, where k = ⌈log2 q⌉. By improving the tag-based

trapdoor technique in [33] with the public known matrix G ∈ Z
n×nk
q and using a new message encoding,

Micciancio and Peikert [40] further improved the IBE scheme in [33] and obtained the best known CCA1-

secure (tag-based) PKE which saves two matrices in the public key and a vector in the ciphertext (note

that an IBE can be naturally treated as a tag-based PKE). Formally, the public key of the PKE in [40]

only has two random matrices pk = (A1,A2) ∈ Z
n×m1

q × Z
n×m2

q , and for a message µ ∈ {0, 1}nk, the
ciphertext C = (tag, c1, c2) consists of two vectors:

c1 = 2(AT
1 s mod q) + e1 mod 2q ∈ Z

m1

2q ,

c2 = 2((A2 + FRD(tag)G)Ts mod q) + e2 + Sµ mod 2q ∈ Z
m2

2q ,

where tag
$← {0, 1}κ, s $← Z

n
q , e1

$← DZm1 ,α′q and e2
$← D

Znk,
√
‖e1‖2+m1(α′q)2·ω(

√
logn)

. The secret key is

a small norm matrix R satisfying A2 = −A1R, which can be used to run a trapdoor inversion algorithm

to recover the message µ ∈ {0, 1}nk as long as ‖e1‖ and ‖e2‖ are small. Although this encoding allows to

save a matrix U in the public key and a vector in the ciphertext, it only works when the modulus in the

encryption is changed from previous q to 2q, which in turn requires a larger noise parameter α′q = 3αq
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for lifting the LWE problem with Gaussian parameter αq and modulus q to modulus 2q in the security

proof (see [40, Theorem 6.3] for details).

We first note that the trapdoor inversion algorithm [40] crucially depends on the size of the LWE’s

“error term” (i.e., it only works when the error size is small), but does not care about the size of the LWE

“secret term” s
$← Z

n
q . Furthermore, by the fact that the HNF variant [48] of the LWE problem where

the secret s
$← DZn,αq is as hard as the standard LWE problem where s

$← Z
n
q , we can safely replace

s
$← Z

n
q with s

$← DZn,αq in the encryption. Note that for fixed αq ∈ R and randomly chosen s
$← DZn,αq,

we have that ‖s‖∞ 6 B holds for some constant B > 0 with overwhelming probability by the Gaussian

tail inequality. Thus, for B ≪ q (as is usually the case), if we encode the secret s = (s0, . . . , sn−1)T

as an element of Zn
q , the most significant bits of each si in the binary representation are “not used”

(i.e., those bits are always zeros with overwhelming probability). Our starting point is to encode the

message into those “unused” bit-slots. Formally, we introduce a pair of message encode/decode algorithms

(encoded : Zn
d → Z

n
q , decoded : Zn

q → Z
n
d ) for some integer d > 2 (see Subsection 3.1 for more details)

such that for any v ∈ Z
n
d and 0 < B ≪ q, we have decoded(s + encoded(v)) = v as long as ‖s‖∞ 6 B.

By doing this, we can keep the advantage of the PKE in [40] (i.e., only having two matrices in the public

key pk = (A1,A2) and two vectors in the ciphertext C = (tag, c1, c2)) without lifting the modulus in the

encryption from q to 2q, and thus reduce the noise parameter for the encryption from α′ = 3α in [40]

to the LWE Gaussian parameter α. Specifically, given a message µ ∈ Z
n
d , our new encryption algorithm

first computes ŝ = s+ encoded(µ), and then computes the ciphertext C = (tag, c1, c2) as follows:

c1 = AT
1 ŝ+ e1 ∈ Z

m1

q , c2 = (A2 + FRD(tag)G)Tŝ+ e2 ∈ Z
m2

q ,

where tag
$← {0, 1}κ, s $← DZn,αq, e1

$← DZm1 ,αq and e2
$← D

Znk,αq
√
2m1·ω(

√
logn). The secret key is still

a small norm matrix R satisfying A2 = −A1R. In the security proof, given an LWE tuple (A1, b) ∈
Z
n×m1

q × Z
m1

q , one can set the public key pk = (A1,A2) with A2 = −A1R − FRD(tag∗)G ∈ Z
n×nk
q

for R
$← D

Zm1×nk,ω(
√
logn) and tag∗

$← {0, 1}κ, and simulate the challenge ciphertext C∗ = (tag∗, c∗1 =

b +AT
1 encoded(µδ), c

∗
2 = −RTc∗1 + e′2) by using the additive homomorphism of the LWE problem (i.e.,

AT
1 ŝ+ e1 = AT

1 s+ e1 +AT
1 encoded(µ)) and an independently chosen e′2

$← D
Znk,αq

√
m1·ω(

√
logn), where

(µ0, µ1) is the challenge message pair and δ
$← {0, 1}. Note that c∗2 in the challenge ciphertext C∗ =

(tag∗, c∗1, c
∗
2) is directly generated from c∗1, which relies on the fact that the distribution of −RTe∗1 + e′2

for e∗1
$← DZm1 ,αq,R

$← D
Zm1×nk,ω(

√
logn) and e′2

$← D
Znk,αq

√
m1·ω(

√
logn) is statistically close to e∗2

$←
D

Znk,αq
√
2m1·ω(

√
logn) (see Lemma 3). In other words, the simulated C∗ = (tag∗, c∗1, c

∗
2) is statistically

close to the distribution of the real challenge ciphertext if (A1, b) is a real LWE instance, and perfectly

hides the message µδ if (A1, b) is uniformly random.

Our second observation is that under appropriate choice of parameters, the first ciphertext part c1 =

AT
1 ŝ+ e1 ∈ Z

m1

q essentially uniquely fixes ŝ (see Lemma 6) and thus the message µ ∈ Z
n
d . By applying

some necessary checks in the decryption algorithm, we can be assured that there is only a single valid

message µ for all ciphertexts C = (∗, c1, ∗) which share the same first ciphertext part c1, i.e., conditioned

on that the decryption algorithm does not return a failure symbol ⊥, its output is essentially independent

from the choice of the tag and the second ciphertext part c2. This feature basically says that the ciphertext

is (partially) non-malleable, and our idea is to extend this non-malleability to the whole ciphertext (which

is required for achieving CCA2-security). For this, we further modify the encryption algorithm. Formally,

given a message µ ∈ F2κ , it first chooses x, y, z
$← F2κ from the finite field F2κ , and interprets the bit-

concatenation of (x, y, z) ∈ (F2κ)
3 as a vector v = x‖y‖z ∈ Z

n
d (which can always be done if n log2 d > 3κ).

Then, it computes ŝ = s+ encoded(v) and the ciphertext C = (c1, c2, c3, c4) as follows:

c1 = AT
1 ŝ+ e1 ∈ Z

m1

q , tag = H(c1) ∈ F2κ ,

c2 = (A2 + FRD(tag)G)Tŝ+ e2 ∈ Z
m2

q , c3 = x+ µ ∈ F2κ ,

τ = H(c2, c3) ∈ F2κ , c4 = τy + z ∈ F2κ ,

where s
$← DZn,αq, e1

$← DZm1 ,αq, e2
$← D

Znk,αq
√
2m1·ω(

√
log n) and the function H : {0, 1}∗ → F2κ is a
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collision resistant hash function. Technically, the third part c3 is a one-time padding encryption which is

used to ensure that we can generate c1 and thus the tag before seeing the challenge message pair in the

security proof. The last part c4 is a Carter-Wegman style one-time MAC, which is used to ensure the

integrity of (c2, c3) when c1 (and thus y, z) is fixed.

At first glance, the above construction seems to raise a circularity issue: the MAC key (y, z) is used to

authenticate c2 which depends on the MAC key. However, the key point is that we will only invoke the

security of the MAC to reject the decryption query with C = (c1 = c∗1, c2, c3, c4 6= c∗4), where c
∗
1 uniquely

fixes and computationally hides the real MAC key (y∗, z∗) for the challenge ciphertext C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4).

Namely, we will only rely on the security of the MAC when the key (y∗, z∗) is not determined by the

adversary’s choice of c2. Thus, in order to ensure that the adversary cannot find a valid MAC tag c4 6= c∗4
under the key (y∗, z∗) and thus cannot make a valid decryption query with C = (c∗1, c2, c3, c4), we only

have to show that (c∗1, c
∗
2) leaks no information of (y∗, z∗), which in turn can be proven by using the

pseudorandomness of the LWE problem and the fact that c∗2 can be generated by directly using c∗1.

We now give a sketch of the security proof. Formally, given an LWE tuple (A1, b), the reduction

first randomly chooses x∗, y∗, z∗
$← F2κ , and interprets the bit-concatenation of (x∗, y∗, z∗) ∈ (F2κ)

3 as a

vector v∗ = x∗‖y∗‖z∗ ∈ Z
n
d . Then, it computes c∗1 = b+AT

1 encoded(v),A2 = −A1R−FRD(tag∗)G, c∗2 =

−RTc∗1+e′2 and sets the public key pk = (A1,A2), where tag
∗ = H(c∗1),R

$← D
Zm1×nk,ω(

√
logn), and e′2

$←
D

Znk,αq
√
m1·ω(

√
logn). Given a challenge message pair (µ0, µ1), the reduction randomly chooses δ

$← {0, 1},
computes c∗3 = x∗+µδ, c

∗
4 = τ∗y∗+z∗ ∈ F2κ , and returns the challenge ciphertext C = (c∗1, c

∗
2, c
∗
3, c
∗
4). By

the pseudorandomness of (A1, b), we have that (x∗, y∗, z∗) is computationally hidden in (c∗1, c
∗
2), which

means that µδ is computationally hidden in the ciphertext. Thus, it suffices to show that the adversary

cannot obtain non-negligible advantage from the decryption query. Note that for a decryption query

C = (c1 6= c∗1, c2, c3, c4), we have that tag = H(c1) 6= H(c∗1) = tag∗ holds by the collision-resistant of H,

which means that the ciphertext C can be correctly decrypted by using R. As for a decryption query

C = (c1 = c∗1, c2, c3, c4) 6= C∗, the reduction will directly return ⊥, since by the unique witness of the

LWE problem, such a ciphertext C 6= C∗ is valid if and only if (c2, c3) 6= (c∗2, c
∗
3) and c4 = τy∗ + z∗,

where τ = H(c2, c3). By the collision resistant of H, we have that τ 6= τ∗ = H(c∗2, c3) and c4 6= c∗4 hold.

In other words, if the adversary can output a valid decryption query C = (c1 = c∗1, c2, c3, c4) 6= C∗,

it must be able to uniquely determine the one-time MAC key (y∗, z∗) (since given c∗4 = τ∗y∗ + z∗ and

c4 = τy∗ + z∗ 6= c∗4, one can efficiently recover the pair (y∗, z∗)), which contradicts the facts that (y∗, z∗)

are uniformly chosen at random and are computationally hidden in the challenge ciphertext C∗.

Finally, we emphasize that our message encoding is very crucial for our construction because: (1) the

trapdoor inversion algorithm will not work if one encodes the message into the most significant bits of

the “error term” of c1 or c2; (2) it would require a large noise parameter and thus increase the error

size in decryption if one encodes the message into the “error term” of c2 as that in [40]; and (3) most

importantly, the above proof of the CCA2-security will not work if one encodes the message into the

“error term” of c2 as that in [40] since we cannot rely on the MAC security to reject a decryption query

C = (c∗1, c2, c3, c4) 6= C∗ when the MAC key is determined by c2 which itself is chosen by the adversary

(i.e., there is a circularity issue). Besides, as an independent of interest, this message encoding may also

be very useful in other applications such as lattice-based IBEs and attribute-based encryptions (ABEs).

1.3 Related work and discussion

Along with the introduction of the LWE problem, Regev [47] proposed the first LWE-based PKE, which

can only encrypt a 1-bit message. Later, several studies were extended to support longer messages

(e.g., [24]). At STOC 2008, Gentry et al. [46] gave a “dual” variant of Regev’s scheme, which was used

to construct the first identity-based encryption (IBE) from lattices. Lindner and Peikert [49] gave a

more compact LWE-based PKE, which almost reduces all the parameters by a factor of log q. At CCS

2016, Bos et al. [50] proposed a practical public key-encapsulation mechanism (KEM). The ring-LWE was

considered in [51,52] to construct PKE with small key and ciphertext sizes. Stehlé and Steinfeld [53] gave

a variant of the NTRU cryptosystem, which has a security proof based on the ring-LWE assumption.
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Recently, several practical PKEs/KEMs from ring-LWE were proposed, e.g., NewHope [54, 55]. All

the above PKEs only have CPA-security, but can be boosted into CCA2-secure ones by applying the

Fujisaki-Okamoto transform in the random oracle (RO) model. However, a RO-based solution may not

be always satisfiable in the real world [10]. In the post-quantum setting, this becomes more subtle since

a classic RO-based scheme may even not be secure against adversaries who can query the RO with

quantum state [56]. This is why some NIST PQC submissions also provide security arguments in the

quantum RO model [56]. Unfortunately, the PKEs in the quantum RO model typically have large security

reduction loss (e.g., at least a quadratic security loss [57]) with respective to (w.r.t.) the underlying hard

assumptions [9,57,58], which has become one of the main concerns when estimating the actual security of

a scheme with given concrete parameters. We note that this security reduction loss is solely introduced

by the security arguments in the quantum RO model, and is irrelevant to the possibly generic speedup

of the quantum algorithm in solving hard problems (namely, if the underlying hard problem also suffers

from a generic quadratic speedup, e.g., by applying the Grover algorithm, the resulting scheme will suffer

from a quartic security loss in the quantum setting). In contrast, a standard model PKE scheme usually

has much tighter security reduction, and is thus relatively more interesting in the post-quantum era.

As an instantiation of the generic framework from lossy trapdoor functions (LTDF), Peikert and

Waters [18] gave the first standard-model CCA2-secure PKE from LWE. The LTDF techniques were

later extended to construct several standard model CCA2-secure PKE from lattices [29–31,59]. However,

they are relatively inefficient (e.g., having large public-key and ciphertext sizes) due to the use of Dolev-

Dwork-Naor like technique [13, 32] and signatures. By applying the BCHK transform [16], one can

obtain CCA2-secure PKEs from IBEs or TBEs on lattices in the standard model [33–39]. In this setting,

Micciancio and Peikert [40] improved the standard model IBE in [33], and presented the best known

CCA1-secure PKE from lattices. Unlike many existing LWE-based PKEs which encode the messages

into the “error term”, we encode the messages into the most significant bits of the “secret term”, which is

very crucial to our CCA2-secure PKE construction, and might be of independent interest. We also note

that the recent independent study [58] constructed a deterministic PKE by simply encoding the message

as the “secret term” and the “error term” of the LWE problem, which is very different from ours from

the perspective of both techniques and functionalities.

2 Preliminaries

2.1 Notation

Denote the natural logarithm (respectively, the logarithm with base b) as log (respectively, logb). The

standard notations O,ω are used to classify the growth of functions. A function f(n) is negligible in n

if for every positive c, we have f(n) < n−c for sufficiently large n. By negl(n) we denote an arbitrary

negligible function. A probability is said to be overwhelming if it is 1−negl(n). The notation
$← denotes

randomly choosing elements from a distribution (or the uniform distribution over a finite set). By x ∼ D

we mean the random variable x follows a distribution D.

Denote R (respectively, Z) as the set of real numbers (respectively, integers). Vectors are column

vectors and denoted by bold lower-case letters (e.g., v), and vT denotes the transpose of v. Matrices are

the sets of column vectors and denoted by bold capital letters (e.g., X). The concatenation of a matrix

X ∈ R
n×m followed by another matrix Y ∈ R

n×m′

is denoted as (X‖Y ) ∈ R
n×(m+m′). By ‖·‖ and ‖·‖∞

we denote the ℓ2 and ℓ∞ norm, respectively. The largest singular value of X is s1(X) = maxu ‖Xu‖,
where the maximum is taken over all unit vector u.

2.2 Public-key encryption

A public-key encryption (PKE) Π with message space P consists of three probabilistic polynomial time

(PPT) algorithms (KeyGen, Enc, Dec):
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• KeyGen(1κ) is a PPT algorithm that takes a security parameter κ as input, and outputs a pair of

public and secret keys (pk, sk).

• Enc(pk, µ) is a PPT algorithm that encrypts a message µ ∈ P under the public key pk and outputs

the corresponding ciphertext C.

• Dec(sk, C) is an efficient deterministic algorithm that decrypts a ciphertext C using the secret key

sk and outputs a message µ (or a symbol ⊥).
We say that a PKE scheme Π = (KeyGen,Enc,Dec) is correct, if for any µ ∈ P , (pk, sk)← KeyGen(1κ)

and C ← Enc(pk, µ), the probability that Dec(sk, C) 6= µ is negligible over the random coins used in

both KeyGen and Enc. The de facto standard security notion for PKE is (adaptively) chosen-ciphertext

security, which is modeled by a game between a challenger C and an adversary A.
KeyGen. The challenger C first computes (pk, sk)← KeyGen(1κ). Then, it gives the public key pk to

the adversary A, and keeps sk secret.

Phase 1. The adversary A is allowed to make any polynomial number of decryption queries by using

any (different) ciphertext C of his choice. The challenger C computes µ ← Dec(sk, C), and returns µ

to A.
Challenge. The adversary A outputs two equal-length messages (µ0, µ1). The challenger C chooses a

bit δ∗
$← {0, 1}, and computes C∗ ← Enc(pk, µδ∗). Finally, it returns the challenge ciphertext C∗ to A.

Phase 2. The adversary is allowed to make more decryption queries with any ciphertext C 6= C∗.

The challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess δ ∈ {0, 1}. If δ = δ∗, the challenger C outputs 1, else outputs 0.

Definition 1 (CCA2-security). We say that a PKE scheme Π is CCA2-secure if for any PPT adversary

A, its advantage

Advind-cca2Π,A (κ) =

∣

∣

∣

∣

Pr[δ = δ∗]− 1

2

∣

∣

∣

∣

in the above game is negligible in security parameter κ.

The CPA-security and CCA1-security can be defined via modified games. Concretely, the CPA-security

game does not allow the adversary to make any decryption queries, while the CCA1-security game only

allows the adversary to make decryption queries before the challenge phase.

2.3 Gaussian, learning with errors and trapdoors

Gaussian. The Gaussian function ρs,c(x) over R
m centered at c ∈ R

m with parameter s > 0 is defined

as ρs,c(x) = exp(−π‖x− c‖2/s2). For lattice Λ ⊆ R
m, let ρs,c(Λ) =

∑

x∈Λ ρs,c(x), and define the

discrete Gaussian distribution over Λ as DΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ) , where y ∈ Λ. We omit the subscript c in

the above notations if c = 0.

Lemma 1 ( [49,60]). For any real s, t > 0, c > 1, C = c · exp(1−c22 ) < 1, integer m > 0, and any y ∈ R
m

we have the followings hold:

• Pr
x

$←DZm,s

[‖x‖∞ > t · s] 6 2e−πt2 ,

• Pr
x

$←DZm,s

[‖x‖ > c · 1√
2π
· s√m] 6 Cm,

• Pr
x

$←DZm,s

[|〈x,y〉| > t · s‖y‖] 6 2e−πt2.

Lemma 2 ( [40]). Let integer n > 0, and q a power of some prime p > 2. Let integer m > n log2 q +

ω(logn). Then, for any ℓ = poly(n) and real r > ω(
√
logn), the distribution (A,AR) is statistically

close to uniform over Zn×m
q × Z

n×ℓ
q , where A

$← Z
n×m
q and R

$← (DZm,r)
ℓ.

The following lemma is implicit in the proof of [40, Theorem 6.3], which can be proven by combining [61,

Theorem 3.1] and [47, Corollary 3.10].

Lemma 3 ( [40]). Let r > ω(
√
logn). Then, for any vectors v ∈ Z

m and c ∈ Z
m, any matrix

r
$← DZm,r,c, and e

$← DZ,αqr·√m, the distribution rTv + e is statistically close to DZ,s, where s =

r ·
√

‖v‖2 +m(αq)2.
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Following [40, 62], we say that a random variable X over R is subgaussian with parameter s if for all

t ∈ R, the (scaled) moment-generating function satisfies E(exp(2πtX)) 6 exp(πs2t2). For any lattice

Λ ⊂ R
m and s > 0, DΛ,s is subgaussian with parameter s. Besides, any B-bounded symmetric random

variable X (i.e., |X | 6 B) is subgaussian with parameter B
√
2π [40]. For random subgaussian matrix,

we have the following result from the non-asymptotic theory of random matrices [63].

Lemma 4. Let X ∈ R
n×m be a random subgaussian matrix with parameter s. There exists a universal

constant C ≈ 1/
√
2π such that for any t > 0, we have s1(X) 6 C · s · (√m +

√
n + t) except with

probability at most 2 exp(−πt2).
Learning with errors. For any positive integers n, q ∈ Z, real α > 0 and vector s ∈ Z

n
q , define

As,α = {(a,aTs + e mod q) : a
$← Z

n
q , e

$← DZ,αq}. For m independent samples (a1, y1), . . . , (am, ym)

from As,α, we denote it in a matrix form (A,y) ∈ Z
n×m
q × Z

m
q , where A = (a1, . . . ,am) and y =

(y1, . . . , ym)T. We say that a PPT algorithm solves the LWEn,m,q,α problem if, for uniformly random

s
$← Z

n
q , given m samples from As,α it outputs s with non-negligible probability. The decisional LWE

is asked to distinguish As,α from the uniform distribution over Zn
q × Zq (with only polynomial samples).

For certain parameters, the decisional LWE problem is polynomially equivalent to its search version,

which in turn is provably at least as hard as quantumly approximating SIVP on n-dimensional lattices

to within polynomial factors in the worst case [47, 64]. A variant of the LWE problem (known as the

Hermite normal form) where the secret s ∈ Z
n
q is chosen from the error distribution (i.e., s

$← DZn,αq) is

also polynomially equivalent to the standard LWE problem [48].

q-ary lattices and trapdoors. Let A ∈ Z
n×m
q , define two q-ary lattices:

Λ⊥q (A) = {e ∈ Z
m s.t. Ae = 0 mod q} ,

Λq(A) = {y ∈ Z
m s.t. ∃s ∈ Z

n, Ats = y mod q}.

We have PPT algorithms [40,45,65] to generate an essentially uniform matrix A together with a trapdoor

(or a short basis of Λ⊥q (A)). We will use the trapdoor notion in [40]. Formally, let Gb ∈ Z
n×nk
q be the

public primitive matrix with base integer b > 2 in [40, Theorem 4.1], where k = ⌈logb q⌉. We usually omit

the subscript b if b = 2, and denote G = G2 in brief. As shown in [40], there exists a PPT algorithm that

inverts y = GT
b s+e as long as ‖e‖ < q

2
√
b2+1

. Moreover, if q = bk, the algorithm can invert y = GT
b s+e

if ‖e‖∞ < q
2b . The following lemma is implicit in [40, Theorem. 5.4].

Lemma 5 ([40]). Let Ink be the nk×nk identity matrix. For any matricesA ∈ Z
n×m
q , R ∈ Z

(m−nk)×nk
q

and invertible matrix S ∈ Z
n×n
q satisfying A( R

Ink
) = SGb, there exists a PPT algorithm Solve(A,R,y)

that given any y = ATs + ( e1

e2
) ∈ Z

m
q satisfying ‖RTe1 + e2‖ < q

2
√
b2+1

, outputs s ∈ Z
n
q , where

e1 ∈ Z
m−nk and e2 ∈ Z

nk.

Moreover, if q = bk, the algorithm Solve(A,R,y) can invert any y = ATs + ( e1

e2
) ∈ Z

m
q satisfying

‖RTe1 + e2‖∞ < q
2b .

We also need the following useful lemma, which is important for our CCA2-secure PKE construction,

and may be of independent interest.

Lemma 6 (Unique witness). Let n, k > 0 be integers. Let q = pk for some prime p > 2, and let

m > n log2 q + ω(logn). Then, for all but a negligible fraction of A ∈ Z
n×m
q , and for any u ∈ Z

m
q , there

exists at most one pair (s, e) ∈ Z
n
q × Z

m such that ‖e‖∞ < q/8 and u = ATs+ e.

Proof. The proof is adapted from [46, Lemma 5.3]. For any u ∈ Z
m
q , we assume that there exist two

tuples (s, e) 6= (s′, e′) ∈ Z
n
q × Z

m, such that ‖e‖∞, ‖e′‖∞ < q/8 and u = ATs+ e = ATs′ + e′. Letting

s̃ = s − s′ and ẽ = e′ − e, we have that ATs̃ = ẽ for some s̃ 6= 0 and ‖ẽ‖∞ < q/4. Now, it suffices to

show that for all but an at most 2−ω(logn) = negl(n) fraction of A ∈ Z
n×m
q , the vector ATs̃ has norm

‖ATs̃‖∞ > q/4 for any s̃ ∈ Z
n
q \{0}.

Formally, consider the open ℓ∞ “cube” V of radius q/4 (i.e., each edge has length q/2). Denote

(Zn
q )
∗ ⊆ Z

n
q as the set of vectors such that each vector has at least one coordinate which is invertible

in Zq. For any fixed nonzero s̃ ∈ Z
n
q , we can write s̃ = pk

′

s̃′ for some integer k′ ∈ {0, . . . , k − 1} and
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s̃′ ∈ (Zn
q )
∗. Then, for a uniformly random choice of A ∈ Z

n×m
q , we have that ATs̃′ is uniformly over

Z
m
q , and that ATs̃ = pk

′

ATs̃′ is uniformly over Zm
q ∩ pk

′

Z
m. Denote Sk′ = V ∩ pk

′

Z
m, which contains

at most (pk−k
′

/2)m points. Thus, over the uniformly random choice of A ∈ Z
n×m
q , the probability that

ATs̃ ∈ Sk′ is at most (pk−k
′

/2)m/p(k−k
′)m 6 2−m. Taking a union bound over all nonzero s̃ ∈ Z

n
q , the

probability that ATs̃ ∈ S0 is at most 2−ω(logn) (note that Sk−1 ⊂ · · · ⊂ S0 = V ∩ Z
m by definition).

Since S0 contains all integer vectors with ℓ∞ norm < q/4, we have that for all but an at most 2−ω(logn)

fraction of A ∈ Z
n×m
q , and for any non-zero s̃ ∈ Z

n
q , the vector ATs̃ has norm ‖ATs̃‖∞ > q/4.

3 CCA2-secure PKE from lattices

In this section, we first introduce some ingredients for our construction.

3.1 Some ingredients

Collision-resistant hash function. We say that H : X → Y is a collision resistant hash (CRH) if

given a security parameter κ and a description of H as inputs, no PPT algorithm F can find two elements

x1 6= x2 ∈ X such that H(x1) = H(x2) holds except with negligible probability, where the probability is

over the random coins used by F . Namely, if H : X → Y is a CRH, we have that

Pr[(x1, x2)← F(1κ,H) : x1 6= x2 ∧ H(x1) = H(x2)] 6 negl(κ)

holds. Note that CRH exists under the LWE assumption [18], and it suffices to use the standard SHA3

in practice.

Full-rank difference encoding. Let κ be the security parameter. We say that FRD : {0, 1}κ → Z
n×n
q

is an encoding with full-rank differences (FRD) if the following two conditions hold: (1) for any u 6= v, the

matrix FRD(u − v) = FRD(u)− FRD(v) ∈ Z
n×n
q is invertible over Zn×n

q ; and (2) FRD(·) is computable

in polynomial time in n log q. As shown in [33, 40, 66], FRD encodings over {0, 1}κ can be efficiently

constructed for any κ 6 n and q that is a power of some prime p > 2.

Message encoding. We define a pair of algorithms (encoded, decoded), which are parameterized by

positive integers (n, q, d). Formally, given any v ∈ Z
n
d , the algorithm encoded : Zn

d → Z
n
q is defined

as encoded(v) = (v1 · ⌊ qd⌉, . . . , vn · ⌊
q
d
⌉), where v = (v1, . . . , vn) ∈ Z

n
d . For any u ∈ Z

n
q , the algorithm

decoded : Zn
q → Z

n
d is defined as decoded(u) = (⌊u1 · dq ⌉, . . . , ⌊un · dq ⌉), where u = (u1, . . . , un) ∈ Z

n
q .

Lemma 7. Let n, q be positive integers, and integer 2 6 d <
√
q. Then, for any v ∈ Z

n
d , any e ∈ Z

n

satisfying ‖e‖∞ < q−(d−1)d
2d , and w = encoded(v) + e, we have that v = decoded(w) always holds.

Proof. Since both algorithms simply apply the same operations on their inputs in a coordinate-wise

way, it suffices to show that for any v ∈ Zd, any e ∈ Z satisfying |e| < q−(d−1)d
2d and w = v · ⌊ q

d
⌉+ e, we

always have v = ⌊w · d
q
⌉. By definition, we have w = v · ( q

d
+ x) + e holds for some x satisfying |x| 6 1/2.

Thus, w · d
q
= v+ (vx+ e) · d

q
. Since |(vx+ e) · d

q
| 6 (|vx|+ |e|) · d

q
< (d−12 + q−(d−1)d

2d ) · d
q
= 1/2 holds by

assumption, we have v = ⌊w · d
q
⌉. This completes the proof.

3.2 The construction

Let κ be the security parameter. Let n, m̄ > 0 be integers, and let q be a prime or a power of prime

b > 2. Let k = ⌈logb q⌉ and m = m̄+nk. Let (encoded, decoded) be the pair of encode/decode algorithms

parameterized by (n, q, d) satisfying that n log2 d > 3κ. Let F2κ be a finite field of order 2κ. Let

H : {0, 1}∗ → F2κ\{0} be a collision-resistant hash function (Namely, we assume that the output of H

does not contain the zero element in F2κ for simplicity). Let FRD : F2κ → Z
n×n
q be an FRD encoding.

Our CCA2-secure PKE with parameters (n, m̄, q, b, d, α) is given as follows.

• KeyGen(1κ): randomly chooseA
$← Z

n×m̄
q ,R

$← (D
Zm̄,ω(

√
logn))

nk, and compute B = −AR. Return

the pair of public and secret keys (pk, sk) = ((A,B),R).
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• Enc(pk, µ ∈ F2κ): first randomly choose s
$← DZn,αq, e1

$← DZm̄,αq, e2
$← DZnk,γ , and x, y, z

$← F2κ ,

where γ =
√

‖e1‖2 + m̄(αq)2 · ω(√logn). Then, interpret the bit-concatenation of (x, y, z) ∈ (F2κ)
3 as a

vector v = x‖y‖z ∈ Z
n
d (which can always be done since n log2 d > 3κ), and compute

s̃ = s+ encoded(v), c1 = ATs̃+ e1,

c2 = (B + FRD(tag)Gb)
Ts̃+ e2, c3 = x+ µ ∈ F2κ ,

c4 = τy + z ∈ F2κ ,

where tag = H(c1) ∈ F2κ and τ = H(c2, c3) ∈ F2κ . Finally, return the ciphertext C = (c1, c2, c3, c4) ∈
Z
m1

q × Z
nk
q × F2κ × F2κ .

• Dec(sk, C = (c1, c2, c3, c4)): first compute tag = H(c1),

Atag = (A‖B + FRD(tag)Gb), and u =

(

c1

c2

)

.

Then, compute s̃ ← Solve(Atag,R,u), v = decoded(s̃) ∈ Z
n
d , and parse v = ‖x‖y‖z, where (x, y, z) ∈

(F2κ)
3. Let e1 = c1 − ATs̃ and e2 = c2 − (B + FRD(tag)Gb)

Ts̃. Return ⊥ if one of the following

conditions holds:

• ‖e1‖ > αq
√
m̄, or

• ‖e2‖ > γ
√
nk for prime q (or ‖e2‖∞ > γ · ω(√logn) for q = bk a power of prime b), or

• c4 6= H(c2, c3)y + z ∈ F2κ .

Otherwise, return µ = c3 − x ∈ F2κ .

Correctness. Note that c1 = ATs̃ + e1 and c2 = (B + FRD(tag)Gb)
Ts̃ + e2, the algorithm

Solve(Atag,R,u) can invert s̃ ∈ Z
n
q if ‖RTe1 + e2‖ < q

2
√
b2+1

by Lemma 5. Because s̃ = s+ encoded(v),

one can correctly recover v ∈ Z
n
d if ‖s‖∞ < q−(d−1)d

2d by Lemma 7. Note that s
$← DZn,αq, e1

$← DZm̄,αq,

and e2
$← DZnk,γ , we have that ‖s‖∞ 6 αq · ω(

√
logn), ‖e1‖ 6 αq

√
m̄, ‖e2‖∞ 6 γ · ω(

√
logn)

and ‖e2‖ 6 γ
√
nk hold with overwhelming probability by Lemma 1. Since R

$← (D
Zm̄,ω(

√
logn))

nk,

the inequality s1(R) 6
√
m̄ · ω(

√
logn) holds with overwhelming probability by Lemma 4. Since

γ =
√

‖e1‖2 + m̄(αq)2 ·ω(√logn), we have ‖RTe1 +e2‖ 6 αqm̄ ·ω(√logn). Besides, we need αq > 2
√
n

for the hardness of the LWE problem [47]. We also need Lemmas 2 and 6 in the security proof, which

require m̄ > (n+ 1) log2 q + ω(logn) and ‖e1‖∞ < q/8.

In all, for the case where b = 2 and q is a prime, the decryption algorithm is correct if we set the

parameters m̄, α, q such that

m̄ = (n+ 1) log2 q + ω(logn), 1/α = m̄ · ω(
√

logn), αq = 2
√
n, (1)

which means that m = m̄+ nk = Õ(n), 1/α = Õ(n) and q = Õ(n1.5).

To obtain better efficiency, one can set q as a power of a small prime b (e.g., b = 3), which allows us

to use the inequality ‖RTe1 + e2‖∞ 6 αq
√
m̄ · ω(√logn)2 < q

2b in the correctness analysis. In this case,

it suffices to set the parameters m̄, α, q such that

m̄ = (n+ 1) log2 q + ω(logn), 1/α =
√
m̄ · ω(

√

logn)2, αq = 2
√
n, (2)

which means that m = m̄ + nk = Õ(n), 1/α = Õ(
√
n) and q = Õ(n). In both cases, we can set

2 6 d 6 Õ(
√
n).

As commented in [44,49], the requirement αq > 2
√
n used for the theoretical worst-case reduction [47]

is not tight, and it is better to mainly consider concrete hardness against known attacks when choosing

actual parameters. For example, one can set n = 450, m̄ = 6690,m = 10740, q = 39 ≈ 214.27, αq = 1.5

to achieve a decryption error rate less than 2−100, and a security level about 131-bit by the online LWE

estimator [44]. In this case, the sizes of the public key and the secret key are about nm⌈log2 q⌉ ≈ 8.64 MB,

and m̄nk(log2(αq · ω(
√
logn)) + 1) ≈ 16.15 MB, respectively. For 128-bit security, we set κ = 256,

the ciphertext size for encrypting a 256-bit message is m⌈log2 q⌉ + 512 bits ≈ 19.73 KB. By using the

compressing technique in Section 4, we can reduce the size of the public key, the secret key and the

ciphertext to 3.26 MB, 32 bytes and 13.80 KB, respectively.
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3.3 The security

In this subsection, we show that the above PKE is CCA2-secure. Formally, we have the following theorem.

Theorem 1. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy (1) or (2). If LWEn,m̄,q,α

is hard and H is a collision-resistant hash function, then the above PKE scheme is CCA2-secure in the

standard model.

Our proof uses a sequence of gamesG1, . . . , G11, with G1 being the real CCA2-security game (where the

challenge ciphertext C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) is honestly generated by first randomly choosing δ∗

$← {0, 1} and
then encrypting µδ∗) and G11 a random game (where the challenge ciphertext C∗ is essentially uniformly

random, and thus the adversary’s advantage in game G11 is negligible). The security is established by

showing that G1 and G11 are computationally indistinguishable in the adversary’s view. We outline the

changes of game Gi with respect to its previous game Gi−1 in Table 2.

Proof. We now give the formal proof of Theorem 1. Let A be an adversary which can break the

CCA2-security of our PKE with advantage ǫ. Let Fi be the event that A correctly guesses δ = δ∗

in game i ∈ {1, . . . , 11}. By definition, the adversary’s advantage Advind-cca2PKE,A (κ) in game i is exactly

|Pr[Fi]− 1/2|.
(1) Game G1. This game is the real security game as defined in Subsection 2.2. Formally, the

challenger C works as follows:

KeyGen. First randomly choose A
$← Z

n×m̄
q , R

$← (D
Zm̄,ω(

√
logn))

nk, and compute B = −AR.

Then, return the pair of public key pk = (A,B) to the adversary A, and keeps the secret key R private.

Phase I. Upon receiving a decryption query C = (c1, c2, c3, c4), first compute

Atag = (A‖B + FRD(tag)Gb), and u =

(

c1

c2

)

,

where tag = H(c1). Then, compute s̃← Solve(Atag,R,u), v = decoded(s̃), and parse v = x‖y‖z, where
(x, y, z) ∈ (F2κ)

3. Let e1 = c1 −ATs̃ and e2 = c2 − (B + FRD(tag)Gb)
Ts̃. Return ⊥ to the adversary

A if one of the following conditions holds:

• ‖e1‖ > αq
√
m̄, or

• ‖e2‖ > γ
√
nk for prime q (or ‖e2‖∞ > γ · ω(

√
logn) for q = bk a power of prime b), or

• c4 6= H(c2, c3)y + z ∈ F2κ .

Otherwise, return µ = c3 − x ∈ F2κ to the adversary A.
Challenge. Upon receiving two challenge messages (µ0, µ1) ∈ F2κ × F2κ from the adversary A, first

randomly choose δ∗
$← {0, 1}, s∗ $← DZn,αq, e

∗
1

$← DZm̄,αq, e
∗
2

$← DZnk,γ and x∗, y∗, z∗
$← F2κ , where

γ =
√

‖e∗1‖2 + m̄(αq)2 · ω(
√
logn). Then, interpret the bit-concatenation of (x∗, y∗, z∗) ∈ (F2κ)

3 as a

vector v∗ = x∗‖y∗‖z∗ ∈ Z
n
d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = ATs̃∗ + e∗1,

c∗2 = (B + FRD(tag∗)Gb)
Ts̃∗ + e∗2, c∗3 = x∗ + µδ∗ ∈ F2κ ,

c∗4 = τ∗y∗ + z∗ ∈ F2κ ,

where tag∗ = H(c∗1) ∈ F2κ and τ∗ = H(c∗2, c
∗
3) ∈ F2κ . Finally, return the challenge ciphertext C∗ =

(c∗1, c
∗
2, c
∗
3, c
∗
4) to A.

Phase II. Upon receiving a decryption query C = (c1, c2, c3, c4), directly return ⊥ to the adversary

A if C = C∗, otherwise answer this query as in Phase I.

By definition, we have the following lemma.

Lemma 8. |Pr[F1]− 1/2| = ǫ.

(2) Game G2. This game is similar to game G1 except that the challenger C changes the KeyGen

and Challenge phases as follows:
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Table 2 Outline of the game sequences for proving Theorem 1a)

Game Changes w.r.t. previous game Note

G1

Public key: pk = (A,B = −AR),

Secret key: sk = R,

Challenge C∗: C∗ = (c∗1, c
∗
2, c

∗
3, c

∗
4),

where

c∗1 = ATs̃∗ + e∗1,

c∗2 = (B + FRD(tag∗)Gb)
Ts̃∗ + e∗2,

c∗3 = x∗ + µδ∗ ∈ F2κ ,

c∗4 = τ∗y∗ + z∗ ∈ F2κ , for some

s∗
$← DZn,αq ,

e∗1
$← DZm̄,αq ,

e∗2
$← D

Znk,
√

‖e∗

1
‖2+m̄(αq)2·ω(

√
log n)

,

x∗, y∗, z∗
$← F2κ ,

v∗ = x∗‖y∗‖z∗ ∈ Z
n
d
,

s̃∗ = s∗ + encoded(v
∗),

tag∗ = H(c∗1),

τ∗ = H(c∗2 , c3),

δ∗
$← {0, 1},

Decryption query C: run Dec(sk, C) for any C 6= C∗

Real game

G2
Generate (c∗1, c

∗
2, x

∗, y∗, z∗) before giving pk to the adversary

(i.e., in the KeyGen phase)
The change is conceptual: G2 = G1

G3
Immediately return ⊥ to the decryption query with

C = (c1, c2, c3, c4) if c1 6= c∗1 ∧ H(c1) = H(c∗1)
By the collision resistance of H: G3

c≈ G2

G4

Immediately return ⊥ to the decryption query with

C = (c1, c2, c3, c4) if

(c2, c3) 6= (c∗2 , c
∗
3) ∧ H(c2, c3) = H(c∗2, c

∗
3)

By the collision resistance of H: G4
c≈ G3

G5
Immediately return ⊥ to the decryption query with

C = (c1, c2, c3, c4) in Phase I if c1 = c∗1
By the high min-entropy of c∗1: G5

s≈ G4

G6

Immediately return ⊥ to the decryption query with

C = (c1, c2, c3, c4) in Phase II if (c1, c2, c3) = (c∗1 , c
∗
2, c

∗
3) or

c1 = c∗1 ∧ (c2, c3) 6= (c∗2 , c
∗
3) ∧ c4 6= H(c2, c3)y∗ + z∗

By the unique witness of LWE (i.e.,

Lemma 6) and the definition of Dec:

G6
s≈ G5

G7
Immediately return ⊥ to the decryption query with

C = (c1, c2, c3, c4) in Phase II if c1 = c∗1

By the pseudorandomness of LWE and the

definition of Decb): G7
c≈ G6

G8

Set pk = (A,B = −AR′ − FRD(tag∗)Gb) and use R′ to
answer the decryption query C = (c1, c2, c3, c4) if C does not

satisfy the “immediate rejection” rules in game G7 (which

means that tag = H(c1) 6= H(c∗1) = tag∗)

By the properties of trapdoor generation and

inversion algorithms, and the definition of

Dec: G8
s≈ G7

G9

Use R′ and c∗1 to generate c∗2 = (−R′)Tc∗1 + e′2 =

(B + FRD(tag∗)Gb)
Ts̃∗ + (−R′)Te∗1 + e′2, where

e′2
$← D

Zn̄k,αq
√

m̄·ω(
√
log n)

By Lemma 3 and the definition of Enc:

G9
s≈ G8

G10 Choose c∗1
$← Z

m̄
q at random

By the pseudorandomness of LWE:

G10
c≈ G9

G11 Choose c∗2
$← Z

nk
q at random By Lemma 2: G11

s≈ G10

a) µ0 and µ1 are the challenge messages. We use
c≈ and

s≈ to represent the computational indistinguishability and

statistical indistinguishability between two games, respectively.

b) The proof of this claim is relatively involved, and we will use the proof technique of game transitions based on failure

events in [67].
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KeyGen. First randomly choose A
$← Z

n×m̄
q , R

$← (D
Zm̄,ω(

√
logn))

nk, s∗
$← DZn,αq, e

∗
1

$← DZm̄,αq,

e∗2
$← DZnk,γ and x∗, y∗, z∗

$← F2κ , where γ =
√

‖e∗1‖2 + m̄(αq)2 · ω(
√
logn). Then, interpret the bit-

concatenation of (x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗‖y∗‖z∗ ∈ Z

n
d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = ATs̃∗ + e∗1,

B = −AR, c∗2 = (B + FRD(tag∗)Gb)
Ts̃∗ + e∗2,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to the adversary A, keep the secret sk = R

and (c∗1, c
∗
2, x
∗, y∗, z∗) secret.

Challenge. Upon receiving two challenge messages (µ0, µ1) ∈ F2κ × F2κ from the adversary A, first
choose a bit δ∗

$← {0, 1} and retrieve (c∗1, c
∗
2, x
∗, y∗, z∗). Then, compute c∗3 = x∗ + µδ∗ ∈ F2κ , c

∗
4 =

τ∗y∗+ z∗ ∈ F2κ , where τ
∗ = H(c∗2, c

∗
3). Finally, return the challenge ciphertext C∗ = (c∗1, c

∗
2, c
∗
3, c
∗
4) to A.

Lemma 9. Games G2 and G1 are identical in the adversary’s view. Moreover, Pr[F2] = Pr[F1].

Proof. This lemma follows from the fact that (c∗1, c
∗
2, x
∗, y∗, z∗) is independent from the adversary’s

choices of the challenge messages, and game G2 is essentially a conceptual change of game G1 in the

adversary’s view.

(3) Game G3. This game is similar to game G2 except that the challenger C immediately returns ⊥
to the decryption query C = (c1, c2, c3, c4) from the adversary A if c1 6= c∗1 ∧ H(c1) = H(c∗1).

Lemma 10. If H is a collision-resistant hash function, then games G3 and G2 are computationally

indistinguishable. Moreover, |Pr[F3]− Pr[F2]| 6 negl(κ).

Proof. Let E be the event that the adversary makes a decryption query C = (c1, c2, c3, c4) in Phase I

such that c1 6= c∗1∧H(c1) = H(c∗1). Note that if E can only happen with negligible probability, then games

G3 and G2 are computationally indistinguishable in the adversary’s view. Now, we show that if there is a

PPT adversary A that makes E happen with non-negligible probability, there is a PPT adversary F that

finds a collision of H with the same probability by honestly simulating the attack environment for A as in

game G3. Whenever A outputs a ciphertext C = (c1, c2, c3, c4) such that c1 6= c∗1∧H(c1) = H(c∗1) at some

time in Phase I, F returns the pairs (c1, c
∗
1) as its own output and aborts. Obviously, the probability

that F succeeds is equal to the probability that A makes E happen. Thus, under the assumption that H

is collision-resistant, the probability that E happens is negligible, which completes the proof.

(4) Game G4. This game is similar to game G3 except that the challenger C immediately returns ⊥ to

the decryption query C = (c1, c2, c3, c4) from the adversary A if (c2, c3) 6= (c∗2, c
∗
3)∧H(c2, c3) = H(c∗2, c

∗
3).

Lemma 11. If H is a collision-resistant hash function, then games G4 and G3 are computationally

indistinguishable. Moreover, |Pr[F4]− Pr[F3]| 6 negl(κ).

Proof. The proof is the same to that of Lemma 10, we omit the details.

(5) Game G5. This game is similar to game G4 except that the challenger C immediately returns ⊥
to the decryption query C = (c1, c2, c3, c4) from the adversary A in Phase I if c1 = c∗1.

Lemma 12. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy (1) or (2). Then, games

G5 and G4 are statistically indistinguishable. Moreover, |Pr[F5]− Pr[F4]| 6 negl(κ).

Proof. Let E be the event that the adversary makes a decryption query C = (c1, c2, c3, c4) in Phase I

such that c1 = c∗1. Note that if E does not happen, then games G5 and G4 are identical in the adversary’s

view. Thus, it is enough to show that Pr[E ] is negligible for any (unbounded) adversary A making at

most a polynomial number of decryption queries in Phase I. Note that in both games G4 and G5, the

ciphertext part c∗1 = ATs̃∗ + e∗1 is always generated by using s̃∗ = s∗ + encoded(v
∗) and e∗1

$← DZm̄,αq,

where s∗
$← DZn,αq, x

∗, y∗, z∗
$← F2κ and v∗ = x∗‖y∗‖z∗ ∈ Z

n
d . By the high min-entropy of the Gaussian

distribution, we have that c∗1 has min-entropy at least κ, where κ is the security parameter. In other

words, the probability that for any (unbounded) adversary to output c1 = c∗1 in Phase I (i.e., before

seeing c∗1) is negligible. This means that if A can make E happen with non-negligible probability, which

completes the proof.

(6) Game G6. This game is similar to game G5 except that the challenger C immediately returns ⊥
to the decryption query C = (c1, c2, c3, c4) from the adversary A in Phase II if (c1, c2, c3) = (c∗1, c

∗
2, c
∗
3) or
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c1 = c∗1∧ (c2, c3) 6= (c∗2, c
∗
3)∧ c4 6= H(c2, c3)y

∗+ z∗, where C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) is the challenge ciphertext.

Lemma 13. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy (1) or (2), then games G6

and G5 are statistically indistinguishable. Moreover, |Pr[F6]− Pr[F5]| 6 negl(κ).

Proof. It suffices to show that the challenger C in game G5 will always return ⊥ to a decryption query

C = (c1, c2, c3, c4) 6= C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) from the adversary A in Phase II if (c1, c2, c3) = (c∗1, c

∗
2, c
∗
3) or

c1 = c∗1 ∧ (c2, c3) 6= (c∗2, c
∗
3) ∧ c4 6= H(c2, c3)y

∗ + z∗ in Phase II except with negligible probability. Note

that given a decryption query C = (c1, c2, c3, c4) 6= C∗, the challenger C in game G5 will first compute

tag = H(c1), and

Atag = (A‖B + FRD(tag)Gb), and u =

(

c1

c2

)

.

Then, compute s̃ ← Solve(Atag,R,u), v = decoded(s̃), and parse v = x‖y‖z, where (x, y, z) ∈ (F2κ)
3.

Let e1 = c1 −ATs̃ and e2 = c2 − (B + FRD(tag)Gb)
Ts̃. Finally, return ⊥ to the adversary if one of the

following conditions holds:

• ‖e1‖ > αq
√
m̄, or

• ‖e2‖ > γ
√
nk for prime q (or ‖e2‖∞ > γ · ω(

√
logn) for q = bk a power of prime b), or

• c4 6= H(c2, c3)y + z ∈ F2κ .

Otherwise, return µ = c3 − x ∈ F2κ .

Clearly, the challenger C in game G5 will not return ⊥ to the decryption query C = (c1, c2, c3, c4) 6= C∗

only when ‖e1‖∞ 6 ‖e1‖ 6 αq
√
m̄ and c4 = H(c2, c3)y + z. In addition, given c∗1 = ATs̃∗ + e∗1 for

e∗1
$← DZm̄,αq, the challenger C in gameG5 will not return⊥ to a decryption query C = (c1 = c∗1, c2, c3, c4)

only if c4 = H(c2, c3)y
∗+ z∗ except with negligible probability, since in this case we always have (s̃, e1) =

(s̃∗, e∗1) with overwhelming probability by the unique witness property in Lemma 6, which in turn implies

that v = v∗ and (x, y, z) = (x∗, y∗, z∗) by the correctness of decoded. In other words, the challenger C in

game G5 will always return ⊥ to a decryption query C = (c1 = c∗1, c2, c3, c4) 6= C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) from

the adversaryA in Phase II if (c1, c2, c3) = (c∗1, c
∗
2, c
∗
3) or c1 = c∗1∧(c2, c3) 6= (c∗2, c

∗
3)∧c4 6= H(c2, c3)y

∗+z∗

holds, except with negligible probability. This completes the proof.

(7) Game G7. This game is similar to game G6 except that the challenger C immediately returns ⊥
to the decryption query C = (c1, c2, c3, c4) from the adversary A in Phase II if c1 = c∗1.

Note that our goal is to show games G7 and G6 are computationally indistinguishable under the LWE

assumption, but for technical reason it is difficult to do this in game G7. Fortunately, we can still continue

the game sequences by using the proof strategy (i.e., game transitions based on failure events) in [67].

Formally, for i ∈ {6, 7, 8, . . . , 11}, let Ei be the failure event in game Gi that the adversary makes a

decryption query with C = (c∗1, c2, c3, c4) such that τ = H(c2, c3) 6= τ∗ ∧ c4 = τy∗ + z∗.

Lemma 14. If E7 and E6 do not happen, then games G7 and G6 are identical in the adversary’s view.

Moreover, Pr[F7|¬E7] = Pr[F6|¬E6] and Pr[E7] = Pr[E6].

Proof. Let C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) be the corresponding challenge ciphertext, where τ

∗ = H(c∗2, c
∗
3), and c∗4 =

τ∗y∗+ z∗ for some y∗, z∗ ∈ {0, 1}κ. Note that upon receiving a decryption query with C = (c1, c2, c3, c4)

in Phase II, the challenger C in both games will always return ⊥ if (c2, c3) 6= (c∗2, c
∗
3)∧τ = H(c2, c3) = τ∗.

Moreover, the challenger C in game G6 will return ⊥ if (c1, c2, c3) = (c∗1, c
∗
2, c
∗
3) or c1 = c∗1 ∧ (c2, c3) 6=

(c∗2, c
∗
3) ∧ c4 6= H(c2, c3)y

∗ + z∗ holds. In other words, the only difference between games G7 and G6 is

that the challenger C in game G7 also returns ⊥ to the decryption query C = (c∗1, c2, c3, c4) 6= C∗ even if

τ = H(c2, c3) 6= H(c∗2, c
∗
3) = τ∗ ∧ c4 = τy∗ + z∗. Clearly, if E7 and E6 do not happen, then both games

are identical in the adversary’s view. In particular, the adversary’s view in game G7 before E7 happens

is essentially identical to that in game G6. Thus, we have Pr[F7|¬E7] = Pr[F6|¬E6] and Pr[E7] = Pr[E6].

(8) Game G8. This game is similar to game G7 except that the challenger C changes the KeyGen

phase and handles the decryption queries as follows:

KeyGen. First randomly choose A
$← Z

n×m̄
q , R′

$← (D
Zm̄,ω(

√
logn))

nk, s∗
$← DZn,αq, e

∗
1

$← DZm̄,αq,

e∗2
$← DZnk,γ and x∗, y∗, z∗

$← F2κ , where γ =
√

‖e∗1‖2 + m̄(αq)2 · ω(
√
logn). Then, interpret the bit-
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concatenation of (x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗‖y∗‖z∗ ∈ Z

n
d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = ATs̃∗ + e∗1,

B = −AR′ − FRD(tag∗)Gb,

c∗2 = (B + FRD(tag∗)Gb)
Ts̃∗ + e∗2 = −(R′)TATs̃∗ + e∗2,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to the adversaryA, and keep (R′, c∗1, c
∗
2, x
∗,

y∗, z∗) secret.

Decryption query. Upon receiving a decryption query C = (c1, c2, c3, c4) from the adversary A,
return ⊥ to A if this query can be immediately responded with ⊥ using the rules in previous games.

Otherwise, first set

Atag = (A‖B + FRD(tag)Gb), and u =

(

c1

c2

)

,

where tag = H(c1). Then, compute s̃← Solve(Atag,R
′,u), v = decoded(s̃), and parse v = x‖y‖z, where

(x, y, z) ∈ (F2κ)
3. Let e1 = c1 −ATs̃ and e2 = c2 − (B + FRD(tag)Gb)

Ts̃. Return ⊥ to the adversary

A if one of the following conditions holds:

• ‖e1‖ > αq
√
m̄, or

• ‖e2‖ > γ
√
nk for prime q (or ‖e2‖∞ > γ · ω(√logn) for q = bk a power of prime b), or

• c4 6= H(c2, c3)y + z.

Otherwise, return µ = c3 − x to the adversary A.
Lemma 15. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy (1) or (2). Then, games G8

and G7 are statistically indistinguishable. Moreover, |Pr[F8|¬E8]−Pr[F7|¬E7]| 6 negl(κ) and |Pr[E8]−
Pr[E7]| 6 negl(κ).

Proof. Note that the only differences between games G8 and G7 are the generation of the public key

pk = (A,B) and the responses to the decryption queries. Concretely, in game G7 the matrix B = −AR

is generated by using R
$← (D

Zm̄,ω(
√
logn))

nk, while in game G7 the matrix B = −AR′ − FRD(tag∗)Gb,

where R′
$← (D

Zm̄,ω(
√
logn))

nk. Since A ∈ Z
n×m̄
q is always uniformly chosen at random in both games,

we have that −AR and −AR′ are statistically close to uniform distribution over Z
n×nk
q by Lemma 2.

Namely, the public keys in games G8 and G7 are statistically close (and tag∗ is statistically hidden in

game G8).

It suffices to show that in the adversary’s view, the responses to the decryption queries are indistin-

guishable in games G8 and G7. Since for a decryption query C = (c1, c2, c3, c4), the challenger will use

the same rules to check if the query can be immediately responded with ⊥ in both games, we only have to

consider the decryption query C = (c1, c2, c3, c4) that needs the challenger C to perform the decryption

operation. By the definition of game G7, we must have that tag = H(c1) 6= tag∗ holds for such decryption

query C = (c1, c2, c3, c4). Note that in game G7, the challenger has the real secret key sk = R, and can

run the decryption algorithm to handle this query. We now show that the challenger C in game G8 can

almost perfectly simulate the decryption operation. Recall that pk = (A,B = −AR′ − FRD(tag∗)Gb),

conditioned on tag = H(c1) 6= tag∗ we have that R′ is a valid trapdoor for Atag = (A‖B+FRD(tag)Gb),

and thus can be used to compute s̃← Solve(Atag,R
′,u). Now, either there exists a tuple (s̃, e1, e2) such

that ‖e1‖ 6 αq
√
m̄, ‖e2‖ 6 γ

√
nk for prime q (or ‖e2‖∞ 6 γ · ω(

√
logn) for q = bk), c1 = ATs̃ + e1

and c2 = (B + FRD(tag)Gb)
Ts̃ + e2, or there does not. For the latter case, the challenger will always

return ⊥ in both games. While for the former case, the challenger C in game G8 can recover s̃ as long as

‖(R′)Te1+e2‖ < q

2
√
b2+1

for prime q (or ‖(R′)Te1+e2‖∞ < q
2b for q = bk), which is essentially the same

constraint for a correct decryption using sk = R in game G7. Since both R and R′ are chosen from the

same Gaussian distribution, by Lemma 1 we have that the inequality holds with the same overwhelming

probability conditioned on ‖e1‖ 6 αq
√
m and ‖e2‖ 6 γ

√
nk for prime q (or ‖e2‖∞ 6 γ · ω(√logn) for

q = bk). By the fact that the challengers in both games will perform the same operations after obtaining

s̃, we have that the responses to such kind of decryption queries are identical in both games except with

negligible probability. This finishes the proof.
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Remark 1. Note that the challenger in game G8 actually does not have the “real” secret key, which

implies that the adversary cannot obtain extra information about the secret key from the decryption

queries (except what is obtained from the public key pk = (A,B)). This fact will be used in our later

proofs.

(9) Game G9. This game is similar to game G8 except that the challenger C changes the KeyGen

phase as follows:

KeyGen. First randomly choose A
$← Z

n×m̄
q , R′

$← (D
Zm̄,ω(

√
logn))

nk, s∗
$← DZn,αq and e∗1

$←
DZm̄,αq, e

′
2

$← DZnk,r and x∗, y∗, z∗
$← F2κ , where r = αq

√
m̄ · ω(

√
logn). Then, interpret the bit-

concatenation of (x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗‖y∗‖z∗ ∈ Z

n
d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = ATs̃∗ + e∗1,

B = −AR′ − FRD(tag∗)Gb, c∗2 = (−R′)Tc∗1 + e′2,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to A, and keep (R′, c∗1, c
∗
2, x
∗, y∗, z∗) secret.

Lemma 16. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy (1) or (2). Then, games G9

and G8 are statistically indistinguishable. Moreover, |Pr[F9|¬E9]−Pr[F8|¬E8]| 6 negl(κ) and |Pr[E9]−
Pr[E8]| 6 negl(κ).

Proof. Note that the only difference between games G9 and G8 is the generation of c∗2. In game G8,

c∗2 = (B + FRD(tag∗)Gb)
Ts̃∗ + e∗2 = −(R′)TATs̃∗ + e∗2 is generated by using e∗2

$← DZnk,γ where γ =
√

‖e∗1‖2 + m̄(αq)2 ·ω(
√
logn), while in game G9, c

∗
2 = (−R′)Tc∗1+e′2 is generated by using e′2

$← DZnk,r.

Since c∗1 = ATs̃∗ + e∗1 for some e∗1
$← DZm̄,αq, we have that c∗2 = (−R′)Tc∗1 + e′2 = (−R′)TATs̃∗ + ẽ2

for some ẽ2 = (−R′)Te∗1 + e′2 which is distributed statistically close to DZnk,γ by applying Lemma 3

nk times using a standard hybrid argument. Thus, the distributions of c∗2 in games G9 and G8 are

actually statistically close, which in turn shows that both games are statistically indistinguishable in the

adversary’s view.

(10) Game G10. This game is similar to game G9 except that the challenger C changes the KeyGen

phase as follows:

KeyGen. First randomly choose A
$← Z

n×m̄
q , b

$← Z
m1

q , R′
$← (D

Zm̄,ω(
√
logn))

nk, e′2
$← DZnk,r and

x∗, y∗, z∗
$← F2κ , where r = αq

√
m̄ · ω(

√
logn). Then, compute

c∗1 = b, B = −AR′ − FRD(tag∗)Gb,

c∗2 = (−R′)Tc∗1 + e′2,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to A, and keep (R′, c∗1, c
∗
2, x
∗, y∗, z∗) secret.

Lemma 17. If LWEn,m̄,q,α is hard, then games G10 and G9 are computationally indistinguishable.

Moreover, |Pr[F10|¬E10]− Pr[F9|¬E9]| 6 negl(κ) and |Pr[E10]− Pr[E9]| 6 negl(κ).

Proof. We prove this lemma by showing that if there is a PPT adversary A that distinguishes game G10

from G9 with non-negligible advantage, then there is an efficient algorithm B that solves the LWEn,m̄,q,α

problem with the same advantage by interacting with A.
Formally, given an LWE challenge tuple (A, b) ∈ Z

n×m̄
q × Z

m̄
q , B randomly chooses R′

$←
(D

Zm̄,ω(
√
logn))

nk, e′2
$← DZnk,r and x∗, y∗, z∗

$← F2κ , where r = αq
√
m̄ · ω(

√
logn). Then, it inter-

prets the bit-concatenation of (x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗‖y∗‖z∗ ∈ Z

n
d , and computes

c∗1 = b+ATencoded(v
∗), B = −AR′ − FRD(tag∗)Gb,

c∗2 = (−R′)Tc∗1 + e′2,

where tag∗ = H(c∗1). Then, B sets the public key pk = (A,B), and keeps (R′, c∗1, c
∗
2, x
∗, y∗, z∗) private.

Finally, B gives pk to the adversary A, simulates the attack environment the same as in game G9, and

returns whatever A outputs as its own output.

Now, if (A, b) ∈ Z
n×m̄
q × Z

m̄
q is a valid LWE tuple, i.e., b = ATs∗ + e∗ for some s∗

$← DZn,αq and

e∗
$← DZm̄,αq, then we have that c∗1 = b+ATencoded(v) = ATs̃∗ + e∗, where s̃∗ = s∗ + encoded(v

∗). In
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this case, B perfectly simulates the attack environment in game G9 for A. Else if (A, b) ∈ Z
n×m̄
q ×Z

m̄
q is

uniformly random, then c∗1 = b+ATencoded(v
∗) is also uniformly random over Zm̄

q . This means that B
perfectly simulates the attack environment in game G10 for A. Thus, if A can distinguish game G10 from

G9 with non-negligible advantage, then B can solve the LWEn,m̄,q,α problem with the same advantage.

(11) Game G11. This game is similar to game G10 except that the challenger C changes the KeyGen

phase as follows:

KeyGen. First randomly choose A
$← Z

n×m̄
q , R′

$← (D
Zm̄,ω(

√
log n))

nk, b
$← Z

m̄
q ,d

$← Z
nk
q and

x∗, y∗, z∗
$← F2κ . Then, compute

c∗1 = b, B = −AR′ − FRD(tag∗)Gb,

c∗2 = d,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to A, and keep (R′, c∗1, c
∗
2, x
∗, y∗, z∗) secret.

Lemma 18. Let positive n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy (1) or (2), then games G11 and G10

are statistically indistinguishable. Moreover, |Pr[F11|¬E11] − Pr[F10|¬E10]| 6 negl(κ) and |Pr[E11] −
Pr[E10]| 6 negl(κ).

Proof. Note that the only difference between games G11 and G10 is the generation of c∗2 in the challenge

ciphertext. Thus, it is enough to show that c∗2 in game G11 is actually statistically close to that in game

G10. Note that c∗1 = b is uniformly chosen from Z
m̄
q at random in both games, and c∗2 = (−R′)Tc∗1 + e′2

in game G10. Using the facts that m̄ > (n + 1) log2 q + ω(logn) and R′
$← (D

Zm̄,ω(
√
log n))

nk, we have

that (A,AR′, b, (R′)Tb) is statistically close to uniform by Lemma 2. In other words, c∗2 in game G10 is

essentially statistically close to uniform over Znk
q , which completes the proof.

Lemma 19. Pr[F11] = 1/2 and Pr[E11] = negl(κ).

Proof. Since x∗
$← {0, 1}ℓ is uniformly chosen at random, µδ∗ ∈ {0, 1}ℓ is perfectly hidden in the

challenge ciphertext C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4), where c∗3 = x∗ + µδ∗ ∈ F2κ . Thus, Pr[F11] = Pr[δ = δ∗] = 1/2,

where δ ∈ {0, 1} is output by the adversary A for the guess of δ∗ in game G11.

As for the second claim, since y∗, z∗ ∈ {0, 1}κ are uniformly chosen at random in game G11, given

c∗4 = τ∗y∗ + z∗ ∈ F2κ there are still 2κ possible choices of (y∗, z∗). Thus, for any adversary A with the

knowledge of c∗4 = τ∗y∗+ z∗, the probability that it outputs c4 = τy∗+ z∗ for any τ 6= τ∗ is at most 1/2κ

(because the adversary can uniquely determine (y∗, z∗) if he can output a valid c4 = τy∗ + z∗), which

means that Pr[E11] 6 Qdec/2
κ, where Qdec is the maximum number of decryption queries made by A.

In all, we have that Pr[F1] 6 1/2 + negl(κ) by Lemmas 9–19. This completes the proof of Theorem 1.

4 Optimizations

4.1 Encrypting long message

In the description of our PKE, we only consider to encrypt a κ-bit message for simplicity. Although it

suffices for many applications where a PKE is typically used to encrypt a session key for some symmetric

encryption such as AES, our PKE can essentially encrypt messages of bit length up to O(n logn) − 2κ.

Note that in order to recover v ∈ Z
n
d from s̃ = s + encoded(v) ∈ Z

n
q , it is enough to set the parameters

such that ‖s‖∞ < q−(d−1)d
2d by Lemma 7. For any n, m̄, q ∈ Z and real α ∈ R satisfying (1) or (2), we

always have ‖s‖∞ 6 αq · ω(
√
logn) < q/Õ(

√
n). This makes it possible to set d = Õ(

√
n) and encrypt

messages of bit length up to O(n logn)− 2κ (since one can encode n log2 d = O(n log n)-bit information

into the vector v ∈ Z
n
d ). Concretely, for the choice of (n,m, q, αq) = (450, 10740, 39, 1.5), we have that

‖s‖∞ 6 9 holds except with probability less than 2−162, which allows us to set d = 128 and encrypt

messages of size up to 2638-bit. We also note that one can use a pseudorandom generator PRG to encrypt

any polynomial long messages by replacing c3 = x+ µ with c3 = PRG(x)⊕ µ.
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4.2 Compressing the ciphertext

As many lattice-based PKEs in the literatures (e.g., [29,55,68]), it is possible to discard some lower bits of

the ciphertext (and thus reduce the ciphertext size) without affecting the correctness of the PKEs (because

those lower bits mainly carry noise). This can be seen as a modulus switch technique. Concretely, let

Switchq,p(·) : Zq → Zp be a function defined as Switchq,p(x) = ⌈p/q · x⌋ mod p. It is easy to check

that for any x ∈ Zq, x − Switchp,q(Switchq,p(x)) 6 ⌈ q
2p⌋. Thus, for p < q, one can use Switchq,p(·) to

compress the ciphertext in the encryption algorithm (i.e., applying to vectors in a coordinate-wise way),

and use Switchp,q(·) to approximately recover the original ciphertext in the decryption algorithm. This

can be simply seen as adding a noise of size at most ⌈ q
2p⌋ to each coordinate of the lattice vectors in the

ciphertext.

In our case, we cannot simply apply Switchq,p(·) to the ciphertext in a black-box way, since this will

affect both the correctness and the security of our PKE. Instead, we have to plug it into the encryption

algorithm to generate the ciphertext C = (c1, c
′
2, c3, c

′
4) as follows (where p is an integer, and other

notations are the same as before):

c1 = ATs̃+ e1, tag = H(c1),

c′2 = Switchq,p((B + FRD(tag)Gb)
Ts̃+ e2), c3 = x+ µ,

τ ′ = H(c′2, c3), c′4 = τ ′y + z.

For the choice of (n,m, q, αq) = (450, 10740, 39, 1.5), we can set p = 8 to compress the ciphertext from

previous 19.73 KB to 13.80 KB, while still keep the decryption error rate less than 2−100. Note that we

do not use this technique to compress c1, because unlike the error in c2, any error in c1 will be sharply

amplified by a factor of s1(R) in decryption.

4.3 Compressing the keys

The key sizes of LWE-based PKEs (e.g., [18, 29, 30, 33, 40]) are usually very large due to consist of big

matrices in both the public keys and the secret keys. For example, under the choice of (n,m, q, αq) =

(450, 10740, 39, 1.5), the public key and secret key sizes of our PKE are about 8.64 and 16.15 MB,

respectively. However, the first element in the public key is essentially a uniformly random matrix which

can be treated as a system parameter and shared among all users. By doing this, one can reduce the

sizes of the public key from previous 8.64 to 3.26 MB. Besides, one can also use a PRG with a 256-bit

random seed to deterministically generate the secret key matrix R, and reduce the secret key size from

16.15 MB to 32 Bytes. As we will show in the supplemental material, one can also reduce the key sizes

by adapting our construction to the ring setting.
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56 Boneh D, Dagdelen Ö, Fischlin M, et al. Random oracles in a quantum world. In: Advances in Cryptology–

ASIACRYPT 2011. Berlin: Springer, 2011. 41–69

57 Jiang H, Zhang Z, Chen L, et al. IND-CCA-secure key encapsulation mechanism in the quantum random oracle model,

revisted. In: Advances in Cryptology – CRYPTO 2018. Berlin: Springer, 2018. 96–125

58 Saito T, Xagawa K, Yamakawa T. Tightly-secure key-encapsulation mechanism in the quantum random oracle model.

In: Advances in Cryptology – EUROCRYPT 2018. Berlin: Springer, 2018. 520–551
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