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Abstract This paper discusses the parity space-based fault detection (FD) method for a class of linear

discrete-time systems with integral measurements. The integral measurements are functions of the system

states over a given time window. We establish a novel parity relation to tackle integral measurements. The

parameters of the FD unit are redesigned such that the generated residual signal is simultaneously decoupled

from initial states, robust against disturbances, and sensitive to the faults. We employ the singular value

decomposition algorithm to calculate parity space matrices. Finally, an experiment is presented to show the

effectiveness of the proposed method.
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1 Introduction

In many chemical and nuclear reaction processes, system measurement outputs such as concentration are
seldom sampled and can only be obtained with a certain time delay. The sensors may require some time
to collect and process the data in a given time window. Therefore, the measurement outputs are propor-
tional to the integral of the system states [1]. Most existing studies have assumed that the measurement
outputs only depend on the current state of the system. However, this hypothesis is not always true
in practical engineering. This integral measurement phenomenon is frequently encountered when optic,
chemical, and nuclear signals are handled, such as undulator field measurements [2], the color of nano-
dimensional radiators [3], fission yields measurements, perturbation measurements of uranium metallic
core reactors [4], thermal neutron capture cross-sections, and resonance using the neutron activation
technique [5]. Ref. [1] established a comprehensive model to formulate the integral measurement phe-
nomenon of the addressed nonlinear system and designed a modified unscented Kalman filter to estimate
the system states. Ref. [6] proposed a new hidden belief rule-based model with a power set and considered
attribute reliability (PHBRB-r) for hidden fault prediction to integrate the activated rules and generate
the final outputs of the PHBRB-r model. Notably, systems with integral measurements are frequently
encountered in many practical industrial applications. Moreover, some research results of systems with
integral measurements have been published.

In practical industrial applications, fault detection (FD) is a critical problem. The FD technique, which
enables the detection of system anomalies and prevention of further catastrophes as early as possible,
has received considerable research attention. In the presence of the system model, the model-based FD
framework has been well established and excellent results have already been reported on this issue [7–14].
In the event of failure, a system with integral measurements cannot respond in time, which will inevitably
cause great losses in terms of personnel and property because of the infrequency of system measurement
output. Thus, the FD problem for such systems is critical. Motivated by this, some preliminary research
was conducted on systems with integral measurements. In a recent study [15], the problems of state
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estimation and fault reconstruction for linear systems with integral measurements were investigated.
A novel observer capable of decoupling the disturbances significantly and reducing the effects of the
disturbances that cannot be decoupled on the estimation and reconstruction errors was realized. However,
the FD problem for systems with integral measurements has not been sufficiently studied.

Among existing model-based FD approach, a parity space-based scheme, is critical in linear systems.
The basic idea is to use the limited time window within the system input and output data to generate
the residual. The effects of the initial states can be completely decoupled from the residual, achieving
a tradeoff between robustness against disturbances and sensitivity to the faults by selecting appropriate
parameters [16–19]. The relationship between the parameters of parity space, observer methods, and
factorization approaches has been extensively studied within a unified framework [20]. In [21], the authors
proposed a parity space vector machine scheme to tackle the robust FD problem for linear discrete-time
systems. To achieve a tradeoff between the false alarm rate and FD rate, an integrated design of the
residual generation and residual evaluation based on parity space was studied. For an intrinsically time-
varying system, a recursive algorithm was developed so that the method could be readily implemented
online [22]. Furthermore, the residual generated by the parity space-based strategy can be directly used
to estimate the fault in the least-squares sense, where the estimator design has been expressed as an
optimization problem in a matrix quadratic form, and the investigator can compute the stationary point
of the quadratic function to solve the optimization problem [23].

Based on the above discussion, it is natural to study the FD problem for systems with integral mea-
surements using the parity space scheme. The parity space-based approach can decouple the residual
signal from the initial states and system inputs, so that the residual signal is only related to disturbances
and fault signals. Therefore, we aim to present a parity space-based FD strategy for systems with inte-
gral measurements. However, this apparently natural idea would bring in significant challenges, such as
(1) how to deal with the integral measurement phenomenon and (2) how to calculate the transfer matri-
ces and augmented vectors to ensure that the parity relation holds with the integral measurements. We
therefore aim to resolve these two issues. In this paper, we study the nontrivial FD problem for systems
with integral measurements using the parity space approach. Consequently, the parity relation must be
reestablished, and the desired parameters should be modified to handle the integral measurements. The
main contributions from this perspective are twofold.

(1) We first build a novel parity relation with the integral term to satisfy the parity relation. A
residual generator under the novel parity relation constraint is then developed to guarantee that the
residual is simultaneously robust against disturbances and sensitive to the faults, where the singular
value decomposition (SVD) technique is employed to solve the optimization problem.

(2) The proposed scheme is applied to a three-tank system to demonstrate that the developed method
can realize fast FD for systems with integral measurements.

2 Problem statement

Consider the following linear discrete-time system with integral measurements:















x(k + 1) = Ax(k) +Bu(k) +Bdd(k) +Bff(k),

y(k) = C

M
∑

i=0

x(k − i) +Du(k) +Ddd(k) +Dff(k),
(1)

where x(k) ∈ R
n, y(k) ∈ R

q, u(k) ∈ R
p, d(k) ∈ R

l, f(k) ∈ R
m are the state, measurement output,

control input, unknown input and fault vectors, respectively. A, B, Bd, Bf , C, D, Dd and Df are
known matrices with compatible dimensions. M is an arbitrary nonnegative integer representing the
time interval to collect the data. When M = 0, the considered system changes to the traditional linear
discrete-time one.

The main purpose of this paper is to investigate the FD issue for the system (1) with integral mea-
surements based on parity space approach. Generally speaking, for the typical model-based FD problem,
the key process is to design the residual generator and residual evaluation.

However, with the integral measurement phenomenon being considered, the traditional parity space-
based FD method is no longer applicable. In the parity space-based strategy, the parity relation is directly
dependent on the measurement matrix. When the integral measurement phenomenon is considered, the
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measurement matrix will become quite different from that of the traditional system owing to the delayed
system states in the integral measurements. Consequently, the parity relation needs to be reestablished
and the desired parameters should be modified to cope with the integral measurements.

Remark 1. It should be pointed out that there are some differences between the integral measurements
and the transmission time-delays. The time-delays mean that the measurement outputs of the system are
related to the output values at a previous time while the integral measurements mean that the measure-
ment outputs of the system are in proportion to the integral of the system states. It is worth mentioning
that with the integral measurement phenomenon being considered, the traditional FD methods are no
longer applicable. So how to solve the FD problem for systems with integral measurements becomes an
important yet challenging open problem.

For the system (1) with integral measurements, the novel parity relation can be established as follows:

ys(k) =Hosx(k − s−M) +Hdsds(k) +Hfsfs(k) +Husus(k), (2)

where s is the so-called parity space order. ys(k) ∈ R
q(s+1), us(k) ∈ R

p(s+M+1), x(k−s−M) ∈ R
n, ds(k) ∈

R
l(s+M+1), fs(k) ∈ R

m(s+M+1) are augmented vectors. Hus ∈ R
q(s+1)×(s+M+1)p, Hos ∈ R

q(s+1)×n,
Hds ∈ R

q(s+1)×(s+M+1)l, Hfs ∈ R
q(s+1)×(s+M+1)m are transfer matrices from us(k), x(k − s−M), ds, fs

to ys, respectively. These augmented vectors and transfer matrices will be designed in Section 3.
Inspired by [24], the parity relation based residual signal can be defined as

r(k) =Vs(ys(k)−Husus(k))

=Vs(Hosx(k − s−M) +Hdsds(k) +Hfs(k)fs(k)),
(3)

where Vs 6= 0. Vs ∈ R
q(s+1) is the parity space matrix, which needs to be designed to balance the

robustness of residual to unknown inputs and the sensitivity to faults.

Remark 2. When the integral measurement phenomenon is considered, the relationship between system
outputs and system states is changed. Therefore, the transfer matrices and augmented vectors will become
quite different from that of the traditional parity space scheme. The parity relation, transfer matrices
and augmented vectors need to be redesigned. This also leads to the difference from the classical parity
space approach. The detailed process will be given in Section 3.

3 Main results

In the dynamic parity space approach, the first step is to establish the parity relation to design the
residual generator. For the residual generator, the problem can be described as finding the transfer
matrices Hus, Hos, Hds, Hfs and augmented vectors ys, us, ds, fs so that the parity relation still holds.

Theorem 1. For the system (1) with integral measurements, if the parity relation (2) still holds, the
transfer matrices Hus, Hos, Hds, Hfs and augmented vectors ys, us, ds, fs should be the following forms:

Hos =















C
∑M

i=0 A
i

CA
∑M

i=0 A
i

...

CAs
∑M

i=0 A
i















, Hus =















hus(1)

hus(2)
...

hus(s+ 1)















, (4)

where

hus(j) =
[

C
∑M−2+j

i=0 AiB · · · CB D 0 · · · 0
]

,

ys(k) =















y(k − s)

y(k − s+ 1)
...

y(k)















, us(k) =





















u(k − s−M)
...

u(k − s)
...

u(k)





















, (5)
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hus ∈ R
q×(s+M+1)p, hds ∈ R

q×(s+M+1)l, hfs ∈ R
q×(s+M+1)m, j = 1, 2, . . . , s+ 1 represent the jth line of

Hus, Hds and Hfs, respectively. Hds, Hfs can be constructed by replacing B, D in Hus with Bd, Dd

and Bf , Df , respectively. ds(k) and fs(k) are achieved by replacing u(k) with d(k) and f(k) in us(k),
respectively.

Proof. From (1), it follows that

x(k) =AMx(k −M) +
M−1
∑

i=0

AiBu(k − i− 1) +
M−1
∑

i=0

AiBdd(k − i− 1) +
M−1
∑

i=0

AiBff(k − i− 1). (6)

We then have

M
∑

i=0

x(k − i) =

M
∑

i=0

Aix(k −M) +

j
∑

i=0

M−1
∑

j=0

AiBu(k − j − 1)

+

j
∑

i=0

M−1
∑

j=0

AiBdd(k − j − 1) +

j
∑

i=0

M−1
∑

j=0

AiBff(k − j − 1). (7)

Combing (1) and (7), we can obtain

y(k) = C

M
∑

i=0

Aix(k −M) + C

j
∑

i=0

M−1
∑

j=0

AiBu(k − j − 1) + C

j
∑

i=0

M−1
∑

j=0

AiBdd(k − j − 1)

+ C

j
∑

i=0

M−1
∑

j=0

AiBff(k − j − 1) +Du(k) +Ddd(k) +Dff(k). (8)

In order to guarantee the validity of parity relation (2), the initial term of equation (8) should change
from time instant k − s to time instant k − s − M . Therefore, it is impossible to establish the parity
relation directly depending on (8), so we need to redrive y(k). It follows from (8) that

y(k − s) = C

M
∑

i=0

Aix(k − s−M) + C

j
∑

i=0

M−1
∑

j=0

AiBu(k − s− j − 1)

+ C

j
∑

i=0

M−1
∑

j=0

AiBdd(k − s− j − 1) + C

j
∑

i=0

M−1
∑

j=0

AiBff(k − s− j − 1)

+Du(k − s) +Ddd(k − s) +Dff(k − s). (9)

Similarly to (6), y(k) can be rewritten as

y(k) = CAs
M
∑

i=0

Aix(k − s−M) + C

j
∑

i=0

M−1+s
∑

j=0

AiBu(k − j − 1)

+ C

j
∑

i=0

M−1+s
∑

j=0

AiBdd(k − j − 1) + C

j
∑

i=0

M−1+s
∑

j=0

AiBff(k − j − 1)

+Du(k) +Ddd(k) +Dff(k). (10)

The generalization of (9) and (10) can be written over time and in the order of the latest values. Then
the parity relation (2) can be established where Hds, Hfs can be obtained by replacing B,D in Hus with
Bd, Dd and Bf , Df , respectively. Similarly, ds(k) and fs(k) are constructed by replacing u(k) with d(k)
and f(k) in us(k). Now, the proof is completed.

Remark 3. According to the above calculation and analysis, it should be noticed that y(k − s), y(k −
s + 1), . . . , y(k) have the same terms. With the integral measurement phenomenon being taken into
consideration, the designed transfer matrices and augmented vectors are different from the traditional
parity space approach. In the classical parity space scheme, the first element of the augmented vector
us is u(k − s). However, resulting from the integral measurement phenomenon, the first element of
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the augmented vector us turns into u(k − s − M). Similarly, the first elements of ds and fs become
d(k − s − M) and f(k − s − M), respectively. Through continuous iterative calculation and inductive
summary, the transfer matrices Hus, Hos, Hds, Hfs and augmented vectors ys, us, ds, fs can be obtained
so that the parity relation still holds.

To ensure that the residual signal is decoupled from the initial states and system inputs, the parity
space matrix Vs should satisfy the following condition:

VsHos = 0,

where Vs is the parameter matrix to be designed later. Then we have

r(k) = Vs(Hdsds(k) +Hfs(k)fs(k)). (11)

Define Vs ∈ Ps. Ps is the set of Vs with the parity space order s. Ns is the basis matrix of parity space
Ps. Ns needs to guarantee that NsHos = 0 holds. Let Vs = PsNs, where Ps is an invertible matrix and
Vs is an arbitrary matrix. Set

H̄ds = NsHds, H̄fs = NsHfs,

and then the residual signal r(k) can be rewritten as

r(k) = Ps(H̄dsds(k) + H̄fs(k)fs(k)). (12)

Furthermore, as mentioned in [24], we have

‖PsH̄ds‖2 = sup
d 6=0

‖PsH̄dsds(k)‖

‖ds(k)‖
,

‖PsH̄fs‖2 = sup
f 6=0

‖PsH̄fsfs(k)‖

‖fs(k)‖
or

σ̃(PsH̄fs) = inf
f 6=0

‖PsH̄fsfs(k)‖

‖fs(k)‖
,

(13)

where ‖PsH̄ds‖2 represents the robustness of residual to unknown inputs; ‖PsH̄fs‖2 and σ̃(PsH̄fs) repre-
sent the sensitivity of residual to faults. In order to balance the robustness of residual to unknown inputs
and the sensitivity of residual to faults, the problem can be formulated as finding the parity space matrix
Ps to satisfy the following optimization problem:

max
Ps

J =
‖PsH̄fs‖2
‖PsH̄ds‖2

or max
Ps

J− =
σ̃(PsH̄fs)

‖PsH̄ds‖2
. (14)

With the purpose of getting the desired residual signal, the matrix Ps should satisfy the optimization
problem (14). Inspired by [24], the optimization problem can be handled via SVD. With the SVD on
H̄ds, it follows that

H̄ds = UΣV T, UUT = I, V V T = I,

Σ = [S 0], S = diag(σ1, σ2, . . . , σγ),
(15)

where U and V are left and right singular matrices respectively. σ1, σ2, . . . , σγ are singular values of
matrix H̄ds. Then, the following lemma gives an optimal solution Ps of (14).

Lemma 1 ( [24]). For the system (1), Ps = S−1UT solves the optimization problem (14) and the
optimization problem can be rewritten as follows:

max
Ps

J =‖S−1UTH̄fs‖2 or max
Ps

J− = σ̃(S−1UTH̄fs), (16)

where S and U have been defined in (15).
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Remark 4. In order to deal with the optimization problem, Theorem 1 in [24] is applied in this paper.
Compared with the classical parity space strategy, although the transfer matrices and augmented vectors
are different, the method to settle the optimization problem is the same. The optimization problem can
be handled via SVD, so that Ps and Vs can be obtained accordingly. For simplicity, the detailed proof is
omitted here. Furthermore, the constraint VsHos = 0 is put forward to guarantee that the influence of
initial states and system inputs on the residual can be fully eliminated. It shows that this approach can
completely decouple the residual signal from the initial states and system inputs.

The evaluation function is the second stage of parity space FD scheme. Similarly to [8], the evaluation
function Jr can be selected with a sliding window as follows:

Jr(k) =
1

N + 1

N
∑

i=0

‖r(k − i)‖2, (17)

where N is the size of the sliding window. It is noted from (12) and (17) that the evaluation function Jr
is decided by disturbances and fault signals, and the selection of threshold depends on the disturbance
amplitude. With the dramatic fluctuation of disturbances, the threshold value is relatively high. In order
to detect a fault effectively, the threshold can be set as the maximum value of the evaluation function
without fault. The threshold can be chosen as

Jth = sup J0, (18)

where J0 is Jr(k) in the fault-free case. Then the following principle of detecting a fault is given:

{

Jr < Jth, no alarm,

Jr > Jth, fault alarm.
(19)

In this section, our attention is concentrated on the design of parity space transfer matrices Hus,
Hos, Hds, Hfs and augmented vectors ys, us, ds, fs. Moreover, SVD technique is employed to solve the
optimization problem and the parity space matrices Vs, Ps can be obtained accordingly. Then, the online
FD approach based on parity space for a class of linear discrete-time systems with integral measurements
can be concluded into Algorithm 1.

Algorithm 1 Online fault detection algorithm

1: Set x(1) = [0 0 0]T, u(1) = [0 0 0]T as initial values of the system state and control input.

2: Calculate Hos, Hus, Hds, Hfs and ys, us, ds, fs by using (4) and (5).

3: Calculate Ps and Vs according to Lemma 1 and SVD technique to ensure the solvability of (14).

4: Update r(k) by using (12).

5: Update Jr(k) by using (17) and compare with Jth. As a result, the occurrence of a fault can be detected by applying (19).

6: Let k = k + 1, and go to step 2 until the end of the process.

4 Experiment

In this section, the proposed scheme will be applied to a three-tank system to demonstrate its effectiveness
and usefulness. TTS-20 laboratory setup of the three-tank system will be used to complete this experiment
in this paper. The experimental setup of the three-tank system is described in Figure 1.

The system model can be described as

A
dh1

dt
= Q1 −Q13,

A
dh3

dt
= Q13 −Q32,

A
dh2

dt
= Q2 +Q32 −Q20,

Q13 = az1Snsgn(h1 − h3)
√

(2g)|h1 − h3|,

Q32 = az3Snsgn(h3 − h2)
√

(2g)|h3 − h2|,
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Figure 1 (Color online) The experimental setup of the three-tank system.

Q20 = az2Sn

√

(2gh2),

where Qij is the flow rate from the ith tank to the jth tank. Qij can be obtained through the generalized
Torricelli-rule. The parameters of the system are given in Table 1.

Table 1 Parameters of the three-tank system

Symbol Value Description

A 0.0154 m2 Surface area of the tanks

Sn 5 × 10−5 m2 Surface area of the pipes

Q1max 100 ml/s Max flow rate of pump 1

Q2max 100 ml/s Max flow rate of pump 2

Hmax 0.62 m Max height of tanks

az1 0.46 Fluid constants for pipe 1

az2 0.48 Fluid constants for pipe 2

az3 0.58 Fluid constants for pipe 3

Let

h =









h1

h2

h3









, A(h) =
1

A









−Q13

Q32 −Q20

Q13 −Q32









, B =
1

A









1 0

0 1

0 0









, Q =

[

Q1

Q2

]

, y =

[

y1

y2

]

.

Then the system can be rewritten as

dh1

dt
= A(h) +BQ,

y = [h1 h2]
T.

For the three-tank system, consider the equilibrium point he = [h1e h2e h3e]
T. The discrete linearized

system with a sampling period Ts = 1 s is described as

δh(k + 1) = Aδh(k) +BQ(k),

δy(k) = Cδh(k),

where δy = y − Che, δh = h− he. Let he = [0.31825 0.23145 0.15175]T, and then the parameters of the
system can be obtained as

A =









0.9889 0.0001 0.0110

0.0001 0.9774 0.0119

0.0110 0.0119 0.9770









, B =









64.5993 0.0015

0.0015 64.2236

0.3604 0.3910









,
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Bd =









1 0 0

0 1 0

0 0 1









, C =

[

1 0 0

0 1 0

]

, Dd =

[

1 0 0

0 1 0

]

.

In this system, the system state vector h(k) = [h1(k) h2(k) h3(k)]
T represents the liquid level of the

three tanks; y(k) = [h1(k) h2(k)]
T is the measurement output and represents the liquid heights of Tanks 1

and 2, respectively; u(k) = [Q1(k) Q2(k)]
T is the liquid inflow. The closed-loop control input is designed

as u(k) = Qpy(k) +Qiy(k − 1), where

Qp =

[

−0.0013 −0.0004

−0.0004 −0.0012

]

, Qi =

[

−0.0022 −0.0007

−0.0006 −0.0020

]

.

The integral measurement phenomenon is added artificially, and the measurement of the system can
be rewritten as δy(k) = C

∑M
i=0 δh(k − i). The time interval to collect the data is set as M = 3 and

the parity space order can be selected as s = 4. With the given parameters, the following parity space
matrices Ps and Vs satisfying the optimization problem can be obtained:

Ps =





























−0.0146 −0.0149 0.0188 −0.0479 0.0547 −0.0835 0.0926

0.3836 0.4572 0.5040 0.4693 0.5103 −0.0897 −0.1081

−0.5299 0.3493 −0.1725 0.8078 −0.3661 −0.0404 0.6052

0.4122 −0.7313 −0.7174 0.5665 0.6121 0.2028 0.2061

−0.3387 −0.9143 09812 0.2975 −0.1052 0.2793 0.0685

0.365 0.3171 0.1682 −0.4262 0.0525 1.152 0.8623

−1.1128 0.2150 −0.1439 −0.1561 0.9406 0.4617 −0.3313





























,

Vs =





























0.0015 −0.4880 −0.0711 0.8433 0.0102 −0.1377 0.0240 −0.1194 0.0374 −0.1019

−0.4499 0.0628 0.0044 0.0291 0.8426 −0.0029 −0.1839 −0.0334 −0.2096 −0.0626

−0.0033 −0.3759 0.1620 −0.1061 −0.0228 0.8606 −0.0546 −0.1707 −0.0853 −0.2007

−0.4492 0.1534 0.2134 0.0713 −0.1852 −0.0070 0.7476 −0.0818 −0.3173 −0.1532

−0.0079 −0.2686 0.3845 −0.0578 −0.0543 −0.1406 −0.1297 0.7804 −0.2025 −0.2949

−0.4484 0.2408 0.4153 0.1120 −0.2121 −0.0111 −0.3186 −0.1286 0.5786 −0.2408

−0.0124 −0.1661 0.5968 −0.0115 −0.0844 −0.1418 −0.2014 −0.2662 −0.3144 0.6152





























.

Run the system for 100 s. Two fault signals (leakage fault and sensor fault) are designed at the 20th
second and the 40th second, respectively. First, the leakage fault in Tank 1 is considered. The leakage
valve of Tank 1 is opened 15◦ artificially at the 20th second to indicate the leakage fault in Tank 1. Then
the parameter matrices of fault can be defined as

Bf =









1

0

0









, Df =

[

0

0

]

.

The sliding window is set as N = 20. The threshold can be defined through (18). Algorithm 1 is
applied to realize online FD and the experimental results are shown in Figure 2.

The sensor fault in Tank 2 can be described as that there is a fault occurred when the sensor is used to
measure the liquid level of Tank 2. The additive fault signal is defined as f = 0.05 m at the 40th second
and disappears at the 60th second. Then the parameter matrices of fault can be defined as

Bf =









0

0

0









, Df =

[

0

1

]

.
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Figure 2 (Color online) Detection results for the leakage

fault.

Figure 3 (Color online) Detection results for the sensor fault.

The threshold can be got through (18) with the sliding window N = 10. The experimental results are
shown in Figure 3.

It can be seen from Figures 2 and 3 that the proposed method can achieve a good FD performance.
Jr exceeds the threshold Jth immediately when a fault occurs in the system. When the fault signal
disappears, Jr returns below Jth. According to the experimental results, it can be seen easily that the
proposed FD scheme can effectively realize the fast FD for linear discrete-time systems with integral
measurements.

5 Conclusion

In this paper, the parity space-based FD problem was addressed for a class of discrete-time linear systems
with integral measurements. A novel parity relation was established in the presence of integral measure-
ments to ensure that the residual is decoupled from the initial states and system inputs. The SVD
technique was proposed to achieve a balance between the robustness of the residual against disturbances
and the sensitivity of the residual to the faults. Finally, an experiment was conducted to demonstrate the
effectiveness of the proposed scheme. Fault isolation and fault-tolerant control for systems with integral
measurements would be significant research interests in our future work. We also aim to apply these
research results to a reduced-order aircraft system [25] or other practical systems in the future.
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