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Abstract This paper mainly discusses the stabilization problem for discrete-time Markov jump linear

systems (MJLSs) involving multiplicative noise with an infinite horizon. The cost weighting matrices are

generalized to be indefinite. To the best of our knowledge, this paper is novel and unlike most previous

studies, it provides the necessary and sufficient conditions that stabilize the MJLSs in the mean square sense

with indefinite weighting matrices.
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1 Introduction

Recently, the Markov jump linear system (MJLS) model has found extensive applications; hence, research
on the linear-quadratic (LQ) optimal control problem has been of tremendous interest to many researchers.
Firstly, the discrete-time MJLSs were introduced by Costa et al. [1]. For the case whereby the transition
probabilities are partly unknown, Zhang and Boukas [2] focused on the H∞ control problem for the
MJLSs, etc. (see [3–7] and references therein). The above-mentioned results were derived on the premise
of non-negative even positive definite cost weighting matrices. However, the stochastic LQ problem
without the constraints of weighting matrices (only symmetry matrices) may be still well-posed which
was first considered by Chen et al. [8]. This case differs from the conventional problem and it is named as
indefinite stochastic problem. Furthermore, the indefinite stochastic problem finds extensive applications
in the field of financial portfolio.

Many research and studies have been conducted on indefinite problems. Li et al. [9] focused on
the indefinite LQ control problem for MJLSs with an infinite horizon. For the discrete case, Ma and
Boukas [10] developed the guaranteed indefinite cost control problem for singular MJLSs with uncertain
parameters. Costa and de Paulo [11] studied the indefinite optimal control problem for MJLSs with
multiplicative noise, in which the quadratic and linear part simultaneously exist in the index functional.
Then, the generalized coupled algebraic Riccati equations associated with indefinite optimal control
problems for discrete-time MJLSs with multiplicative noise in infinite horizon case were analyzed by
Costa and de Paulo [12]. Notice that the results obtained in [13] were based on the condition of mean-
square stabilizablity.

Significantly, previous studies on the indefinite case only considered the optimal control problem, while
the stabilization problem for discrete-time MJLSs with indefinite weighting matrices in cost function
has received negligible attention with limited publications. However, in most cases, stability is a vital
precondition for a control system. Factually, optimal control studies are worthwhile when the system
is stable (see [13–17]). The stabilization problem is a matter of serious concern due to its importance.
Ref. [18] discussed the optimal LQ control problem with irregular performance in the finite-horizon
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and infinite-horizon cases, respectively. Li et al. [19] studied the LQ optimal control and stabilization
problem for discrete-time networked control systems simultaneous with input delay and Markovian packet
dropout. The stabilization problem for stochastic systems with multiplicative noises and input delay in
discrete and continuous cases was considered by Zhang et al. [20], Zhang and Xu [21], respectively. To
proceed, Zhang et al. [22] provided the stabilization for discrete-time mean-field systems. Controllers of
cost weighting matrices in [18–22] are not required to be positive definite. Because of this, in this study,
we mainly consider the indefinite LQ optimal control and stabilization problem for discrete-time MJLSs
with multiplicative noise.

In this study, under the preconditions that a set satisfying some linear matrix inequality and kernel
restriction is nonempty and the system is exactly observable, we derive the existence of the maximum
solution to generalized algebraic Riccati equations with Markov jump (GARE-MJ) by discussing the
convergence of the associated generalized difference Riccati equations with Markov jump (GDRE-MJ).
Another contribution is that the conclusion of stabilization for discrete-time MJLSs involving multiplica-
tive noise with indefinite weighting matrices is provided for the first time under the basic assumption of
exact observablity, which is different from previous studies.

The structure of this paper is as follows. The problem statement and preliminaries are introduced in
Section 2. Section 3 gives the main result of stabilization. A numerical example is given in Section 4 to
further validate the conclusion. Section 5 summarizes the paper.

2 Problem statement and preliminaries

For readability, we first define some notations. R
m denotes the m-dimensional Euclidean space; M ′

denotes the transposition of M ; M > 0 (M > 0) represents that the symmetric matrix M ∈ R
m×m is

positive definite (positive semi-definite); M † denotes the Moore-Penrose pseudo-inverse of M ; Ker(M)
means the kernel of a matrix M ; (Ω,G,Gk,P) is a complete probability space with Gk generated by
{x0, θ0, . . . , xk, θk}; E[·|Gk] represents the conditional expectation with respect to Gk and G−1 is under-
stood as {∅,Ω}.

Considering the following discrete-time MJLS with multiplicative noise:

xk+1 = (Aθk +Bθkωk)xk + (Cθk +Dθkωk)uk, (1)

where xk ∈ R
n is the state, uk ∈ R

m is the control process. {ωk}k>0 denotes scalar-valued Gaussian
white noise with E[ωk] = 0 and covariance σ2. θk denotes a discrete-time Markov chain with finite state
space {1, 2, . . . , L} and transition probability ρi,j = P (θk+1 = j|θk = i) (i, j = 1, 2, . . . , L). Ai, Bi, Ci, Di

(i = 1, . . . , L) are constant matrices. The known initial value x0 is independent of θk.
The following cost functional is introduced:

J = E

{

∞
∑

k=0

[x′
kQθkxk + u′

kRθkuk]

}

, (2)

where Qθk , Rθk are just symmetric matrices.
The following problem will be mainly discussed in this paper.

Problem 1. Find a Gk-measurable controller uk to stabilize (1) while minimizing (2). Let A =
(A1, . . . , AL), B = (B1, . . . , BL). For brevity, we usually say that the pair (A,B) is mean-square stabi-
lizable if system (1) is mean-square stabilizable.

Now we define the following GARE-MJ for i = 1, . . . , L as
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i





L
∑
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ρi,jPj



Ai + σ2B′
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Bi +Qi −M ′
iΥ

†
iMi,

ΥiΥ
†
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(3)

in which

Υi = C′
i





L
∑

j=1

ρi,jPj



Ci + σ2D′
i





L
∑

j=1

ρi,jPj



Di +Ri, (4)
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Mi = C′
i





L
∑

j=1

ρi,jPj



Ai + σ2D′
i





L
∑

j=1

ρi,jPj



Bi. (5)

For illustrating, establish the following set which is inspired by [23],

S ,















P̃ = P̃ ′|Z > 0,

Ker

(

C′
i

(

L
∑
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ρi,jP̃j

)

Ci + σ2D′
i

(

L
∑

j=1

ρi,jP̃j

)

Di +Ri

)

⊆ (KerCi ∩KerDi)















,

where P̃ = (P̃1, . . . , P̃L),

Z =
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(
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(
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(
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∑
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(
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(

L
∑
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(
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∑
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.

To simplify notation in the sequel, for any P̃ ∈ S, we define



























































Q̃i = A′
i





L
∑

j=1

ρi,jP̃j



Ai + σ2B′
i





L
∑

j=1

ρi,jP̃j



Bi +Qi − P̃i,

L̃i = A′
i





L
∑

j=1

ρi,jP̃j



Ci + σ2B′
i





L
∑

j=1

ρi,jP̃j



Di,

R̃i = C′
i





L
∑

j=1

ρi,j P̃j



Ci + σ2D′
i





L
∑

j=1

ρi,jP̃j



Di +Ri.

(6)

Remark 1. Obviously, we have [ Q̃i L̃i

L̃′

i
R̃i

] > 0. From Theorem 1 in [24], it yields that

R̃i > 0, Q̃i − L̃iR̃
†
i L̃

′
i > 0, L̃i(I − R̃iR̃

†
i ) = 0. (7)

For discussing, some associated definitions and assumption will be given in the following.

Definition 1. Pmax is called a maximal solution to the GARE-MJ (3), if

Pmax > P̃ , ∀P̃ ∈ S, (8)

where Pmax = (Pmax1
, . . . , PmaxL

).

Definition 2. Consider the following MJLS with multiplicative noises

{

xk+1 = (Aθk + ωkBθk)xk,

yk = Q̃
1
2

θk
xk.

(9)

(A,B, Q̃
1
2 ) is exactly observable, if for any N > 0,

yk = 0, a.s., ∀k ∈ [0, N ] ⇒ x0 = 0,

where Q̃
1
2 = (Q̃

1
2

1 , . . . , Q̃
1
2

L).

Assumption 1. (A,B, Q̃
1
2 ) is exactly observable, in which Q̃ = (Q̃1, . . . , Q̃L) defined as in (6).
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3 Main results

The stabilization analysis will be given next. Based on the aforementioned preliminaries, the existence
of the solution to GARE-MJ (3) will be investigated.

Theorem 1. The GARE-MJ (3) exists the maximal solution Pi, if the following two conditions are
true: (i) S 6= ∅; (ii) the system (1) is mean-square stabilizable.
Proof. In view of S 6= ∅, take any P̃ ∈ S and consider a new GDRE-MJ with θk = i:



























Xi(k) = A′
i





L
∑

j=1

ρi,jXj(k + 1)



Ai + σ2B′
i





L
∑

j=1

ρi,jXj(k + 1)



Bi + Q̃i − M̃ ′
i(k)Υ̃

†
i (k)M̃i(k),

Υ̃i(k)Υ̃
†
i (k)M̃i(k)− M̃i(k) = 0,

Υ̃i(k) > 0,

(10)

in which

Υ̃i(k) = C′
i





L
∑

j=1

ρi,jXj(k + 1)



Ci + σ2D′
i





L
∑

j=1

ρi,jXj(k + 1)



Di + R̃i, (11)

M̃i(k) = C′
i





L
∑

j=1

ρi,jXj(k + 1)



Ai + σ2D′
i





L
∑

j=1

ρi,jXj(k + 1)



Bi + L̃i, (12)

with its terminal values Xi(N + 1) = 0 for i = 1, . . . , L and Q̃i, L̃i, R̃i are defined as in (6). Firstly, we
will prove that Eqs. (10)–(12) indeed has a solution. It is easy to see that the iterative sequence

Xi(k) = A′
i





L
∑

j=1

ρi,jXj(k + 1)



Ai + σ2B′
i





L
∑

j=1

ρi,jXj(k + 1)



Bi + Q̃i − M̃ ′
i(k)Υ̃

†
i (k)M̃i(k) (13)

has a solution Xi(k) with terminal values Xi(N + 1) = 0.
Further, Υ̃i(k) > 0 will be shown. To this end, we first illustrate that Xi(k) is semi-definite positive.

Considering the following formula

M̃ ′
i(k)Υ̃

†
i (k)M̃i(k) = −M̃ ′

i(k)F̃i(k)− F̃ ′
i (k)M̃i(k)− F̃ ′

i (k)Υ̃i(k)F̃i(k), (14)

in which F̃i(k) = −Υ̃†
i(k)M̃i(k), thus (13) can be rewritten as

Xi(k) = Ā′
i(k)





L
∑

j=1

ρijXj(k + 1)



 Āi(k) + B̄′
i(k)





L
∑

j=1

ρijXj(k + 1)



 B̄i(k) + Q̄i(k), (15)

where
Āi(k) = Ai + CiF̃i(k), B̄i(k) = Bi +DiF̃i(k),

Q̄i(k) = Q̃i + L̃′
iF̃i(k) + F̃ ′

i (k)L̃i + F̃ ′
i (k)R̃iF̃i(k).

(16)

By the Schur complementary, and in view of Q̃i > 0, R̃i > 0, we have

Q̄i(k) = Q̃i + L̃′
iF̃i(k) + F̃ ′

i (k)L̃i + F̃ ′
i (k)R̃iF̃i(k)

> L̃′
iR̃

†
i L̃i + L̃′

iR̃
†
i R̃iF̃i(k) + F̃ ′

i (k)R̃iR̃
†
i L̃i + F̃ ′

i (k)R̃iR̃
†
i R̃iF̃i(k)

= (L̃i + R̃iF̃i(k))
′R̃

†
i (L̃i + R̃iF̃i(k)) > 0, (17)

and on the ground of Xi(N + 1) = 0, i = 1, . . . , L, it yields that Xi(N) > 0 and by induction, it is not
difficult to verify that Xi(k) > 0, for 0 6 k 6 N . Thus, from (11), Υ̃i(k) > 0 is established.

Next we will investigate Υ̃i(k)Υ̃
†
i (k)M̃i(k)− M̃i(k) = 0. From Υ̃i(k) > 0, it yields that

Υ̃†
i (k) = Vi(k)

[

T−1
i (k) 0

0 0

]

V ′
i (k), (18)
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where Ti(k) > 0 has same dimension with the rank of Υ̃i(k) and Vi(k) is an orthogonal matrix. Now, let
Vi(k) decompose as [V 1

i (k) V 2
i (k)] where the columns of the matrix V 2

i (k) form a basis of Ker(Υ̃i(k)).

The positive semi-definite of matrices R̃i,
∑L

j=1 ρi,jXj(k+1) yields that Ker(Υ̃i(k)) ⊆ Ker(R̃i). A simple
calculation yields that


A′
i





L
∑

j=1

ρi,jXj(k + 1)



Ci + σ2B′
i





L
∑

j=1

ρi,jXj(k + 1)



Di + L̃′
i



 [I − Υ̃i(k)Υ̃
†
i (k)]

=



A′
i





L
∑

j=1

ρi,j(Xj(k + 1) + P̃j)



Ci + σ2B′
i





L
∑

j=1

ρi,j(Xj(k + 1) + P̃j)



Di



V 2
i (k)(V

2
i (k))

′. (19)

On the ground of Υ̃i(k)V
2
i (k)(V

2
i (k))

′ = 0, it is easy to verify R̃iV
2
i (k)(V

2
i (k))

′ = 0. And further

considering the condition of Ker(C′
i(
∑L

j=1 ρi,jP̃j)Ci+σ2D′
i(
∑L

j=1 ρi,jP̃j)Di+Ri) ⊆ (KerCi∩KerDi), we

have Υ̃i(k)Υ̃
†
i (k)M̃i(k)− M̃i(k) = 0.

Up to now, we know that for (10) there exists a positive semi-definite solution with terminal values
Xi(N + 1) = 0 for i = 1, . . . , L. For discussion, we rewrite Xi(k) as XN

i (k) to express its time horizon
N clearly. Now we will prove the convergence of XN

i (k) when N → ∞. Considering the following cost
function

J̃N = E







N
∑

k=0

[

xk

uk

]′ [

Q̃θk L̃′
θk

L̃θk R̃θk

][

xk

uk

]







, (20)

from Remark 1, we know that J̃N > 0. Based on the existence of solution to Riccati Eqs. (10)–(12) and

Theorem 1 in [25], the optimal controller and cost value of (20) subject to (1) are u∗(k) = −Υ̃†
i (k)M̃i(k)xk

and J̃∗
N = E[x′

0X
N
θ0
(0)x0], respectively. Then, following Theorem 2 in [20], the convergence of XN

i (k) can

be deduced in a similar way. Let limN→∞ XN
i (k) = Xi, limN→∞ Υ̃N

i (k) = Υ̃i, limN→∞ M̃N
i (k) = M̃i,

i = 1, . . . , L.
Therefore, Xi is a solution of the following new GARE-MJ (NGARE-MJ for short):



























Xi = A′
i





L
∑

j=1

ρi,jXj



Ai + σ2B′
i





L
∑

j=1

ρi,jXj



Bi + Q̃i − M̃ ′
iΥ̃

†
iM̃i,

Υ̃iΥ̃
†
iM̃i − M̃i = 0,

Υ̃i > 0,

(21)

in which

Υ̃i = C′
i





L
∑

j=1

ρi,jXj



Ci + σ2D′
i





L
∑

j=1

ρi,jXj



Di + R̃i, (22)

M̃i = C′
i





L
∑

j=1

ρi,jXj



Ai + σ2D′
i





L
∑

j=1

ρi,jXj



Bi + L̃i. (23)

Define PN
i (k) = XN

i (k) + P̃i. It is easy to verify that PN
i (k) satisfies the GDRE-MJ (6) in [25] and

monotonically increasing with respect to N and bounded. Therefore, there exists a constant Pi satisfying

Pi = lim
N→∞

XN
i (k) + P̃i = Xi + P̃i.

Obviously, Pi satisfies GARE-MJ (3). Moreover, for the arbitrariness of P̃i and Xi > 0, we can obtain
that Pi > P̃i, i.e., Pi is the maximal solution to the GARE-MJ (3). The proof is complete.

Remark 2. From the process of the above proof, it yields that the solvability of the GARE-MJ (3) is
equal to that of the NGARE-MJ (21).

Actually, under Assumption 1, the conclusion that the solution to NGARE-MJ (21) is strictly positive
definite can be further illustrated.
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Lemma 1. Let Assumption 1 be satisfied and S 6= ∅. If the system (1) is mean-square stabilizable, then
the solution X = (X1, . . . , XL) to NGARE-MJ (21) is strictly positive definite, i.e., Xi > 0, i = 1, . . . , L.
Proof. From Theorem 1, we know that XN

i (k) is positive semi-definite, thus, its limit Xi is also positive
semi-definite, i.e., Xi > 0. Now we verify Xi > 0. If not, there must exist nonzero vector x0 such that
E[x′

0Xix0] = 0.
Define the Lyapunov function as

VX(k, xk) = E[x′
kXθkxk], k > 0. (24)

So we have

N
∑

k=0

[

VX(k + 1, xk+1)− VX(k, xk)
]

= E
[

x(N + 1)′Xθkx(N + 1)− x′
0Xθkx0

]

= −
N
∑

k=0

E
[

x′
kQ̃θkxk + x′

kL̃
′
θk
uk + u′

kL̃θkxk + u′
kR̃θkuk

]

= −
N
∑

k=0

E
[

x′
kQ̃θkxk + x′

kL̃
′
θk
F̃θkxk + x′

kF̃
′
θk
L̃θkxk + x′

kF̃
′
θk
R̃θk F̃θkxk

]

= −
N
∑

k=0

E
[

x′
k(Q̃θk + L̃′

θk
F̃θk + F̃ ′

θk
L̃θk + F̃ ′

θk
R̃θk F̃θk)xk

]

= −
N
∑

k=0

E
[

x′
kQ̄θkxk

]

6 0, (25)

where uk = F̃θkxk = −Υ̃†
θk
M̃θkxk is used in the above equations. Obviously,

0 6

N
∑

k=0

E{x′
kQ̄ixk} = −E[x(N + 1)′Xix(N + 1)] 6 0,

which implies that

N
∑

k=0

E{x′
kQ̄ixk} = 0,

i.e.,

Q̄
1
2

i xk = 0. (26)

Following [26], we know that the exact observable of (Ā, B̄, Q̄
1
2 ) can be deduced by the exact observable

of (A,B, Q̃
1
2 ), in which Ā = Ai +CiF̃i, B̄ = Bi +DiF̃i. Therefore, from (26), it yields that x0 = 0 which

is contrary with x0 6= 0. Hence, we have Xi > 0.
The above conclusion will be useful to illustrate the following stabilization result.

Theorem 2. Let Assumption 1 be satisfied and S 6= ∅. Then the closed-loop system (1) is mean-square
stabilizable if and only if the GARE-MJ (3) has a solution P = (P1, . . . , PL), which is also the maximal
solution to the GARE-MJ (3). On such condition, the optimal stabilizing solution can be derived as

u∗
k = Fixk, i = 1, . . . , L, (27)

where

Fi = −



C′
i





L
∑

j=1

ρi,jPj



Ci + σ2D′
i





L
∑

j=1

ρi,jPj



Di +Ri





†
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×



C′
i





L
∑

j=1

ρi,jPj



Ai + σ2D′
i





L
∑

j=1

ρi,jPj



Bi



 . (28)

Moreover, the optimal cost functional is

J∗ = E[x′
0Pθ0x0]. (29)

Proof. (⇐=) For illustrating the mean-square stabilizablity of closed-loop system (1), take any P̃ ∈ S. In
view of Remark 2, we have that the NGARE-MJ (21) has a positive definite solution X = (X1, . . . , XL),
i.e., Xi > 0, i = 1, . . . , L. And P = X + P̃ . In the sequence, we will show that the following system

xk+1 = (Aθk + CθkFθk)xk + ωk(Bθk +DθkFθk)xk (30)

is mean-square stabilizable. Considering the fact that Fi = F̃i (i = 1, . . . , L), it yields that the stabiliza-
tion for the system (1) with uk = Fθkxk is equivalent to that with uk = F̃θkxk. Now, take consideration
of the following Lyapunov function as

VX(k, xk) = E[x′
kXθkxk], k > 0. (31)

Since Xθk = Xi with θk = i, i = 1, . . . , L, then VX(k, xk) > 0. So we have

VX(k + 1, xk+1)− VX(k, xk) = E
{

x′
k+1Xθk+1

xk+1 − x′
kXθkxk

}

= −E
{

x′
kQ̃ixk + x′

kL̃
′
iuk + u′

kL̃ixk + u′
kR̃iuk

}

= −E

{[

xk

uk

]′ [

Q̃i L̃′
i

L̃i R̃i

][

xk

uk

]}

6 0, (32)

where Q̃i, L̃i, R̃i are defined in (6).
From Eq. (32), we can see that VX(k, xk) is non-increasing with respect to k. That implies VX(k, xk) 6

VX(0, x0), i.e., VX(k, xk) is bounded. Therefore, limk→+∞ VX(k, xk) exists.
Now for any integer m > 0, taking summation from k = m to k = m +N on both sides of the above

formulation, we can obtain that

VX(m+N + 1, x(m+N + 1))− VX(m,x(m)) = −
m+N
∑

k=m

E

{[

xk

uk

]′ [

Q̃i L̃′
i

L̃i R̃i

][

xk

uk

]}

. (33)

In view of the convergence of VX(k, xk), when we take limitation of m on both sides of the aforementioned
equation, the following result can be derived:

− lim
m→∞

m+N
∑

k=m

E

{[

xk

uk

]′ [

Q̃i L̃′
i

L̃i R̃i

][

xk

uk

]}

= lim
m→∞

[V1(m+N + 1, x(m+N + 1))− V1(m,x(m))]

= 0. (34)

Further considering that the optimal cost function of J̃N is E[x′
0X

N
θ0
x0] > 0, via a time-shift of length of

m, it yields that

0 = lim
m→∞

m+N
∑

k=m

E

{[

xk

uk

]′ [

Q̃i L̃′
i

L̃i R̃i

][

xk

uk

]}

> lim
m→∞

E[x′
mXm+N

θm
xm]

= lim
m→∞

E[x′
mXN

θ0
xm]

> 0. (35)
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Obviously, it implies that limm→∞ E[x′
mXN

θ0
xm] = 0. On the ground of the positive definiteness of XN

θ0
,

it is easy to verify that limm→∞ E[x′
mxm] = 0. That is to say that the controller uk = F̃θkxk = Fθkxk

stabilizes system (1) in the mean square sense.
Lastly, we show the optimal controller and optimal cost. Define

VP (k, xk) = E[x′
kPθkxk], k > 0. (36)

Therefore,

N
∑

k=0

[VP (k + 1, xk+1)− VP (k, xk)]

=
N
∑

k=0

E
[

(uk +Υ†
θk
(k)Mθk(k)xk)

′Υθk(k)(uk +Υ†
θk
(k)Mθk(k)xk)

]

−
N
∑

k=0

E[x′
kQθkxk + u′

kRθkuk], (37)

that is,

JN = E[x′
0Pθ0x0] +

N
∑

k=0

E
[(

uk +Υ†
θk
(k)Mθk(k)xk

)′
Υθk(k)

(

uk +Υ†
θk
(k)Mθk(k)xk

)]

, (38)

where Υθk(k) and Mθk(k) are defined as (7) and (8) in [27].
Thus the infinite cost function can be obtained as the following form on account of the mean-square

stabilizable of system (1):

J = E[x′
0Pθ0x0] +

∞
∑

k=0

E
[(

uk +Υ†
θk
Mθkxk

)′
Υθk

(

uk +Υ†
θk
Mθkxk

)]

. (39)

Hence, it is easy to conclude that the optimal controller is u∗
k = −Υ†

θk
Mθkxk and furthermore the

corresponding optimal cost is J∗ = E[x′
0Pθ0x0].

(=⇒) See the proof of Theorem 1.

Remark 3. With regard to the infinite case, some previous papers have obtained good results, such
as [13], where they mainly discussed the existence of mean-square stabilizing solution to the generalized
coupled algebraic Riccati equations, and moreover, gave a necessary and sufficient condition based on the
assumption that the system is stabilizable. Compared with it, the above results discussed the stabilization
of the system, which is another important point of view.

4 Numerical example

A numerical example will be given in this section to further illustrate our results. Now consider
system (1) with the following coefficients:

A1 =
1

2
, B1 = −1

2
, C1 =

1

2
, D1 = −1

2
, Q1 = −1, R1 = −3;

A2 =
1

4
, B2 = −1

4
, C2 =

1

4
, D2 = −1

4
, Q2 = 20, R2 = 0.

The transition probabilities of the Markov chain {θk; k = 1, 2, . . .} taking values in {1, 2} are ρ11 = 0.2
and ρ22 = 0.6. The variance of system noise is 1.

By simply computing we know that

Q̃1 = −0.9P̃1 + 0.4P̃2 − 1, L̃1 = 0.1P̃1 + 0.4P̃2, R̃1 = 0.1P̃1 + 0.4P̃2 − 3,

Q̃2 = 0.05P̃1 − 0.925P̃2 + 20, L̃2 = 0.05P̃1 + 0.075P̃2, R̃2 = 0.05P̃1 + 0.075P̃2.

Firstly, we calculate the solution of set S. In the case of R̃2 = 0, i.e., P̃1 = − 3
2 P̃2, it yields that

Ker(R̃2) ⊆ (KerC2 ∩ KerD2) is not satisfied. Hence, R̃2 6= 0. In this situation, by Schurs Lemma, the
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Figure 1 (Color online) The solution set. Figure 2 (Color online) Simulation for the state trajectory

E[x′

kxk].

matric inequality in set S can be written as











































−0.1P̃ 2
1 + 2.6P̃1 − 1.6P̃2 − 0.4P1P̃2 + 3 > 0,

−0.075P̃ 2
2 + P̃1 + 1.5P̃2 − 0.05P̃1P̃2 > 0,

0.1P̃1 + 0.4P̃2 − 3 > 0,

0.05P̃1 + 0.075P̃2 > 0,

−0.9P̃1 + 0.4P̃2 − 1 > 0,

0.05P̃1 − 0.925P̃2 + 20 > 0.

(40)

We can obtain the solution set of the above inequalities shown as Figure 1 by using MATLAB tool.
Further it is obvious to see that for any P̃ = (P̃1, P̃2) in above solution set, the condition of Ker(R̃i) ⊆
(KerCi ∩ KerDi), i = 1, 2 is satisfied. Therefore, S 6= ∅ and the solution set is expressed as in Figure
1. And the condition of Assumption 1 can be easily tested. Further the GARE-MJ (3) can be solved
as Pmax = (

√
103 − 11, 20). Therefore, F1 = −1.61 and F2 = −1. When θk = 2, that is, the optimal

controller is uk = −xk, in this case xk = 0, and obviously the system is stabilized in the mean square
sense. On condition of θk = 1, the optimal controller can be given as uk = −1.61xk and the simulation
result is shown in Figure 2. It can be seen that the state xk is stabilized with the optimal controller as
expected.

5 Conclusion

In this paper, we discussed the stabilization problem for discrete-time MJLSs with multiplicative noise
and indefinite weighting matrices. The necessary and sufficient conditions that stabilize the discrete-time
MJLSs in the mean square sense with indefinite weighting matrices in the cost have been obtained firstly.
Evidently, under the basic assumption that the system is exactly observable, based on linear matrix
inequality and kernel restrictions, the stabilization of Markov jump systems is equivalent to the existence
of the maximum solution to the GARE-MJ. Finally, an example was given to illustrate the correctness
of the main results.
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