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Abstract A bionic robotic fish has great potential application prospect. High maneuverability swimming

control of a bionic robotic fish has been one of the research hotspots in the robotic fish field. In this paper,

an iterative learning method has been proposed to solve the trajectory tracking control problem of robotic

fish swimming. First, a dynamic model of the multi-joint bionic robotic fish is established. By considering

a three-joint robotic fish as an example, the unified expression of the dynamic equation of the three-joint

bionic robotic fish is obtained by Lagrange method. Second, the iterative learning controller for controlling

the bionic robotic fish is designed. Then the convergence of the iterative learning controller is proved.

Finally, the trajectory tracking control simulation experiment based on iterative learning is conducted. The

simulation results show that the trajectory tracking control method based on iterative learning for a bionic

robotic fish is effective.
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1 Introduction

After hundreds of millions of years of evolution, fish has extremely high swimming skills with high propul-

sive efficiency and maneuverability [1–3]. Inspired by the fish, a robotic fish has become an important

research focus in bionic robotics. Namely, robotic fish combines fish propulsion mechanisms with the

robotics, providing new ideas for the development of underwater vehicles [4, 5]. Compared with the tra-

ditional underwater propellers, a robotic fish has the characteristics of small size, high efficiency, good

maneuverability and low noise so that it has broad potential application prospects [6–8]. In many coun-

tries worldwide, such as the United States, Japan, the United Kingdom, and China, the bionic robotic fish

has been researched since the end of the 20th century. The research includes a wide range of domains,

such as bionic shape design, drag reduction mechanisms, prototype development, dynamics modeling,

motion control, target tracking, and multi-robotic fish coordination, and others [1].

Fish in nature, such as tuna and pike, is propelled by the back of the body and tail fins when swimming.

There are body waves propagating from their head to tail and their bodies regularly oscillate from side

to side. Consequently, fish swims forward against the reaction of water. A bionic robotic fish should be

bionic not only in shape, but also in propulsion mechanism. Therefore, a bionic robotic fish uses body

wave to propel, which makes its swimming closer to that of a natural fish [9–13]. Coene [14] applied the
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slender body theory to flexible fish-like bodies. These slender bodies had a constant forward velocity

perpendicular to the wave crest, and they traveled at a constant depth. Yu et al. [15] presented a novel

formula describing the traveling body wave in fish swimming, offering an enhanced understanding of

the locomotion and body shape by the body and/or caudal fin (BCF) modes. Following the fish body

wave function proposed by Lighthill, we design a new central pattern generation (CPG) controller. This

controller can reduce the number of parameters and obtain a fish body wave curve.

Trajectory tracking and velocity tracking are key issues of robotic fish to accomplish complex tasks

and adapt to new environments. There are many researches on the speed trajectory tracking of a robotic

fish [16–21]. Yu et al. [16] used an open-loop control method to modify the gait parameters so as to

achieve the tangential speed tracking of robotic fish. Sproewitz et al. [17] combined the gradient-free

online optimization algorithm with the CPG model to track the speed of robotic fish. Li et al. [18, 19]

applied an iterative learning control method to a two-link bionic robotic fish to achieve accurate real-

time speed tracking. Iterative learning control is an important type of learning control and it has great

potential to be used in systems with repetitive motion [20]. In [21], a novel data-driven method was used

to establish the nonlinear mapping between the tail angular motion and thrust for a multi-link bionic

robotic fish to achieve accurate velocity tracking.

In the aspect of trajectory tracking control, Morgansen et al. [22] proposed a trajectory tracking

algorithm of bionic robotic fish based on the geometric mechanics, and they realized the open-loop and

closed-loop swimming of bionic robotic fish. In [23], an adaptive switching learning control method, called

the adaptive switching learning PD control, was proposed. It was used for the trajectory tracking of robots

in the iterative operation mode. The convergence speed of this method was faster. Zou et al. [24] realized a

cooperative control of the multi-bionic robotic fish trajectory tracking based on the neural network sliding

mode control method. In [25], an adaptive neural network switching control strategy was proposed. The

proposed system included an adaptive switching neural controller and a robust compensation control law.

The trajectory tracking of the robot was realized. Further a reinforcement learning method was combined

with the behavior-based control structure in [26]. The global trajectory performance was simulated and

verified. Liu et al. [27] proposed a control approach for a dolphin robot to follow a predefined path, which

involved a line-of-sight (LOS)-based planner, a sliding mode controller, and a fuzzy strategy. Most of

the existing robotics cannot freely adjust their three-axis attitude, which has an adverse effect on the

free-swimming propulsion and plausible applications [28]. Therefore, it is necessary to design a control

system for robots.

To avoid invalid spontaneous behavior and ensure high learning efficiency, learning algorithms rely

on relevant knowledge or laws. Ji et al. [29] determined the controllability directly from the topology

structures of communication graphs. They proposed the concept of destructive controllability nodes,

which indicated that the difficulty in graphical characterization turns out to be the identification of

topology structures of destructive controllability nodes. In iterative learning, it is usually to use a

method that can obtain the knowledge in learning processes to improve the speed of subsequent learning.

For instance, a learning law is designed with forgetting factors and feedback configuration. In addition,

the tracking performance of a system under interference should be considered.

The remainder of this paper is organized as follows. A fish body wave model for multi-joint robotic fish

is analyzed in Section 2. In Section 3, dynamics modeling based on the Lagrangian method is presented.

An iterative learning controller for the bionic robotic fish designed to realize trajectory tracking of fish

body wave is introduced in Section 4. In Section 5, simulations and experiments are provided. Finally, a

summary is given in Section 6.

2 Robotic fish body wave equation

According to the research on fish behavior, there is a traveling wave from the back neck of the fish body

to the tail during fish propulsion. Namely, fish transforms the reaction force of water to the fish body

into forwarding the propulsion force and lateral force through body fluctuation. The lateral components
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Figure 1 Three-joint bionic robot fish multi-link model.

of the fish body wave are reduced to each other. Therefore the fish gains forward propulsion. The fish

body wave model was proposed by Lighthill based on the slender body theory [30], and it is expressed as

follows:

y(x, t) = (c1x+ c2x
2)sin(kx+ ωt), (1)

where y denotes the deviation of the fish body from the body axis, which is a function of the axial position

x and time t of the fish body; c1 and c2 denote the envelope coefficient; k is the body wave number; and

ω represents the fish body wave frequency. The fish body wave is a continuous wave, which is synthesized

by the fish body envelope and sine wave. However, the input signal to the robotic fish steering gear

should be a discrete periodic signal. Therefore, the fish body wave equation is discretized to obtain the

control signal as follows:

Θj = Ajsin

(

2π
i

N
+ ψj

)

, (2)

where Θj , Aj and ψj denote the swing position, amplitude and initial phase of the joint j of a bionic

robotic fish, respectively; N is the number of movements of the bionic robotic fish in one cycle, and

i = 1, 2, . . . , N is the i-th action of the bionic robotic fish in one action cycle.

3 Dynamics modeling of robotic fish

To achieve high maneuverability and high-efficiency swimming of a bionic robotic fish, it is necessary

to establish a dynamic model of the bionic robotic fish to obtain the relationship among the moment,

inertia and angular velocity. Because this paper does not study the movement of robotic fish, only the

two-dimensional plane is considered in the fish model building process. A multi-joint bionic robotic fish

can be regarded as a multi-link robot. By considering a three-joint bionic robotic fish developed in our

lab, a dynamic model based on the Lagrange method is established. The three-joint robotic fish can be

regarded as an oscillating multi-link structure. By assuming that the point mass at the end of each link

represents the mass of the whole link, a multi-joint model of the robotic fish is established and it is shown

in Figure 1.

Because a bionic robotic fish swims in the water, the gravity and buoyancy are approximately balanced.

Thus, the effects of gravity and buoyancy can be ignored. Set up a Lagrangian function L = K − P ,

where K = 1
2mv

2, and P = mgh. P denotes the potential energy, that is P = 0. Further, the dynamic

equation of the system can be expressed as Fi =
d
dt

∂L
∂q̇i

−
∂L
∂qi

, where Fi represents the force or moment,

q̇i denotes the angular displacement, and qi is the angular velocity. The K value of each joint of a bionic

robotic fish is determined below.

For joint 1,
{

x1 = l1 sin q1,

y1 = −l1 cos q1,
(3)
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{

ẋ1 = l1 cos q1q̇1,

ẏ1 = −l1 sin q1q̇1.
(4)

Then,

K1 =
1

2
m1l

2
1q̇

2
1 . (5)

For joint 2,
{

x2 = l1 sin q1 + l2 sin(q1 + q2),

y2 = −l1 cos q1 − l2 cos(q1 + q2),
(6)

{

ẋ2 = l1 cos q1q̇1 + l2 cos(q1 + q2)(q̇1 + q̇2),

ẏ2 = l1 sin q1q̇1 + l2 sin(q1 + q2)(q̇1 + q̇2).
(7)

Then,

K2 =
1

2
m2l

2
1 q̇

2
1 +

1

2
m2l

2
2(q̇

2
1 + 2q̇1q̇2 + q̇22) +m2l1l2 cos q2(q̇

2
1 + q̇1q̇2). (8)

For joint 3,
{

x3 = l1 sin q1 + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3),

y3 = −l1 cos q1 − l2 cos(q1 + q2)− l3 cos(q1 + q2 + q3),
(9)

{

ẋ3 = l1 cos q1q̇1 + l2 cos(q1 + q2)(q̇1 + q̇2) + l3 cos(q1 + q2 + q3)(q̇1 + q̇2 + q̇3),

ẏ3 = l1 sin q1q̇1 + l2 sin(q1 + q2)(q̇1 + q̇2) + l3 sin(q1 + q2 + q3)(q̇1 + q̇2 + q̇3).
(10)

Then,

K3 =
1

2
m3l

2
1 q̇

2
1 +

1

2
m3l

2
2(q̇

2
1 + 2q̇1q̇2 + q̇22) +

1

2
m3l

2
3(q̇

2
1 + q̇22 + q̇23 + 2q̇1q̇2 + 2q̇1q̇3 + 2q̇2q̇3)

+m3l1l2 cos q2(q̇
2
1 + q̇1q̇2)+m3l1l3 cos(q2 + q3)(q̇

2
1 + q̇1q̇2 + q̇1q̇3)

+m3l2l3 cos q3(q̇
2
1 + 2q̇1q̇2 + q̇1q̇3 + q̇2q̇3 + q̇22). (11)

Therefore, the kinetic energy of the whole bionic robotic fish is given by

K = K1 +K2 +K3

=
1

2
(m1+m2+m3)l

2
1 q̇

2
1 +

1

2
(m2 +m3)l

2
2(q̇

2
1 + 2q̇1q̇2 + q̇22)

+
1

2
m3l

2
3(q̇

2
1 + q̇22 + q̇23 + 2q̇1q̇2 + 2q̇1q̇3 + 2q̇2q̇3)

+ (m2 +m3)l1l2 cos q2(q̇
2
1 + q̇1q̇2) +m3l1l3 cos(q2 + q3)(q̇

2
1 + q̇1q̇2 + q̇1q̇3)

+m3l2l3 cos q3(q̇
2
1 + 2q̇1q̇2 + q̇1q̇3 + q̇2q̇3 + q̇22). (12)

Therefore, the Lagrangian function L = K − P = K. Finally, according to the dynamic equation

Fi =
d
dt

∂L
∂q̇i

−
∂L
∂qi
, i = 1, 2, . . . , n, the dynamic equation of the robotic fish can be expressed as


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. (13)

That is, for the multi-link robotic fish, its dynamic equation can be written as

D(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +G(q(t), q̇(t)) + Fa(t) = F (t). (14)
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As mentioned previously, the influence of gravity is ignored; therefore, we have G(q(t), q̇(t))=0. To

facilitate the simulation, the dynamic equation of the j -th iteration of the bionic robotic fish is given as

D(qj(t))q̈j(t) + C(qj(t), q̇j(t))q̇j(t) +G(qj(t), q̇j(t)) + Fa(t) = F j(t), (15)

where j denotes the number of iterations, t ∈ [0, tf ], D(qj(t)) ∈ R
n×n is the inertia terms, C(qj(t), q̇j(t)) ∈

R
n means the centrifugal and Coriolis force, G(qj(t), q̇j(t)) ∈ R

n denotes the gravity term, Fa(t) ∈ R
n is

the repeatable unknown interference, and lastly, F j(t) ∈ R
n denotes the control input.

4 Iterative learning controller design

The PID type iterative learning control law is widely used, especially for trajectory tracking, which is

why the PD control law is selected to be used in this study. For the dynamic equation of a bionic robotic

fish given by (14), the iterative learning control law is as follows:

F j(t) = Kj
pe

j(t) +K
j
dė

j(t) + F j−1(t), j = 0, 1, . . . , N. (16)

The gain switching rule in the control law is shown as

Kj
p = β(j)K0

p , K
j
d = β(j)K0

d , β(j + 1) > β(j), (17)

where F−1(t) = 0, ej(t) = qd(t)− qj(t), ėj(t) = q̇d(t)− q̇j(t), K0
p , K

0
d are the initial diagonal gain arrays

in the PD type control and they are all positive and definite, and β(j) is the control gain and it satisfies

the condition β(j) > 1.

It is assumed that Eq. (15) satisfies the following conditions: the desired trajectory qd(t) is third-

orderly steerable in the interval t ∈ [0, tf ]; the iterative process satisfies the initial condition of qd(0) −

qj(0) = 0, q̇d(0) − q̇j(0) = 0, ∀j ∈ N; and D(qj(t)) is a symmetrically positive bounded matrix, while

Ḋ(qj(t)) − 2C(qj(t), q̇j(t)) is a diagonally symmetric matrix, so xT(Ḋ(qj(t)) − 2C(qj(t), q̇j(t)))x = 0,

where T stands for transpose operation. The iterative learning control law given by (16) is used to

implement

qj(t)
j→∞
→ qd(t), q̇j(t)

j→∞
→ q̇d(t).

Next, the convergence of the iterative learning controller given by (16) is analyzed. The Lyapunov

method is adopted to analyze the convergence of controllers. This method has been widely used in the

design and analysis of dynamic system controllers.

The Lyapunov function can be defined as follows:

V j =

∫ t

0

exp(−ρτ)yj
T

K0
dy

jdτ > 0, (18)

where K0
d > 0 denotes the initial gain of the D control term in the PD control and ρ is a positive real

number. By analyzing whether the difference between V j+1 and V j satisfies the condition of V j+1−V j 6

0, the tracking error of the i-th iteration tends to be zero, which proves that the controller converges.

Define yj(t) = ėj(t) + Λej(t), and owing to V j+1 =
∫ t

0
exp(−ρτ)(yj+1)TK0

dy
j+1dτ , we obtain

∆V j = V j+1
− V j

=

∫ t

0

exp(−ρτ)(δyj
T

+ yj)TK0
d(δy

jT + yj)dτ −

∫ t

0

exp(−ρτ)yj
T

K0
dy

jdτ

=

∫ t

0

exp(−ρτ)(δyj
T

K0
dδy

j + 2δyj
T

K0
dy

j)dτ

=
1

β(j + 1)

{
∫ t

0

exp(−ρτ)δyj
T

K
j+1
d δyjdτ − 2

∫ t

0

exp(−ρτ)δyj
T

Dδẏjdτ

−2

∫ t

0

exp(−ρτ)δyj
T

((C(t) + C1(t)
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−ΛD +K
j+1
d )δyj + (F − Λ(C(t) + C1(t)− ΛD))δej)dτ

}

, (19)

where C1(t) is defined as the sum of Ct to q̇ and Gt to q̇.

Through the division of divisional points and similar items, we can obtain the following relationships:

∆V j
6

1

β(j + 1)

{

− exp(−ρτ)δyj
T

Dδyj(t)− ρ

∫ t

0

exp(−ρτ)δyj
T

Dδyjdτ

− Λ exp(−ρτ)δej
T

lpδe
j
− ρΛ

∫ t

0

exp(−ρτ)δej
T

lpδe
jdτ

−

∫ t

0

exp(−ρτ)ωdτ

}

. (20)

Further, using the Cauchy-Schwarz inequality, ∆V j 6 0 is obtained, that is, V j+1 6 V j . So when

j → ∞, we can obtain limx→∞ ej(t) → 0, ėj(t) → 0, t ∈ tf .

5 Simulations and experiments

5.1 Iterative learning simulations

In order to verify the effectiveness of the proposed iterative learning-based trajectory tracking control

method, the simulations are conducted to track the fish body wave of each joint of a bionic robotic fish.

The simulation steps are as follows:

(1) Set the number of iterations, and generate the desired speed trajectory and the initial control

target;

(2) By using the initial position, determine the initial output of the system at the initial control target,

and the corresponding initial state at the initial speed;

(3) Input control signals to the system, and simultaneously sample and record the output and system

error;

(4) Calculate the new input using the last error and iterative information according to the correspond-

ing learning law;

(5) Check the new error, stop the iterative operation when the tracking error is less than a preset value

or when the maximum number of iterations is reached; otherwise return to step (3).

In this subsection, the simulations of the three-joint bionic robotic fish are presented. The expected

trajectories of the three joints are set as q1 = sin(2t), q2 = cos(2t), q3 = sin(3t), respectively. The

parameters of the bionic robotic fish are m1 = 10, m2 = 8, m3 = 7, l1 = 0.5, l2 = 0.5, l3 = 0.5, and the

results are shown in Figure 2.

As the number of iterations increases, the tracking trajectory gradually converges to the desired tra-

jectory. Thus, the joint motions of the bionic robotic fish could eventually track the fish body wave. The

tracking error gradually approaches to zero, which verifies the effectiveness of the proposed scheme for

bionic robotic fish tracking based on the fish body wave by using the iterative learning control.

5.2 Swimming experiment

The joint iteration data generated after the above iterative learning simulations are input into the con-

troller in the form of an array, as shown in Table 1.

Figure 3 shows the experimental video snapshots using the post-learning data to drive a bionic robotic

fish. The experimental results reveal that both the swing amplitude and the speed increase owing to the

iterative learning of the fish body wave. This conclusion is consistent with the expected result of the fish

body wave evolution with time.
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Figure 2 The tracking trajectories of the 10th iteration (a, c, e) and their corresponding convergent tracking errors (b,

d, f) of joints 1, 2, and 3, respectively.

6 Conclusion

The learning control for a bionic robotic fish can enhance the adaptability of the bionic robotic fish to the

aquatic environment. In this paper, a dynamic model of the three-joint bionic robotic fish was established.

The iterative learning controller was designed. The convergence of the iterative learning controller was

analyzed. Both the simulations and experiments of learning control were performed. The results showed
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Table 1 Joint angle values (rad)

q1 q2 q3

0.018599 0.982761 0.668262

0.019931 0.982589 0.671295

0.021075 0.982439 0.674106

0.022140 0.982299 0.676608

0.023320 0.982147 0.679044

0.024707 0.981975 0.681737

0.025980 0.981793 0.685615

0.027107 0.981623 0.687857

0.028215 0.981471 0.690092

0.029449 0.981322 0.693007

0.030827 0.981151 0.696253

0.032189 0.980964 0.699150

0.033389 0.980785 0.701525

0.034488 0.980627 0.703754

0.035652 0.980471 0.706347

0.036927 0.980300 0.709420

0.038324 0.980108 0.712490

0.039721 0.979917 0.715080

0.040961 0.979745 0.717330

0.042073 0.979586 0.719713

0.043216 0.979418 0.722542

t=0 s t=2 s t=4 s

t=6 s t=8 s t=10 s

Figure 3 (Color online) Screenshots of bionic robotic fish swimming.

that the iterative learning method proposed for bionic robotic fish control is feasible. The proposed

method can be used to learn fish behavior in an unfamiliar environment. In the near future, we expect

to achieve autonomous swimming control in dynamic aquatic environments with some disturbances that

will substantially promote large-scale applications of the bionic robotic fish.
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