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Abstract To improve the robotic flexibility and dexterity in a human-robot collaboration task, it is im-

portant to adapt the robot impedance in a real-time manner to its partner’s behavior. However, it is often

quite challenging to achieve this goal and has not been well addressed yet. In this paper, we propose a

bio-inspired approach as a possible solution, which enables the online adaptation of robotic impedance in the

unknown and dynamic environment. Specifically, the bio-inspired mechanism is derived from the human mo-

tor learning, and it can automatically adapt the robotic impedance and feedforward torque along the motion

trajectory. It can enable the learning of compliant robotic behaviors to meet the dynamic requirements of

the interactions. In order to validate the proposed approach, an experiment containing an anti-disturbance

test and a human-robot collaborative sawing task has been conducted.
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1 Introduction

In the society of robotics, human-robot collaboration systems have already been known to play an im-

portant role in a number of task scenarios including collaborative sawing, carrying, and assembling [1–3].

Human-robot collaboration systems come with many benefits. The most important one is that it brings

together the advantages and strengths of both the human side (e.g., flexibility, cognition, understanding

the circumstances, decision making) and the robotic side (e.g., superior efficiency, high accuracy) [4–6].

However, the increasing critical requirements of today’s high-mix, low-volume, and large-variant indus-

trial manufacturing lines cannot be satisfied by the traditional fully robotic manufacturing systems or

by fully human handwork; thus, human-robot collaboration is a promising solution to this dilemma with

the integration of the human flexibility and adaptability to bio-robotic manufacturing systems [7, 8].

In this domain, one of the main problems is how to make the robot collaborate with its human

partner in a compliant manner. This is because, on one hand, the compliant collaboration is quite

important to ensure the safety of both the human and the robot when doing a task in a physical dynamic

environment [9]. On the other hand, learning to work compliantly with the human partner for a particular

manipulation task is indeed a demand for the robot. As a matter of fact, it is usually expected for the

robot to be capable of compliant manipulation in a physical interaction [10], regardless of whether or not

they collaborate with humans. However, in a human-robot collaboration scenario, this kind of compliance

demand becomes a crucial problem because the robot and its human partner have to adapt to each other

during the task execution, to satisfy the constraints in terms of motion and force domains [11, 12].
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Humans adapt arm impedance for sawing  

Robot learns the adaptation strategy  

Figure 1 (Color online) The overview of the proposed approach. In a human-human collaboration scenario one human

partner will adapt his arm impedance/force to another partner in a real time manner, thus enabling flexible execution of

the task. Our approach can allow the robot to learn the human impedance online adaptation strategy and to implement it

in a human-robot collaboration system.

A number of approaches have been introduced in the field of robotic control to address the above

problem [13–17]. Among these approaches, impedance adaptation has presented its effectiveness in a

large number of task scenarios (see, e.g., [18–20]), and it has been widely discussed in the recent decades.

The variable impedance controller that represents a relationship between the position and force with

variable gains can enable the robot to behave in a compliant manner, i.e., larger gains correspond to

higher impedance and vice versa. The only problem is how to obtain the desired impedance profiles.

To date, there have been several approaches proposed to achieve this goal. Typically, bio-signals (i.e.,

electromyography (EMG)) have been widely used to account for the variable impedance in a human-

robot interaction system [21–23]. The stiffness of the human arm is first estimated based on the EMG

signals and then transferred to the robot through a proper stiffness mapping mechanism. This approach

can enable the transfer of the impedance features of the human partner to the robot. However, the

stiffness estimation follows a complicated and time-consuming procedure, which makes it difficult to use

in a human-robot collaboration task. Reinforcement learning techniques have also been introduced to

learn variable stiffness profiles [24–26]. Stiffness profiles are initialized with constant values and refined

through a trial-and-error method and adapted based on the cost functions. However, it may be difficult

to define a proper cost function for this, which may result in requiring a large number of trials. More

importantly, it is quite different to apply this approach in a collaborative task because of the large

uncertainties potentially driven by the human partner. Another approach is to create a relationship

between the stiffness and interaction force collected from a force/torque sensor that is mounted onto the

robotic end-effector [27–30]. Often, this relationship can be encoded through machine learning techniques

such as the Gaussian mixture model and hidden Markov model [27]. An offline estimation procedure is

also required. The stiffness is learned based on the force signals, which suffer from the force noises.

In this study, we propose an online learning approach to address this problem. The proposed bio-

inspired approach is based on the biomimetic controller which is derived from the human motor learning

precipices [29, 30]. The impedance profiles are adapted along the motion trajectories through the in-

teraction between the human and the robot in an online manner. We verify our approach in a usual

collaborative scenario, i.e., a sawing task. The main idea of our approach is presented in Figure 1.

2 Methodology

In Section 2, we will show the impedance adaptation approach, based on the human-like biomimetic

control strategy.
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2.1 Impedance control model

For the human-robot collaboration task, i.e., sawing task, the configuration of the robotic arm is first

“fixed” using an impedance control model. The dynamic model of the robotic arm with N DOFs (degree

of freedoms) can often be expressed as [11, 30]

M(q)q̈ + C(q, q̇)q̇ +G(q) = τc + τe, (1)

where q and q̇ are the joint angle and the velocities of the robot arm, respectively. M(q) and G(q)

represent the robotic arm’s inertia matrix and gravity vector, respectively. C(q, q̇) represents the Coriolis

and centrifugal forces. τc and τe are the control torque and the external torque, respectively.

According to the human arm motor learning strategy, the control input τc can be defined as a feedfor-

ward term plus a feedback term:

τc = u+ v, (2)

where u and v are the feedforward torque and the feedback, i.e., impedance term, respectively. The

impedance term is defined as

v = Ke+Dė (3)

with
{

e = q0 − q,

ė = q̇0 − q̇,
(4)

where e and ė represent auxiliary angle and auxiliary velocity error vector, respectively. q0 and q̇0

represent the desired angle and velocity of a default posture, respectively. K and D are the joint stiffness

matrix and damping matrix, respectively, which are both diagonal as
{

K = diag{k1, k2, . . . , kN},

D = diag{d1, d2, . . . , dN}.
(5)

The elements of the stiffness matrix will be adapted based on the task situation, which will be detailed

in Subsection 2.2. The damping matrix is calculated according to the stiffness as Dt
ii = η

√

Kt
ii at each

time step, with the predefined positive constant coefficient η, and i = [1, 2, . . . , N ].

2.2 Biomimetic adaptive control law

The biomimetic controller developed in [29] is extended and utilized for the learning of the compliant

behaviors of a redundant robot manipulator with high-dimension DOFs. The graphic diagram of the

biomimetic controller is illustrated in Figure 2.

The following cost function was considered in [29] for the concurrently minimizing of the motion error

and the effort:

Jcost =
α

2
vTv +

N
∑

i=1

γiui, (6)

where α and γ are the N dimension parametric vectors. αi > 0 and γi > 0 account for the corresponding

ith joint’s impedance and feedforward torque, respectively. The first term represents the cost for motion

error, and the second term, i.e., the weighted sum of the feedforward, represents the cost for effort.

For the ith joint, the impedance term vi can be assumed as a linear function which increases in both

positive and negative directions. This assumption is inspired by one of the principles of the human motor

learning, which can be expressed as

vi = εi,+ + ζεi,−, ζ ∈ (0, 1), (7)

where εi,+ and εi,− denote the positive and negative directions, respectively, and they are determined by










εi = π(ei + δėi),

εi,+ = max(εi, 0),

εi,− = (−ε)i,+,

(8)
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Figure 2 (Color online) The diagram of the biomimetic controller.

where π and δ are positive coefficients, and ε is the sliding error vector.

The learning of (6) can be considered as a gradient descent problem, i.e.,

∆ut = ut+1 − ut = −
∂Jcost

∂u
, (9)

then yielding the following law:

∆ut = αvt − γ. (10)

Based on (7) and (8), the adaptation law can be divided into three parts: an antisymmetric part, a

symmetric part, and a bias.

∆ut =
α

2
(1− ζ)εt +

α

2
(1 + ζ) | εt | −γ (11)

with

| ε |= (| ε1 |, | ε2 |, . . . , | εN |). (12)

Accordingly, the following update law can be derived from the above cost function:

∆ut
i = αεti, (13)

∆Kt
ii = β | εti | −γi. (14)

A relaxation factor term is then set into the feedforward updating law, according to the consideration

that the robot joints lack fatigue properties. We consider the following relaxation factor:

∆ut = αεt −
1

exp(| εt |)
ut. (15)

Finally, we adapt the bias, i.e., γ, according to the sliding error at each time step rather than using a

constant vector.

γi =
a

1 + b | εi |
, (16)

where a and b are pre-defined positive constant coefficients. By using this equation, at each time step γi

can regulate the increment impedance of the corresponding joint based on the motion error. Thus, Eq.

(14) is modified as

∆Kt
ii = β | εti | −

a

1 + b | εti |
. (17)

This learning law may result in the positive values of the joint stiffness matrix, which makes no sense

in the real-word implementation. To avoid this problem, the elements of the stiffness matrix are adjusted

in a proper range by

Kt
ii =











Kmax
ii , if Kt

ii > Kmax
ii ,

Kmin
ii , if Kt

ii < Kmin
ii ,

Kt
ii, otherwise,

(18)

with the pre-set Kmax
ii and Kmin

ii in accordance with the robotic platform.

The complete updating process for the learning of the robotic compliant movement is summarized in

Algorithm 1. For more details about the biomimetic control law, please refer to [29].
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Algorithm 1 The online learning of the robotic compliant movement

Input: The desired robot arm posture (q0, q̇0);

Output: The computed joint torque command τ t
c
by (2) at each time step;

1: Initialize the stiffness and damping matrix as K0 = diag{0, 0, . . . , 0} and D0 = diag{0, 0, . . . , 0};

2: Initialize the feedforward vector as u0 = diag{0, 0, . . . , 0};

3: Set the constant coefficients π, δ, a, and b;

4: Set the constant parametric vectors α and β;

5: Set the stiffness range Kmax and Kmin;

6: for each time step t ∈ [1, T ] do

7: Get the current robot joint states q and q̇;

8: Compute the angle error and the velocity error according to (4);

9: Compute the sliding error according to (8);

10: Compute the vector γ according to (16);

11: Update the feedforward torque ut+1 = ut +∆u, using (15);

12: Update the stiffness matrix Kt+1 = Kt +∆K, using (17);

13: Adjust the stiffness values in a proper range based on (18);

14: Compute the damping matrix Dt+1;

15: Compute the impedance term vt+1;

16: Compute the joint torque τ t+1
c , using (2);

17: Send the joint torque command to the robotic joint motors;

18: end for

3 Experiment

3.1 Robotic platform

In our experiment, we use a Baxter robot with two arms as our robotic platform; one of the arms is

used to perform the tasks. The arm has 7 joints, i.e., two shoulder joints (S0 and S1), two elbow joints

(E0 and E1), and three wrist joints (W0, W1, and W2), as shown in Figure 3. An interface for direct

joint torque control is provided in the robot itself, which can make the implementation of the proposed

approach quite convenient. The robot is controlled in the robot operating system (ROS) with a control

rate of 1000 Hz.

3.2 Tasks

In this subsection, there have been two tasks performed, i.e., a test of the anti-disturbance task and a

collaborative sawing task.

3.2.1 Test of anti-disturbance

The first task is the anti-disturbance test. The goal of this task is to validate the ability against eternal

disturbance using the proposed approach. A human would increase his arm strength when external

disturbance exerts on this arm, which is significantly important for interactions with the environment.

We would like to illustrate if the robot is able to learn this human’s strength/impedance adaptability

using our approach.

The experimental set-up is shown in Figure 3(a). It shows that the robot’s partner applies disturbance

on the robot arm by shaking the arm irregularly. The settings of the parameters of this experiment are

π = 1.3, δ = 0.01, β = [1.0, 1.0, 0.4, 3.5, 0.3, 0.3, 0.5]T, α = [8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0]T, a = 0.1, b = 10,

Kmin = diag{5, 5, . . . , 5}, and Kmax = diag{200, 200, . . . , 200}.

The experimental results of the task are shown in Figures 3(b)–(h). They present the joint angle,

the measured torque, and the learned stiffness of the seven joints (i.e., S0, S1, E0, E1, W0, W1, and

W2), which correspond to the seven subplots. It can be clearly observed that the stiffness could increase

immediately to resist the disturbance by the human tutor once the robot arm configuration is in the

departure from the desired posture (from about 2 to 16 s), and the stiffness would decrease to the default

value to be compliant once the disturbance is removed, which is very similar to the human experience.

Aside from that, the stiffness profiles of the first four joints (i.e., S0, S1, E0, and E1) have been adapted

more largely than those of the last three joints (i.e., W0, W1, and W2). This can be explained by the
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Figure 3 (Color online) The set-up (a) and the results of the disturbance test of (b) joint S0, (c) joint S1, (d) joint E0,

(e) joint E1, (f) joint W0, (g) joint W1, and (h) joint W2.
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(a) (b)

Figure 4 (Color online) The experimental set-up for the sawing task. (a) The human partner actively pulls the saw. The

impedance of the robotic arm increases gradually from a small value to some extent. (b) The robot actively pulls the saw

back owing to the large impedance. The human partner relaxes his muscle strength in this phase.

fact that the first joints have been affected much more largely by the disturbance than the other three

joints.

3.2.2 Human-robot collaborative sawing

The second task we perform is a sawing task completed through the collaboration between the human

partner and the robot. Human-robot sawing is a typical task scenario where the robot’s flexibility

and adaptability are required. In a human-human sawing system, one partner must directly adapt his

arm strength to the other one in every cycle. Accordingly, they must collaborate well with each other;

otherwise, the task cannot be completed efficiently. A good performance of collaboration in “muscle”

space with each other is also needed in the human-robot sawing system.

The experimental set-up for this task is shown in Figure 4. It shows how the human partner collaborates

with the robot to saw a piece of wood during the execution of this task. One side of the saw is mounted

onto the end-effector of one of the robotic arms, and the wood is mounted onto the fixture which is

attached on the surface of a table. The settings for the sawing task are given as follows: π = 1.3,

δ = 0.008, β = [5.0, 2.0, 0.6, 0.2, 0.2, 0.24, 0.75]T, α = [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]T, a = 0.6, b = 12,

Kmin = diag{5, 5, . . . , 5}, and Kmax = diag{100, 100, . . . , 100}.

The experimental results are presented in Figure 5. Again, it presents the joint angle, the measured

joint torque, and the learned stiffness profiles of the seven joints of the robotic arm. First of all, the

robot’s adaptation behavior is presented as expected: the joints S1, E1, and W1 are mainly involved in

this task whose stiffness profiles, therefore, have been adapted, while those of the other three joints remain

at the default value because these four joints stay at the desired posture during the sawing process. It

can be observed that the stiffness profiles are adapted with the change of the joint angles in every cycle.

In the first half cycle, the human partner pulls the saw, and the robot follows the movement of the saw,

while the stiffness of the relevant joint increases because of the increasing angle error. When the robot

arm impedance becomes large to some extent, the robot arm would behave like a spring and pull the

saw back. This process can be seen as the second half cycle, during which the stiffness would decrease

to a small value. In this way, the human partner and the robot can collaborate well with each other to

complete the sawing task.

3.3 Discussion

In a human-robot interaction or collaboration scenario, the robot is expected to be capable of automati-

cally adapting its impedance/force to deal with the external disturbance from the environment including

humans or to meet the requirements of the tasks. The proposed approach has achieved this goal and

has enabled the robot with high DOFs to successfully acquire the humanlike adaptability with the help

of the biomimetic controller derived from the principles in human motor learning. The experimental
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Figure 5 (Color online) The experimental results of the sawing task. (a) Joint S1; (b) joint E1; (c) joint W0; (d) joints

S0, E0, W0, and W2.

results show that the robot has demonstrated the compliant behaviors. Additionally, the robot is able

to selectively increase/decrease the stiffness/force profiles of the appropriate joints to adapt to the task

situations, owing to the proposed stiffness learning mechanism.
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Compared with the state-of-the-art approaches in this domain, our approach can present several ad-

vantages. First of all, the efficiency of learning of stiffness is one of the main powerful points of our

algorithm. The impedance profiles can be learned in a real-time manner along with the movement trajec-

tories. The impedance is adapted according to the motion tracking performance, i.e., keeping the desired

posture in our case, and it can enhance this performance as well. A large number of trials would not be

required with our approach, while other approaches often require such trials (e.g., reinforcement learning

techniques).

Another advantage of the proposed approach is that it can enable simultaneous learning of the

impedance profiles and the feedforward torques. However, other approaches only enable the separate

learning of one of the two terms. Although the feedforward torque is not particularly emphasized in our

usage, it can indeed play a great role in the domain of skill generalization. Therefore, our approach can

potentially be applied in both skill learning and skill generalization of robotic compliant movements.

Additionally, we do not need to add a force sensor onto the end-effector of the robotic arm to collect

the interaction force data between the robot and its environment for adaptation of the robotic arm

impedance, while most of the state-of-the-art approaches need to do so.

4 Conclusion and future work

In this study, we proposed a bio-inspired approach that could enable the robot to learn compliant be-

haviors from the interactions and collaborations with the human partner. A biomimetic control strategy

inspired by the human arm motor control is utilized to adapt feedforward torque and the impedance in

the dynamical environment simultaneously. Specifically, the descent impedance profiles can be learned

online along with the motion trajectories based on the task requirements, making our approach efficient

and superior among most of the state-of-the-art approaches. The human-robot interaction disturbance

test and the human-robot collaboration sawing task conducted on the Baxter robotic arm with seven

joints have demonstrated the effectiveness of the proposed approach.

There are several potential ways that may be utilized to improve the proposed approach. Future work

might be mainly focused on the following two aspects.

(1) We will consider implementing the biomimetic controller in the task space of the robotic arm. The

goal is not only to learn the stiffness profiles in translational directions but also to learn the stiffness

profiles in rotational directions.

(2) Our approach may be improved and used in a robotic system that has much higher DOFs such as

a robotic hand-arm coordination control system. Impedance profiles of both the hand and the arm are

learned and adapted simultaneously for flexible and dexterous manipulations.
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