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Abstract Optical molecular imaging (OMI) is an imaging technology that uses an optical signal, such as

near-infrared light, to detect biological tissue in organisms. Because of its specific and sensitive imaging

performance, it is applied in both preclinical research and clinical surgery. However, it requires heavy data

analysis and a complex mathematical model of tomographic imaging. In recent years, machine learning

(ML)-based artificial intelligence has been used in different fields because of its ability to perform powerful

data processing. Its analytical capability for processing complex and large data provides a feasible scheme

for the requirement of OMI. In this paper, we review ML-based methods applied in different OMI modalities.
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1 Introduction

Optical imaging is one of the most powerful biomedical imaging technologies, which is widely used in

both preclinical studies (e.g., cancer research and drug evaluation) and clinical practice (e.g., surgical

navigation and pathological analysis). In the past 20 years, there has been a significant increase in the

number of imaging modalities and their corresponding applications [1–4]. In particular, optical molecular

imaging (OMI), which has produced a large number of breakthroughs, provides a specific and sensitive

dynamic imaging technology for biomedical research [5–7].

OMI is a molecular imaging technology that uses an optical signal as the imaging medium. Based on

the biochemical characteristics of tissue in organisms and related reactions, OMI acquires imaging signals

by observing the distribution of photons on the surface of organisms or the interference of the laser with

biochemical reactions. Thus, it performs well for detecting biomedical activities [5,8]. In 1977, Jöbsis [9]

found that the hemoglobin and cytochrome in biological tissues absorb less near-infrared light at 650–900

nm, which means that there is a bio-optical window that allows photons to pass through the organ-

ism. Based on this research and subsequent theoretical discoveries, the near-infrared spectroscopy (NIS)

technology is created and developed. With the advancements in computer science, molecular biology,

and bio-photonics, new methods, such as the molecular probe technology, optical signal acquisition, and
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Figure 1 (Color online) Main flow chart of machine learning (ML) applied to optical molecular imaging (OMI).

amplification technology, have been gradually applied in NIS, significantly improving the near-infrared

light acquisition capability of OMI. These improvements allow OMI to observe pathological information

in organisms through optical signals.

However, there are still problems with OMI that need to be addressed, including limited imaging quality

and image analysis accuracy. For example, the photon scattering and absorption of light propagation

model lead to an ill-posed problem in optical scattering tomography [10, 11]. This problem limits the

spatial resolution and source localization accuracy of the imaging result. Furthermore, in the field of

optical image analysis, the diagnosis can be examiner-dependent, which leads to considerable inter-

observer variability [12]. Thus, OMI requires a more effective method to improve the quality of images

signal processing and analysis.

The rapid development of artificial intelligence (AI) technology could potentially address the problems

encountered by OMI. AI is a science that endows artificial creations with cognitive, thinking and other

behavioral patterns through human intervention. Through computer science, AI relies on bio-coding

or physical coding and attempts to build bio-intelligence. Machine learning (ML) technology, which is

an important part of AI, uses an artificial pattern recognition system or data-driven-based presentation

learning method to achieve intelligent behavior [13]. In particular, the presentation learning method,

which is based on implicit features learned from raw data, improves the complex data analysis performance

of an AI system. Although this method has a powerful semantic representation capability, it relies on

large amounts of data. However, with the development of computer storage technology, communication

technology, and computer computing performance, it is now possible to collect and manage large-scale

data that allows the bottleneck of the presentation learning method to be solved. Thus, presentation

learning, especially the deep learning (DL) method, is now widely used. The DL-based method uses

neural networks to extract features in different scales and spaces from natural data and then expresses

the features in a cascading way. Because the DL performs well on high-dimensional data, it is being used

in many domains, including image recognition [14–17], speech recognition [18–20], and natural language

processing [21,22]. It is also used in network information security [23,24], industrial data processing [25],

and drug molecular research [26]. The main flow chart of ML applied to OMI image processing is shown

in Figure 1.

Owing to OMI’s need for image data processing and analysis, ML has been applied to different optical

modalities. It provides a new image processing tool for disease classification, lesion detection, segmen-

tation, three-dimensional (3D) visualization, and tomographic image reconstruction. A summary of the

different ML methods applied in OMI is listed in Table 1 [10, 12, 27–41]. In the following sections of
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Table 1 Summary of the different ML methods applied in OMI

OMI
ML systems Year Model

AUC Sensitivity Specificity

modalitya) (%)b) (%) (%)

OCT

Guillaume et al. [27] 2016 Random Forest NA 81.20 93.70

Pratul et al. [28] 2014 Support Vector Machine 86.67 NA NA

Cecilia et al. [29] 2017 VGG-16 93.45 92.64 93.69

Roy et al. [30] 2017 ReLayNet 99.00 NA NA

Jeffrey et al. [41] 2018 3D U-Net 99.21 NA NA

Abhijit et al. [31] 2016 Random Walks 97.86 NA NA

Zhao et al. [32] 2015 Bayesian Network 91 NA NA

PAT

Johannes Schwab et al. [33] 2018 DALnet 93.30 NA NA

Andreas et al. [34] 2018 Model-based CNN 94.50 NA NA

Stephan et al. [35] 2019 NETT 89 NA NA

OST
Chao H et al. [36] 2019 CNN and RNN NA NA NA

Yuan et al. [10] 2019 Multilayer Perceptron NA NA NA

OIS

Andre et al. [37] 2011 Bag-of-Visual-Words 94.20 97.70 86.10

Kamen et al. [38] 2016 Support Vector Machine 84.32 87.34 80.61

Li et al. [12] 2018 CNN 99.49 NA NA

Daniele et al. [39] 2018 Context Specific Descriptor NA 89.20 NA

Chong et al. [40] 2019 Generative Adversarial Networks 91.64 NA NA

a) OCT: optical coherent tomography; PAT: photoacoustic tomography; OST: optical scattering tomography; OIS:

optical image-guided surgery.

b) Here, the index area under curve (AUC) includes the classification accuracy, dice efficiency, and structure similarity

for different ML methods and their applications.
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Figure 2 (Color online) Optical coherence tomography. (a) Imaging mechanism of OCT and (b) OCT images. These

images are reproduced from [42, 43].

this paper, we introduce the research and practical application of the ML method in OMI. Section 2

reviews ML-based methods used in optical coherence tomography (OCT). Sections 3 and 4 present the

ML technology used in the reconstruction of optical scattering tomography and photoacoustic tomogra-

phy, respectively. Section 5 introduces the methods applied in optical image-guided surgery. Section 6

discusses issues and perspectives.

2 Optical coherence tomography

OCT is a technology that uses near-infrared light to obtain sub-surface images of opaque or translucent

materials (Figure 2) [42,43]. Based on low-time coherent optical interferometry or white-light coherence
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technology, OCT provides a tomographic imaging modality that has a high spatial resolution, has no

radiation, is non-invasive, has high imaging depth, and has fast imaging speed. With the development of

imaging technology and the exploration of related biological applications, OCT has been used widely in

the field of in vivo retinal imaging, coronary artery imaging, and gastrointestinal detection.

Recently, clinical OCT imaging data, such as age-related macular degeneration (AMD), coronary

heart disease, and atherosclerosis, have increased rapidly, which requires the expertise and judgment

of experienced physicians to interpret these data [44]. However, the progress of data interpretation

is currently insufficient to meet the huge clinical requirements. The ML technology has been used to

alleviate this problem.

OCT data have the following characteristics, which makes them suitable to be analyzed by the ML

technology. Firstly, there is an increasing growth in the number of OCT regularly collected around the

world, which means that a large amount of OCT data are available to feed the AI system. These data

support the training of larger and more complex ML methods, such as the DL network, and allow the

creation of more generalized and stronger AI machines. Secondly, the scanning field of OCT is almost

fixed [45], which is different from real-world images. Thus, the 3D structure of OCT is consistent in

different images, which reduces the complexity of the computer vision problem. Thirdly, structural

details hidden in OCT images are difficult to be detected by conventional imaging techniques [29, 45];

these can be analyzed by the powerful feature extraction capability of the ML technology. The remainder

of this section introduces different applications of ML technology in OCT images.

2.1 Disease classification

Traditional ML image analysis for OCT requires manual acquisition of convolutional maps to obtain

key features that characterize a disease through edge detection and feature extraction. ML techniques

applied to OCT disease classification based on manual acquisition of image features include principal

component analysis, support vector machine (SVM), and random forest [27,28,46]. For example, Lemâıtre

et al. [27] adopted a combination of random forest with local binary pattern features and different mapping

strategies to classify diabetic macular edema versus normal subjects. Manually defined image features can

effectively characterize certain characteristics of a disease, thereby improving the recognition of linear and

nonlinear classifiers. However, the pathological significance of image features needs to be further explained

to demonstrate the reliability of the classification results.

Recently, the DL method has been used in OCT image analysis, where a multilayer neural network

is trained according to the intrinsic law and representation level of the training data. The information

obtained in these learning processes is useful for the interpretation of data features. For example, Lee

et al. [29] used VGG-16 [47] to automatically classify AMD data. They reported that their network,

which was trained with 100000 OCT B-scan images, achieved an area under curve (AUC) of 0.97 in the

validation.

2.2 Lesion region segmentation

In the application of lesion region segmentation, DL performs better than conventional methods. Several

groups have used the DL network, such as U-Net, to segment intraretinal fluid cysts and subretinal fluid

on OCT B-scans [30,48] (Figure 3(a)). Furthermore, DeepMind and the Moorfields Eye Hospital [41] pro-

posed a novel AI framework for segmentation and classification of ocular disease (Figure 3(b)). They used

the segmentation subnetwork to extract the morphological features of 15 different retinas and OCT acqui-

sition artifacts. Based on these features, the AI system provides the referral triage decision (i.e., urgent,

semi-urgent, routine, and observation) by a classification subnetwork. The AI framework provided an

expert-level performance in 10 different kinds of OCT lesion detection (i.e., choroidal neovascularization

(CNV), macular oedema without CNV, drusen, geographic atrophy, epiretinal membrane, vitreomacu-

lar traction, full-thickness macular hole, partial-thickness macular hole, central serous retinopathy, and

‘normal’).
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(a)

(b)

Figure 3 (Color online) Overview of ML-based algorithms for OCT segmentation. (a) U-Net-based intraretinal cystoid

fluid segmentation reproduced from [48] and (b) artificial intelligence (AI) framework used in ocular disease and correspond-

ing segmentation results reproduced from [41].

Furthermore, ML is also widely used in the detection of intravascular OCT (IVOCT) images such

as automatic vascular cavity segmentation [31, 49], stent detection [32, 50], and plaque sediment detec-

tion [51]. The DL-based IVOCT analysis is also used to measure the thickness of the fibrous cap of an

arterial wall, which is important to predict the potential follow-up myocardial infraction [52, 53].

Although these ML-based approaches have provided promising results in the field of OCT, there are

still theoretical and technical issues that need to be addressed. For example, it is unclear whether the

polar or Cartesian representation is the better choice for ML training [43]. In addition, artifacts in OCT

images limit the performance of ML-based approaches [41, 43].

3 Photoacoustic tomography

Photoacoustic tomography (PAT) is an emerging and fast-growing biomedical imaging modality, which

is used to reflect the optical absorption characteristics of biological tissue or molecule [54–57]. It uses a

short-pulsed laser beam to excite the target tissue, and then detect the ultrasonic wave produced from

the irradiated tissue to reconstruct the optical absorption in biological tissue (Figure 4) [58]. Based on its

imaging mechanisms, PAT provides the optical properties of biological tissue with both optical contrast

and acoustic.

3.1 Conventional reconstruction algorithms of PAT

Conventional reconstruction algorithms of PAT can be divided into three major types, i.e., the back-

projection, time-reversal, and model-based algorithms. The back-projection algorithm, with its charac-
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Figure 4 (Color online) Imaging mechanism of photoacoustic tomography (PAT) reproduced from [58].

teristics of easy implementation and fast imaging, is suitable for PAT reconstruction with high temporal

resolution. Based on the analytical inversion formula of ultrasonic propagation, it can directly project the

detected signals to the PAT image, which is applicable to different detection geometries [59–62]. However,

it is prone to produce stripe artifacts and lose low-frequency information, which makes it not suitable for

application to functional imaging or molecular imaging with precise quantification [63–65]. Meanwhile,

the time-reversal algorithm builds a reconstruction model by simulating the back-propagation of ultra-

sonic waves in the time domain, which provides more accurate reconstruction results [66–68]. However,

because of its complex mathematical model and numerical computation, it has an inefficient reconstruc-

tion performance in practical applications. On the other hand, the model-based algorithm depends on the

photoacoustic propagation model in discretizing the imaging space. It creates PAT images by solving the

optimization problem of the model calculated by different iterative optimization methods with different

artificial regularization priors [63, 69–73]. Owing to the inherent noise interference of the photoacoustic

signal acquisition, PAT reconstruction has not obtained ideal results with the existing regularization

prior, especially when the detected signals are interfered by downsampling [73].

3.2 PAT reconstruction based on ML

To overcome the shortcomings of conventional methods, PAT reconstruction strategies based on ML have

been proposed in recent years. They can be classified into three classes: using U-Net to improve the

quality of coarse PAT images; learning the iterative process of conventional reconstruction based on a

neural network; and constructing regularization terms by a neural network to guide the optimization.

The first class uses the U-Net network to improve the image quality of PAT images reconstructed

by the filter back-projection algorithm [33, 58]. Based on the powerful denoising ability of the U-Net

network, this class reduces artifacts and noise in images reconstructed using the conventional method

(Figure 5(a)). Furthermore, residual training strategy has been used to improve the denoising process,

and the reported experiment results demonstrate that the U-Net-based method performs better than the

conventional total variation regularization method.

The second class was first proposed by Andreas Hauptmann’s group [34, 74]. They used a neural

network to simulate each loop of the iterative calculation. This method can be divided into two stages:

reconstructing a coarse result by the conventional algorithm and fine-turning it by each layer of the neural

network (Figure 5(b)). Compared with the first class of methods mentioned above, this method achieves

better results for PAT reconstruction. Furthermore, the gradient information of photoacoustic is merged

into the input signals of the neural network to improve the quality of PAT reconstruction.

The third class was first proposed by Stephan Antholzer’s group [35]. They used a neural network as

the regularization before the reconstruction. In this method, the result of each iterative loop is denoised

by the network and produces the expectation of regularization in the next loop (Figure 5(c)). This

method still relies on the conventional reconstruction strategy, and its performance is not as good as the

U-net-based method for noisy data reconstruction.

Overall, the abovementioned ML-based reconstruction methods focus on the postprocessing of PAT

images. The first two classes calculate the initial images based on conventional methods and then improve

the image quality by neural networks. The third class merges ML into the conventional reconstruction

strategy, which calculates the expected prior using a neural network to guide the calculation in each
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Figure 5 (Color online) Different methods of ML-based PAT reconstruction. (a) U-Net-based reconstruction method

reproduced from [58]; (b) neural network-based method to simulate conventional iteration reproduced from [34]; and (c)

convolutional neural network (CNN)-based regularization method reproduced from [35].

iteration as a regularization. All these methods perform reconstruction from the image space to image

space and are very useful. However, the results are limited by the performance of the conventional

reconstruction method, and no method can reconstruct PAT images from raw photoacoustic signals, i.e.,

PAT reconstruction from signal space to image space. Because the raw signal contains more information

about the imaging object, the ML-based PAT method that focuses on the signal-to-image reconstruction

obtains more details and will be one of the future research directions in this field.

4 Optical scattering tomography

Optical scattering tomography (OST) is a multimodal imaging technique that combines two-dimensional

(2D) near-infrared light imaging and high-resolution anatomical tomography (Figure 5) [75]. The anatom-

ical information provided by X-ray computed tomography (X-CT) or magnetic resonance imaging (MRI)

is used as the 3D imaging space, and the surface photon distribution is obtained by planar optical scatter-

ing imaging such as fluorescence molecular imaging (FMI) [76] and bioluminescence imaging (BLI) [77].

These tomographic optical imaging methods, such as fluorescence molecular tomography (FMT) and

bioluminescence tomography (BLT), use a mathematic model to describe the photon propagation and re-

construct the 3D distribution of light sources. These technologies provide more tomographic information

than conventional 2D optical scattering imaging (Figure 6) [78].

4.1 Conventional reconstruction algorithms of OST

The conventional reconstruction method is based on a model of photon propagation such as the radiation

transfer equation (RTE) [79–81]. The propagation model is simplified into a low-order approximation and

transformed into a linear matrix by the variational method and finite element analysis. This matrix is used

to describe the linear relation between the surface light information of the imaging object and sources

in biological tissue, and its inverse problem is used to reconstruct the source distribution. However,
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(a)
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Figure 6 (Color online) Optical scattering tomography. (a) Anatomical information of X-CT; (b) planar optical imaging;

and (c) images of OST. These images are reproduced from [78].

the scattering and absorption effects of photon propagation complicate the reconstruction and limit

the imaging quality of OST. Many methods have been proposed to overcome this limitation. One of

them uses a sparse prior for reconstruction, which assumes that light sources are sparse compared to

the entire reconstruction region. Based on this prior, sparse regularization terms (e.g., L0, L1, Lp

(0 < p < 2)) [82,83] are employed to improve the image quality. In addition, the greedy strategies-based

matching pursuit algorithm [84,85], the total variation regularization penalized method [86], and the L2,

1-norm-based optimization [11] method have been proposed to improve the accuracy of source localization.

Moreover, another effective method is to use the prior information of a tumor region segmented from

other structural imaging modalities (e.g., CT and MRI) to guide the reconstruction, which is referred to

as the guided method [87]. Furthermore, methods such as the hard-prior regularization [88,89], soft-prior

regularization [87], hierarchal [90], and kernel methods [91] use a tumor region segmented manually or

automatically by an algorithm as the prior region to improve the structural resolution of reconstruction

results.

However, reconstruction methods based on the model of photon propagation have many limitations.

Firstly, the low-order approximation equation is simplified in the RTE, which cannot accurately describe

the process of photon propagation. This limits the accuracy of OST reconstruction. Secondly, owing

to the ill-posed problem of reconstruction, the 2D imaging of light distribution on the object’s surface

cannot completely reflect the location of light sources in a biological tissue, which limits the performance

of conventional methods based on the residual error between the reconstructed and detected surface light.

4.2 OST reconstruction based on ML

To overcome the limitations of conventional reconstruction methods, Yuan et al. [10] proposed a data-

driven-based strategy to reconstruct bioluminescence tomography, which uses a multilayer perceptron

(MLP) (Figure 7(a)). They collected training data by simulating a Monte Carlo process and trained the

network with the loss between the reconstructed and real sources. As an extension, Huang et al. [36]

proposed an FMT reconstruction framework that contains a convolutional neural network (CNN) and a

recurrent neural network (RNN). The CNN subnet uses the VGG16 network to extract the features of 2D

fluorescence images, and the gated recurrent unit (GRU) [92] is employed to combine these multi-angle

fluorescence features. Finally, these features are used as input to the MLP to reconstruct the FMT images

(Figure 7(b)). This method can achieve FMT reconstruction based on 2D fluorescence images, which

avoids errors caused by mesh registration in the conventional method.

Although these ML-based approaches address the ill-posed problem of OST reconstruction, there are
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Figure 7 (Color online) Structure of the networks used in OST reconstruction and the corresponding reconstruction

results. (a) MLP-based BLT reconstruction network reproduced from [10] and (b) CNN-RNN-based FMT reconstruction

framework reproduced from [36].

still many limitations in practical applications. One major shortcoming is that the training data are only

generated by simulations and do not use data from in vivo experiments. Because the gold standard of

in vivo experiments is hard to obtain, it is important to build a more efficient data collection scheme. In

addition, the size of 3D input data is too large to be processed by a neural network, and the tetrahedron-

based data downsampling mesh does not describe the orthogonal spatial relationships in physical space.

Therefore, a novel data structure or a 2D mathematical model to describe photon propagation needs to

be developed.

5 Optical image-guided surgery

Optical image-guided surgery is an important navigation technology in clinical surgery. It provides pow-

erful support for operators to observe the pathological tissue clearly and protect important organs from

iatrogenic injury. Intraoperative optical imaging technology is an interdisciplinary field of imaging tech-

nology and clinical medicine (Figure 8) [93–95]. White-light endoscopy imaging is one of the major optical

imaging technologies for minimally invasive surgery (MIS), which provides important image information

for surgery. However, the image it produces only provides information about the tissue under white-light,
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(a) (c)(b)

Figure 8 (Color online) Different imaging modalities used in surgery. (a) Narrowband cavity mirror imaging; (b) laser

confocal microscopy imaging; and (c) near-infrared fluorescence imaging. These images are reproduced from [93–95].

which is full of red or dark red blood. Hence, it is very difficult to clearly observe the lesion tissue. Thus,

doctors rely on their knowledge of anatomy and subjective experience to judge the structure of tumors

and blood vessels via touch and vision. There is still a lack of an objective surgery navigation method

to achieve real-time intraoperative identification of the structure of complex tissues [96]. To improve the

clinical effect of real-time localization of pathological tissues, vascular nerves, and delineation of bound-

aries, a variety of OMI techniques with better specific imaging performance have been proposed and

used in both preclinical research and clinical applications; this includes narrowband cavity mirror imag-

ing [93, 97], laser confocal microscopy imaging [94], and near-infrared fluorescence imaging [95, 98–102].

Furthermore, ML-based methods are also applied to improve the quality of imaging and the efficiency of

diagnostic information extraction.

5.1 Image analysis

ML is used to assist doctors in intraoperative optical imaging analysis, such as lesion type classification

and grading, to avoid the problem of having an examiner-dependent diagnosis. In probe-based confocal

laser endomicroscopy (pCLE), André et al. [37] proposed a bag-of-visual-words (WoB)-based image and

video retrieval framework to classify neoplastic and benign colorectal polyps in pCLE images (Figure 9(a)).

They then extended this study using high-level pathological interpretation of pCLE images as a prior to

improve the accuracy of classification [103]. Kamen et al. [38] extracted the features from pCLE imaging

of the brain by using encoding schemes to classify meningitis and pytoblastoma. They used an SVM as

the prediction model and achieved an accuracy of more than 83%. Recently, Li et al. [12] proposed a

CNN-RNN-based video-classification framework to classify intraoperative brain tumor. This framework

extracts the feature of each frame from the pCLE video by the CNN part and fuses all the features by

the RNN part. They found that their method performs better than conventional methods (accuracy =

99.49%) (Figure 9(c)).

5.2 Optical image enhancement and registration

ML is also used in optical image enhancement and image registration to improve optical image quality.

In the field of image enhancement, Rav́ı et al. [39] proposed a novel synthetic data generation approach to

construct the ground-truth data and used these data to evaluate the performance of different exemplar-

based deep neural networks in obtaining optical images with super-resolution. Recently, Zhang et al. [40]

developed a postprocessing method for fluorescence image enhancement, which employs a generative

adversarial network to improve the image resolution. To overcome the drawback of fake texture generation

in traditional neural networks, they proposed a total gradient loss for network training and applied a fine-

tuning training procedure to further improve the network architecture. For image registration, Mountney

et al. [104] proposed a context-specific-based feature descriptor and used a decision tree to present the

feature point and match these points based on their likelihood (Figure 10). They used this method to

describe the 3D space of endoscopic images in MIS and reported that the registration results are robust

to drift, occlusion, and changes in orientation and scale.
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Figure 9 (Color online) ML-based methods in the application of minimally invasive surgery (MIS) imaging classification.

(a) WoB-based method in [37]; (b) SVM-based classification method in [38]; and (c) CNN-RNN framework in [12].

6 Issues and perspectives

Although many researches have tried to apply the ML technology in OMI and achieved promising break-

throughs, the application of ML-based methods in clinical surgery still requires more theoretical research

and clinical experiments. Because the structured data of most clinical applications are insufficient to sup-

port the complexity of data-driven-based ML technology, further research is needed for collecting more

data and designing novel ML methods based on small-scale data learning. Furthermore, there is still

no ideal method that explains the mechanism of a neural network. The features extracted by exciting

methods are difficult to illustrate the relevant theories of medicine or optical imaging. This is an urgent

problem of neural networks that needs to be overcome.

However, ML-based AI still has a very broad space of research and applications. With the expansion of
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Figure 10 (Color online) Overview of methods applied in MIS imaging enhancement. (a) Ground-truth building strategy

and super-resolution results of different DL-based methods and (b) registration method based on a decision tree. These

images are reproduced from [39, 104].

standardized data, the generalization and robustness of ML methods, such as DL, are expected to improve.

Furthermore, attention mechanism and other strategies [105–107] have been proposed to visualize the

prediction basis of neural networks, which provide a feasible scheme for network interpretation. With

the continuous developments in related research, the application of ML in OMI remains a promising

technique.
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