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Abstract In this paper, we propose a novel event-triggered near-optimal control for nonlinear continuous-

time systems. The receding horizon principle is utilized to improve the system robustness and obtain better

dynamic control performance. In the proposed structure, we first decompose the infinite horizon optimal

control into a series of finite horizon optimal problems. Then a learning strategy is adopted, in which an

actor network is employed to approximate the cost function and an critic network is used to learn the optimal

control law in each finite horizon. Furthermore, in order to reduce the computational cost and transmission

cost, an event-triggered strategy is applied. We design an adaptive trigger condition, so that the signal

transmissions and controller updates are conducted in an aperiodic way. Detailed stability analysis shows

that the nonlinear system with the developed event-triggered optimal control policy is asymptotically stable.

Simulation results on a single-link robot arm with different noise types have demonstrated the effectiveness

of the proposed method.
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1 Introduction

Research on optimal control has lasted for many decades, and various methods and strategies have

emerged [1–3]. Receding horizon control (RHC), also called model predictive control (MPC), is a promis-

ing optimal control strategy and has had a tremendous impact on industrial applications [4,5]. The idea

of conventional MPC is to online solve an open-loop optimal control problem in a receding horizon so as

to obtain an optimal control sequence and apply the first control in the optimal control sequence to the

plant [6]. Based on this type of control methodology, MPC shows significant advantages in terms of per-

formance and robustness and is often used to handle the optimal control with constraints, uncertainties

or disturbances.

For linear optimal control problems, MPC has been well developed and established a solid theoretical

foundation. Many existing studies have focused on searching the solution to the constrained optimiza-

tion problem. For the uncertain continuous-time systems, Hu et al. [7] proposed a robust MPC method,

in which the constrained optimal control problem is solving through linear matrix inequalities (LMIs).
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Evans et al. [8] developed a distributed MPC algorithm for linear systems with persistent bounded distur-

bances. It is claimed to be able to achieve the coupled constraint satisfaction. Nonlinear MPC (NMPC)

shares similar control principles with the details discussed above, except that the system model is non-

linear [9–11]. The difficulty is that, however, determining the optimization problem of the feedback

MPC requires to find a solution to the nonlinear Hamilton-Jacobi-Bellman (HJB) equation [6]. In addi-

tion, the effectiveness of MPC is sensitive to the model accuracy and the availability of sufficiently fast

computational resources [12], which limits the application of MPC.

Bertsekas [13] surveyed some studies on adaptive dynamic programming (ADP) and MPC. ADP, as an

advanced formulation of reinforcement learning (RL), is a powerful tool for the nonlinear optimal control

problems [14–16]. As discussed in [13], it emphasizes the relationship between MPC and ADP. After that,

the relevance between MPC and RL has also been investigated [17, 18]. The above discussion stimulates

the research on RL-based MPC for nonlinear systems, and some studies have been developed [19–21].

The main idea of this type of RL-based MPC approach is to conduct an actor-critic scheme to find

the optimal solution for the nonlinear systems in each finite horizon. However, it is worth pointing out

that the above algorithms are all implemented based on a time-triggered mechanism, and the heavy

computation load remains a significant obstacle for the practical use of NMPC. Hence, it is essential to

develop an event-triggered control strategy instead of the periodic time-triggered method for reduction

in resource utilization. Event-triggered control (ETC) is very popular in recent years, because it can

reduce the communication load and improve the computational efficiency while maintaining competitive

control performance [22–25]. Recently, some new results on ETC for networked control systems (NCSs)

have emerged [26–28], which show that the event-triggered mechanism can effectively solve the problem

of limited network bandwidth. Therefore, considering the enormous computational burden in MPC,

especially in NMPC, the event-based MPC structure attracts increasing attention [29, 30].

In recent decades, MPC is very popular in practical applications. Ding et al. [31] surveyed related work

in industrial cyber-physical systems (CPSs). However, as is known, MPC may cause huge consumption

of computer resources. Especially for some large-scale systems, such as power systems and cooperative

robot systems, the situation is even worse. Therefore, in this paper, an event-triggered receding horizon

actor-critic (RHAC) approach for nonlinear continuous-time systems is proposed. Through decomposing

the infinite horizon optimal control problem into a series of finite optimal control problems, an online

finite horizon ADP algorithm is adopted in each horizon so as to obtain an optimal control strategy.

Furthermore, in order to reduce the computational cost and transmission cost, an event-triggered mech-

anism is developed for the RHAC, and a novel adaptive trigger threshold is designed. In summary, the

contributions of this paper are as follows: (1) We propose a novel RHAC method, in which the optimal

control problem for nonlinear systems is solved in a receding horizon manner. (2) An actor-critic scheme

is adopted to approximate the optimal control law online in each prediction horizon. (3) An adaptive

trigger threshold is developed for the proposed approach to reduce computational resources.

The rest of the paper is organized as follows. Problem formulation is given in Section 2. The ETC

strategy is presented in Section 3, including the event-triggered optimization and detailed neural networks

implementation. In Section 4, a novel trigger condition is designed, and the stability analysis is presented.

The simulation results are shown in Section 5. Finally, the conclusion is drawn in Section 6 and the future

work is also discussed.

2 Problem formulation

Consider a nonlinear continuous-time system described by

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x(t) ∈ R
n is the system state with x(0) = x0, and u(t) ∈ R

m is the control input. The smooth

functions f(x(t)) ∈ R
n and g(x(t)) ∈ R

n×m are the system dynamics.
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Assumption 1. The considered system (1) is controllable and observable. State x = 0 is an equilibrium

of system (1), and f + gu is Lipschitz continuous on a compact set Z ∈ R
n containing the origin.

In order to seek the optimal control policy for system (1) in the RHC scheme, we consider the following

cost function in each finite horizon:

J(x(t)) = Ψ(xkT ) +

∫ tk+T

t

r(x(τ), u(τ))dτ, ∀t ∈ [tk, tk + T ), (2)

where T is the prediction horizon in RHC. {tk|k = 0, 1, 2, . . .} is a time sequence, and each finite horizon

starts at time tk and ends at tk+T . Hence, J(x(t)) represents the cost function at time t, t ∈ [tk, tk+T ].

Ψ(xkT ) > 0 is the terminal cost which penalizes the terminal state xkT with xkT = x(tk + T ) = x(tk+1).

r(x, u) denotes the utility function with r(x, u) > 0 and is generally defined in quadratic forms. Set

r(x, u) = xTQx+ uTu, where Q is a positive definite symmetric matrix with appropriate dimension.

Definition 1. If a control policy u(t) ∈ Λ(Z) satisfies the following conditions: (i) u(t) is continuous

on Z, (ii) u(0) = 0, (iii) u(t) stabilizes (1) on Z, and (iv) ∀x0 ∈ Z, J(x0) is finite, then u(t) is said to be

admissible, where Λ(Z) denotes the set of admissible policies.

It is assumed that J(x(t)) is continuously differentiable in each prediction horizon, and for an admissible

control policy u ∈ Λ(Z), the corresponding infinitesimal version of (2) is given by

r(x(t), u(t)) + (∇J(x(t)))
T
[f(x(t)) + g(x(t))u(t)] = 0, J(0) = 0, ∀t ∈ [tk, tk+1), (3)

where ∇J(x(t)) = ∂J(x(t))/∂x(t) is the partial derivatives of the cost function J(x(t)) with respect to

x(t). Further, the Hamiltonian function of system (1) is described as

H(x(t), u(t),∇J(x(t))) =xT(t)Qx(t) + uT(t)u(t) + (∇J(x(t)))
T
[f(x(t)) + g(x(t))u(t)],

∀t ∈ [tk, tk+1).
(4)

Letting J∗(x(t)) denote the optimal cost function, with Bellman’s optimality principle, the HJB equation

arrives at

min
u

H (x, u,∇J∗(x)) = 0, ∀t ∈ [tk, tk+1). (5)

Using the stationarity condition, the optimal control input u∗(t) is given by

u∗(t) = argmin
u

H (x, u,∇J∗(x)) = −
1

2
gT(x(t))∇J∗(x(t)), ∀t ∈ [tk, tk+1). (6)

Substituting (6) into (5), the HJB equation in time-triggered case can be written as

H(x(t),u∗(t),∇J∗(x(t))) = xT(t)Qx(t) +
1

4
(∇J∗(x(t)))

T
g(x(t))gT(x(t))∇J∗(x(t))

+ (∇J∗(x(t)))T
(

f(x(t)) −
1

2
g(x(t))gT(x(t))∇J∗(x(t))

)

= 0, ∀t ∈ [tk, tk+1). (7)

At this stage, the optimal control problem for system (1) is transformed into solving (7) in a receding

horizon philosophy. However, the RHC strategy may cause a high computational burden. What is worse,

owing to the nonlinear nature, it is hardly possible to solve the HJB equation. In this circumstance, the

finite horizon optimal control problem will be further formulated in an event-triggered scenario, and the

corresponding adaptive control algorithm will be proposed to search the approximate solution to the HJB

equation.

3 Event-triggered control strategy

3.1 Event-triggered optimization

The goal of the ETC is to provide a trigger mechanism, in which data transmission and controller updates

are conducted in an aperiodic manner. Consider a monotonically increasing sequence {δj}
∞
j=0 with δ0 = 0



Dong L, et al. Sci China Inf Sci May 2020 Vol. 63 150210:4

as time instants when the event is triggered. The corresponding trigger condition is expressed as

||ej(t)|| 6 eT , (8)

where ||·|| denotes the Euclidean norm. eT is the trigger threshold, and ej(t) is the trigger error defined as

ej(t) = x̂j − x(t), (9)

where x̂j is the sampled state, and x(t) is the current measured state. Once the trigger condition (8) is

violated, that is, an event has occurred, the current state and time instant are stamped as sampled state

and trigger instant, respectively. The event-based controller is only updated with the sampled state.

Otherwise, the control signal remains unchanged and is maintained by zero-order hold (ZOH) until the

next event arrives. With the ZOH, the event-based control input becomes a continuous signal. Therefore,

we have

x(t) = x̂j , u(t) = µ(x̂j), ∀t ∈ [δj , δj+1). (10)

Therefore, the event-based system dynamics is given by

ẋ(t) = f(x(t)) + g(x(t))µ(x̂j). (11)

Recalling the time-triggered optimal control policy (6), we can straightforwardly derive the event-

triggered optimal control policy as

µ∗(x̂j) = −
1

2
gT(x̂j)∇J∗(x̂j), (12)

and the corresponding event-triggered HJB equation arrives at

H(x(t), µ∗(x̂j),∇J∗(x(t))) =xT(t)Qx(t) +
1

4
(∇J∗(x̂j))

T
g(x̂j)g

T(x̂j)∇J∗(x̂j)

+ (∇J∗(x(t)))T
(

f(x(t))−
1

2
g(x(t))gT(x̂j)∇J∗(x̂j)

)

. (13)

Assumption 2. The optimal control u∗(t) is Lipschitz continuous with respect to the trigger error

||u∗(t)− µ∗(x̂j)|| 6 κ||ej(t)||, (14)

where κ is a positive Lipschitz constant.

Different from the time-triggered case (5), Eq. (13) is equal to zero only at the trigger instants

δj , j = 0, 1, 2, . . . , and therefore define the HJB error during the event-interval as follows:

eHJB,t = H(x(t), µ∗(x̂j),∇J∗(x(t))) −H(x(t), u∗(t),∇J∗(x(t)))

=
1

4
(∇J∗(x̂j))

T
g(x̂j)g

T(x̂j)∇J∗(x̂j)−
1

2
(∇J∗(x(t)))

T
g(x(t))gT(x̂j)∇J∗(x̂j)

+
1

4
(∇J∗(x(t)))

T
g(x(t))gT(x(t))∇J∗(x(t))

= (u∗(t)− µ∗(x̂j))
T
(u∗(t)− µ∗(x̂j)) . (15)

Suppose that Assumption 2 holds. Then, the HJB error (15) arrives at

||eHJB,t|| 6 κ2||ej(t)||
2. (16)

Remark 1. It is a common assumption that the control input is Lipschitz continuous (see, e.g., Lem-

mon [23], Vamvoudakis [24], Krichman et al. [32]). It is satisfied in many applications, especially when

the controller is affine with respect to the gap signal, as Lemmon [23] pointed out.
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Figure 1 (Color online) The proposed event-triggered RHAC structure.

Remark 2 (Zeno behavior). In real-time control, Zeno behavior is undesirable. In this remark, we will

show if Assumptions 1 and 2 hold, Zeno behavior can be avoided in the proposed design.

Define Tj = δj+1 − δj as the intersample time interval for all j ∈ N. It can be derived that (see [23]

for details)

Tj >
1

κ̄+ κ̄P
, (17)

where P is a positive constant satisfying 1/P 6 ||ej(t)||/||x(t)||. κ̄ > 0 is the Lipschitz constant for the

closed-loop system (11). The right-hand side of inequality (17) is the lower bound of the intersample

time. It is obvious that if κ̄ is bounded, i.e., system (11) is Lipschitz continuous on compacts, the bound

of the intersample time is non-zero. Therefore, one can ensure that Zeno behavior is excluded during the

learning process. On the contrary, this bound goes to zero if the event-based system fails to be Lipschitz.

More detailed derivations can be found in [23, 33].

In this part, the optimization problem for system (1) is further formulated under the event-triggered

mechanism. From (16), it is evident that a small HJB error results in frequent updates of the controller

and a large value means sacrificing more control performance. Therefore, it is crucial to design a suitable

trigger threshold to maintain the tradeoff between resource utilization and stabilization performance.

3.2 Event-based neural network implementation

The framework of the event-triggered RHAC controller is depicted in Figure 1. In each prediction horizon,

an estimated terminal state is obtained, and the actor-critic learning method is applied to approach the

optimal cost function J∗ with the sampled states. Unlike the time-triggered strategy, an event generator

is included in the proposed method. The trigger condition (8) is evaluated as soon as a new state is

received. If inequality (8) is violated, it is regarded that an event is triggered.

Meanwhile, the current state is sampled and transmitted to the actor-critic frame. Accordingly, the

ETC policy is updated, and the trigger error (9) is reset to zero. Furthermore, ZOH is updated with the

current value. Otherwise, the controller remains unchanged and the system is updated with the value

held by the ZOH. Next, the specific neural network implementation for solving the event-triggered HJB

equation (13) is presented.
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3.2.1 Critic network

Considering the universal approximation property of the neural network, in each finite horizon, the

optimal cost function J∗(x(t)) is formulated as

J∗(x(t)) = WT
c φc(x(t), t) + εc(x(t)), (18)

where Wc is the unknown ideal weights, φc(x(t), t) is the time-varying activation function, and εc(x(t))

is the reconstruction error of the critic network. Accordingly, the partial derivative of J∗(x(t)) can be

written as

∇J∗(x(t)) =

(
∂φT

c (x(t), t)

∂x

)T

Wc +
∂εc(x(t))

∂x
= ∇φT

c (x(t), t)Wc +∇εc(x(t)). (19)

Using the NN approximation, the optimal ETC policy is described as follows:

µ(x̂j) = −
1

2
gT(x̂j)

(
∇φT

c (x̂j , t)Wc +∇εc(x̂j)
)
. (20)

Correspondingly, the event-based HJB equation is given by

H(x, µ(x̂j),Wc) = WT
c ∇φc(f(x(t)) + g(x(t))µ(x̂j)) + r(x(t), µ(x̂j ))

, εH , (21)

where εH is the residual error caused by the neural network approximation.

Assumption 3. εc, ∇εc, ∇φc, and εH are bounded locally, i.e., ||εc|| 6 εcM , ||∇εc|| 6 ∇εcM , ||∇φc|| 6

∇φcM , and ||εH || 6 εHM , where εcM , ∇εcM , ∇φcM , and εHM are positive constants.

For the unknown terminal state in each predict horizon xkT , k ∈ N, it can be replaced by an estimated

value x̂kT [34]. Therefore, using the neural network, the terminal constraint of the cost function in each

predict horizon can be described by

J(x̂kT ) = WT
c φc(x̂kT , kT ) + εc(x̂kT )

= Ψ(x̂kT ), k = 1, 2, . . . . (22)

Because Wc is unknown, the actual output of the critic network under the event-triggered mechanism

is given by

Ĵ(x̂j) = ŴT
c φc(x̂j , t), (23)

and the terminal constraint is

Ĵ(x̂kT ) = ŴT
c φc(x̂kT , kT ), (24)

where Ŵc is the estimation of the target weight matrix, and φc(x̂j , t) is the event-based activation function.

We select ||φc(0, t)|| = 0 with ||x(0)|| = 0 in order to ensure Ĵ(0) = 0.

Applying the estimated cost function, the event-based HJB equation (21) can be further rewritten as

H(x(t), µ(x̂j), Ŵc) = ŴT
c ∇φc(f(x(t)) + g(x(t))µ(x̂j)) + r(x(t), µ(x̂j))

, ecH(t). (25)

Combing (22) and (24), the terminal cost error becomes

ecT (t) = Ψ(x̂kT )− ŴT
c φc(x̂kT , kT ), (26)

where Ψ(x̂kT ) is a function of the terminal state x̂kT . In general, it can be defined in quadratic form

Ψ(x̂kT ) = x̂T
kTQf x̂kT , where Qf is a positive definite weighting matrix [19]. Hence, ||Ψ(x̂kT )|| is bounded

by a positive constant ΨM .

Therefore, the total error for the critic network is represented as

ec(t) = ecH(t) + ecT (t)
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= ŴT
c ∇φc(f(x(t)) + g(x(t))µ(x̂j)) + r(x(t), µ(x̂j )) + Ψ(x̂kT )− ŴT

c φc(x̂kT , kT )

= −W̃T
c (∇φc(f(x(t)) + g(x(t))µ(x̂j)) − φc(x̂kT , kT )) + εH + εc(x̂kT ), (27)

and the objective of the critic network is to minimize the following squared residual error:

Ec(t) =
1

2
eTc (t)ec(t). (28)

Note that, owing to the ETC strategy, the critic network weights only update at the trigger instants

t = δj , j ∈ N and remain unchanged during the event interval t ∈ (δj , δj+1). Therefore, applying the

gradient descent, the tuning law for the critic network can be written as

{
˙̂
Wc = 0, t ∈ (δj , δj+1),

Ŵ+
c = Ŵc −∆Ŵc, t = δj

(29)

with

∆Ŵc =
lc

(1 + χTχ)2
∂Ec(t)

∂Ŵc

= lc
χ

(1 + χTχ)2
eTc (t), (30)

where Ŵ+
c = Ŵc(δ

+
j ) and δ+j is the time instant just after δj . (1 + χTχ)2 is the normalized term with

χ = ∇φc(f(x(t)) + g(x(t))µ(x̂j))− φc(x̂kT , kT ). lc denotes the learning rate of the critic network. Then

Eq. (29) can be rewritten as

{ ˙̂
Wc = 0, t ∈ (δj , δj+1),

Ŵ+
c = Ŵc − lc

χ

(1+χTχ)2 e
T
c (t), t = δj .

(31)

Let the critic weight estimation error be W̃c = Wc − Ŵc. The error dynamics for the critic network

weight is expressed as follows:

W̃+
c = W̃c − lc

χ

(1 + χTχ)2

(

W̃T
c χ− εH − εc(x̂kT )

)

, t = δj . (32)

3.2.2 Actor network

The optimal control policy can be obtained by the approximation property of neural network as follows:

u∗(t) = WT
a φa(x(t), t) + εa(x(t)), (33)

where Wa is the target weight matrix, φa(x(t), t) is the time-varying activation function, and εa(x(t)) is

the reconstruction error of the actor network.

Recalling the optimal control (6) defined by the gradient form of the optimal cost function and com-

bining the definition of partial derivative of J∗(x(t)) (19), u∗(t) can also be expressed by

u∗(t) = −
1

2
gT(x)

(
∇φT

c (x(t), t)Wc +∇εc(x(t))
)
. (34)

Obviously, we have

WT
a φa(x(t), t) + εa(x(t)) +

1

2
gT(x)∇φT

c (x(t), t)Wc +
1

2
gT(x)∇εc(x(t)) = 0. (35)

Considering the event-based control strategy, Eq. (33) can be approximated by the output of the actor

network as

µ̂(x̂j) = ŴT
a φa(x̂j , t), (36)

where Ŵa is the estimation of the target weights and φa(x̂j , t) is the event-based activation function.

Assumption 4. φa(x(t), t) and εa(x(t)) are bounded by ||φa(x(t), t)|| 6 φaM and ||εa(x(t))|| 6 εaM ,

respectively, where φaM and εaM are positive constants.
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Assumption 5. The activation function of the actor network is Lipschitz continuous such that ||φa(x(t),

t)− φa(x̂j , t)|| 6 κφ||x(t) − x̂j || = κφ||ej(t)||, where κφ is a positive Lipschitz constant.

With the estimated cost function (23), Eq. (34) can be approximated as

µ̃(x̂j) = −
1

2
gT(x̂j)∇φT

c (x̂j , t)Ŵc. (37)

However, with the control policies (36) and (37), Eq. (35) is no longer satisfied. Therefore, the error

function of the actor network is defined as the gap of (36) and (37), and given by

ea(t) = ŴT
a φa(x̂j , t) +

1

2
gT(x̂j)∇φT

c (x̂j , t)Ŵc, Ea(t) =
1

2
eTa (t)ea(t). (38)

With the proposed event-triggered mechanism, the actor network weights are updated aperiodicly. That

is, the control input is updated with the sampled state at the trigger instants t = δj , j ∈ N and held by

the ZOH during the event interval t ∈ (δj , δj+1). Applying the gradient descent rule, we have

{
˙̂
Wa = 0, t ∈ (δj , δj+1),

Ŵ+
a = Ŵa − laφa(x̂j , t)e

T
a (t), t = δj ,

(39)

where Ŵ+
a are the updated weights just after the trigger instants, and la is the learning rate of the actor

network. With the weight estimation error W̃a = Wa − Ŵa, at the trigger instants, the error dynamics

for the actor network weight is given by

W̃+
a = W̃a − laφa(x(t), t)

(

W̃T
a φa(x(t), t) +

1

2
gT(x)∇φT

c W̃c + ς

)T

, t = δj , (40)

with ς = −(1/2)gT(x)∇εc(x(t)) − εa(x(t)). It holds that ||ς || 6 ςM = (1/2)gM∇εcM + εaM , where ςM is

a positive constant.

4 Trigger condition design and stability analysis

In this section, an effective trigger condition is designed. With the proposed trigger strategy, the stability

of the closed-loop system can be guaranteed. See the following theorem.

Theorem 1. Consider the nonlinear system with event-based control input (11). The weight tuning

laws for the critic and actor networks are selected as (29) and (39), respectively. Let Assumptions 1–5

hold. Then the closed-loop system (11) is asymptotically stable, and the weight estimation errors are

guaranteed to be uniformly ultimate boundedness (UUB) through the following trigger condition:

D(||ej(t)||) 6

√

(1− β2)λ(Q)

2κ2
φ||Ŵa||2

||x(t)||2 + ||µ̂(x̂j)||2 , eT , (41)

where 0 < β < 1. λ(Q) is the minimal eigenvalue of matrix Q. D(·) denotes the dead-zone operator and

is described by

D(||ej(t)||) =

{

||ej(t)||, ||x(t)|| > bx,

0, otherwise,
(42)

where bx denotes the ultimate bound for the state.

Proof. Consider the following Lyapunov function candidate:

L(t) = L1(t) + L2(t) + L3(t) + L4(t) (43)

with L1(t) = (1/lc)tr(W̃
T
c W̃c), L2(t) = (1/la)tr(W̃

T
a W̃a), L3(t) = J∗(x(t)), and L4(t) = J∗(x̂j). Because

the Lyapunov function is continuous during the event intervals and discrete at the trigger instants, we

need consider two cases to proceed the stability analysis.
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Case 1. Event is not triggered, i.e., δj < t < δj+1, j ∈ N.

In this case, the fourth term of Lyapunov function L4(t) has a zero derivative. In addition, during the

event interval, the actor-critic controller is not updated. Then one has

L̇1(t) = 0, L̇2(t) = 0. (44)

Taking the time derivative of the third term in (43) with respect to the sampled-data system (11), we

have

L̇3(t) =J̇∗(x) = (∇J∗(x))T ẋ

=(∇J∗(x))
T
(f(x) + g(x)µ̂(x̂j))

= (∇J∗(x))
T
(f(x) + g(x)u∗(t))− (∇J∗(x))

T
g(x)(u∗(t)− µ̂(x̂j)). (45)

According to the time-triggered Hamiltonian function (3) and optimal control policy (6), one has

(∇J∗(x))
T
(f(x) + g(x)u∗(t)) = −xT(t)Qx(t)− u∗T(t)u∗(t), (46)

gT(x)∇J∗(x) = −2u∗(t). (47)

Therefore, L̇3(t) becomes

L̇3(t) = −xT(t)Qx(t) + u∗T(t)u∗(t)− 2u∗T(t)µ̂(x̂j), (48)

where

u∗T(t)u∗(t)− 2u∗T(t)µ̂(x̂j)

= ||u∗(x) − µ̂(x̂j)||
2 − ||µ̂(x̂j)||

2

= ||WT
a φa(x(t), t) + εa(x(t)) − ŴT

a φa(x̂j , t)||
2 − ||µ̂(x̂j)||

2

6 2||ŴT
a (φa(x(t), t) − φa(x̂j , t))||

2 + 4||W̃T
a φa(x(t), t)||

2 + 4||εa(x(t))||
2 − ||µ̂(x̂j)||

2

6 2||Ŵa||
2κ2

φ||ej(t)||
2 + 4φ2

aM ||W̃a||
2 + 4ε2aM − ||µ̂(x̂j)||

2. (49)

Then, substituting (41) and (49) into (48), we have the time derivative of the Lyapunov function candidate

during the event interval as follows:

L̇(t) = L̇3(t) 6 −β2λ(Q)||x(t)||2 + ξerror, (50)

where ξerror = 4φ2
aM ||W̃a||

2 + 4ε2aM . It is obvious that during the event interval L̇(t) < 0 as long as

||x(t)|| >

√

ξerror
β2λ(Q)

, bx. (51)

Therefore, it indicates that the event-based system is asymptotically stable. Because the neural network

weights are constant during the event interval, thus the critic and actor weight estimation errors are

UUB.

Case 2. Event is triggered, i.e., t = δj , j ∈ N.

In this situation, the system state is sampled and the control input jumps to a new value. Therefore,

the Lyapunov function candidate (43) is discrete at the trigger instants, and the corresponding first

difference can be written as

∆L(t) = ∆L1(t) + ∆L2(t)
︸ ︷︷ ︸

∆LN (t)

+∆L3(t) + ∆L4(t)
︸ ︷︷ ︸

∆LV (t)

. (52)

Considering the first term in (52), we have

∆L1(t) =
1

lc
tr
(

W̃+T
c W̃+

c

)

−
1

lc
tr
(

W̃T
c W̃c

)
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6− 2
χχT

(1 + χTχ)2
||W̃c||

2 + 2tr

(
χ(εH + εc(x̂kT ))

(1 + χTχ)2
W̃T

c

)

+ 2lc
χχT

(1 + χTχ)2
||W̃c||

2 + lc(ε
2
HM + ε2cM )

6− (1− 2lc)
χχT

(1 + χTχ)2
||W̃c||

2 + (2 + lc)(ε
2
HM + ε2cM )

6− (1− 2lc)λ(χχ
T)||W̃c||

2 + (2 + lc)(ε
2
HM + ε2cM ), (53)

where λ(χχT) is the minimal eigenvalue of matrix χχT.

Then, along with the actor network weight estimation error dynamics (40), the second term in (52)

becomes

∆L2(t) =
1

la
tr
(

W̃+T
a W̃+

a

)

−
1

la
tr
(

W̃T
a W̃a

)

=− 2tr

(

W̃T
a φa(x(t), t)

(

W̃T
a φa(x(t), t) +

1

2
gT(x)∇φT

c W̃c + ς

)T
)

+ la

∥
∥
∥
∥
∥
φa(x(t), t)

(

W̃T
a φa(x(t), t) +

1

2
gT(x)∇φT

c W̃c + ς

)T
∥
∥
∥
∥
∥

2

6−

(
1

2
φ2
am − 3laφ

4
aM

)

||W̃a||
2 +

(
1 + 3laφ

2
aM

)
ς2M

+
1

2
g2M∇φ2

cM

(

1 +
3

2
laφ

2
aM

)

||W̃c||
2, (54)

where 0 < φam 6 ||φa(x(t), t)|| 6 φaM is ensured by the persistence of excitation (PE) condition.

Combining (53) and (54), ∆LN (t) arrives at

∆LN (t) =∆L1(t) + ∆L2(t)

6−

(

(1− 2lc)λ(χχ
T)−

1

2
g2M∇φ2

cM

(

1 +
3

2
laφ

2
aM

))

||W̃c||
2

−

(
1

2
φ2
am − 3laφ

4
aM

)

||W̃a||
2 + εtotal, (55)

where εtotal =
(
1 + 3laφ

2
aM

)
ς2M + (2 + lc)(ε

2
HM + ε2cM ). Hence, for ∀t = δj , ∆LN (t) < 0 as long as

||W̃c|| >

√

εtotal

/(

(1− 2lc)λ(χχT)−
1

2
g2M∇φ2

cM

(

1 +
3

2
laφ2

aM

))

, bW̃c

or

||W̃a|| >

√

εtotal

/(
1

2
φ2
am − 3laφ4

aM

)

, bW̃a
,

where bW̃c
and bW̃a

are ultimate bounds for W̃c and W̃a, respectively. This indicates the critic and actor

weight estimation errors are UUB at the trigger instants.

Next, ∆LV (t) can be expressed by

∆LV (t) = J∗(x+)− J∗(x(t)) + J∗(x̂j+1)− J∗(x̂j). (56)

Because L̇(t) < 0 for all t ∈ [δj , δj+1) and the cost function is continuous, there exists J∗(x+) 6 J∗(x(t)).

Then, we have

∆LV (t) < J∗(x̂j+1)− J∗(x̂j) 6 −k (||ej+1(δj)||) , (57)

where ej+1(δj) = x̂j+1 − x̂j , and k(·) is a class-K function [35].
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Combining (55) and (57), one has ∆L(t) < 0. Furthermore, we can conclude that the system state

is asymptotically stable and the neural network estimation errors are UUB at the trigger instants t =

δj , j ∈ N.

In summary, the sampled-date system is asymptotically stable and the neural network estimation errors

are UUB as long as the trigger condition is defined as (41). The proof is completed.

Remark 3. The dead-zone operator can help avoid unnecessary triggers owing to the reconstruction

error of the neural network. Through the dead-zone operator, controller update is stopped if the system

state is within the ultimate bound.

Remark 4. The defined Lyapunov function candidate (43) consists of four parts. L1(t) and L2(t)

are for the critic error dynamics given by (32) and the actor error dynamics given by (40), respectively.

Eq. (44) implies that the neural network weight estimation errors are constant during the event interval,

and Eq. (55) implies that the neural network weight estimation errors remain bounded at the trigger

instants. Then we can conclude that the neural network weight estimation errors are UUB. The last two

terms are the optimal value function with respect to the system state and sampled state, which means

we need to make sure that the system state is UUB, as well as the sampled state.

Remark 5. Theoretical analysis of Theorem 1 shows that the proposed trigger condition can ensure

the stability of the closed-loop system. To the best of the authors’ knowledge, it is the first time to

develop the event-triggered architecture for such an RHAC controller. Compared with [36], an advantage

of the proposed trigger threshold is that the designed trigger threshold eT is a function of the current

system state and event-based control input, which makes the designed trigger threshold more adaptive.

In comparison with [24], we take use of the dead-zone operator, which can further reduce unnecessary

triggers.

5 Simulation results

The proposed event-triggered RHAC approach is tested on a single-link robot arm system [37], and the

system model is given by

θ̈(t) = −
MgH

G
sin(θ(t)) −

D

G
θ̇(t) +

1

G
u(t) (58)

with parameters as follows.

g = 9.81 m/s2: the acceleration of gravity.

H = 0.5 m: the length of the arm.

D = 2 N·m·s/rad: the viscous friction coefficient.

M = 5 kg: the mass of the payload.

G = 5 kg·m2: the moment of inertia.

θ(t): the angle position of the arm.

u(t): the control torque of the arm.

The system state is defined as x(t) = [x1(t) x2(t)]
T = [θ(t) θ̇(t)]T and u(t) is the control input. Then

the dynamic function (58) can be rewritten as

{

ẋ1(t) = x2(t);

ẋ2(t) = −4.905 sin(x1(t))− 0.4x2(t) + 0.2u(t).
(59)

The initial state is set to x0 = [0.5 − 0.5]T. Q in the utility function is selected as Q = I2×2, where I

is the identity matrix, and Qf in the terminal constraint is set to Qf = 0.5Q. The critic network weights

are initialized to zero, while the actor network weights are initialized with random values within [−1 1].

The time-varying activation functions for both actor and critic networks are polynomial form and set

to φc(x(t), t) = φa(x(t), t) = [x1, x1 exp(−τ), x2, x2 exp(−τ), x2
1, x

2
2, x1x2τ ], where τ = (kT − t)/T is the

normalized time-to-go for t ∈ [tk, tk+1), k ∈ N. The sample interval for system discretization is selected

as ∆t = 0.02 s.



Dong L, et al. Sci China Inf Sci May 2020 Vol. 63 150210:12

Time (s)

0

0.4

0.8

1.2

x
1

Event-triggered RHAC
Time-triggered MPC

0
Time (s)

−2.5

−2.0

−1.5

−1.0

−0.5

0

0.5

x
2

Event-triggered RHAC
Time-triggered MPC

2 41 3 50 2 41 3 5

Figure 2 (Color online) Comparison of the state trajectories for the single-link robot arm system with Gaussian sensor

noise.

−0.3

−0.2

−0.1

0

0.1

C
on

tr
ol

 i
np

ut
 u

0

0.2

0.4

0.6
||ej||
||eT||

0
Number of periodic sampling instants

0

10

20

30

C
um

ul
at

iv
e 

nu
m

be
r 

of
 e

ve
nt

s

(c)

Time (s)

(a)

0 2 41 3 5 0
Time (s)

(b)

2 41 3 5

50 100 150 200 250

Figure 3 (Color online) Event-triggered RHAC algorithm for the single-link robot arm system with Gaussian sensor noise.

(a) Evolution of the control input; (b) comparison of trigger error ||ej|| and trigger threshold ||eT ||; (c) cumulative number

of events.

In order to demonstrate the robustness and effectiveness of the proposed event-triggered architecture,

we add Gaussian noise and uniform noise to sensor and actuator, respectively. In addition, a traditional

time-triggered MPC method [38] is also conducted on the single-link robot arm system to make a contrast.

Case 1. Gaussian sensor noise. In this case, a Gaussian sensor noise with zero mean and variance

σ2 = 0.2 is added to the system. A comparative study is conducted in this case. For the proposed

event-triggered RHAC method, parameters in the trigger condition are selected as β = 0.6 and κφ = 1.5.

The learning rates for the neural networks are lc = la = 0.1. The prediction horizon is set as T = 20,

and the total simulation time is 5 s. For the time-triggered MPC method, we choose T = 50.

Figure 2 shows the comparison of the system states with the proposed event-triggered RHAC method

and the time-triggered MPC method. We can see that all the curves converge to zero and two methods

can obtain competitive results. Simulation results with the proposed event-triggered RHAC method are

shown in Figure 3. Figure 3(a) clearly shows that the control input is a piecewise signal. The event-

based controller is updated at the trigger instants and keeps unchanged during the event interval. The
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Figure 4 (Color online) Comparison of the state trajectories for the single-link robot arm system with uniform actuator

noise.
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Figure 5 (Color online) Event-triggered RHAC algorithm for the single-link robot arm system with uniform actuator

noise. (a) Evolution of the control input; (b) comparison of trigger error ||ej|| and trigger threshold ||eT ||; (c) cumulative

number of events.

relationship between the trigger error ||ej || and trigger threshold ||eT || is presented in Figure 3(b). We

can see that the trigger threshold converges to zero as the system states and event-triggered control policy

converge to zero. In addition, in any event interval, the trigger error starts from zero and continues to

increase until it is greater than the trigger threshold. Then ej is reset to zero immediately. In Figure 3(c),

the curve shows the cumulative number of events under the event-triggered mechanism against the total

sampling instants. It is obvious that with ∆t = 0.02 s, for the time-triggered MPC, there are 250

sampling instants included during the simulation time of 5 s. While for the proposed event-triggered

RHAC controller, it only updates 32 times in total, which indicates that the computational cost has been

reduced by about 87%. It is worth pointing out that the cumulative number of events becomes constant

after 94 sampling instants owing to the dead-zone operator.

Case 2. Uniform actuator noise. In this case, a 10% uniform noise is added to the control input.

For the proposed method, we choose β = 0.6 and κφ = 1.5 for the trigger condition. The prediction

is T = 100 and the total simulation time is 40 s. The initial learning rates for the neural networks are
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selected as lc = 0.2 and la = 0.8. They are decreased by 0.005 every five time steps until they reach

0.005. For the time-triggered MPC method, set T = 50.

Figure 4 shows the trajectories of the system states under two different methods. The simulation results

are very similar. Figure 5(a) shows the convergence of the control input with uniform noise, which is

implemented through u(x̂j) = u(x̂j) · (1+NoisePercentage·ρ), where ρ is a uniformly distributed random

variable. The relationship of trigger error ||ej || and trigger threshold ||eT || is depicted in Figure 5(b).

From Figure 5(c), it can be seen that with the event-triggered strategy, the controller updates 194 times

while the time-triggered controller uses 2000 samples.

6 Conclusion and future work

In this paper, an event-triggered RHAC approach was proposed for a class of nonlinear continuous-time

systems. In order to deal with the disturbances, the RHAC strategy was adopted. First, the infinite

horizon optimal control problem was decomposed into a series of finite horizon optimal control problems.

Then, the actor-critic algorithm was applied to solve the finite horizon optimal control problem in each

prediction horizon. To further reduce the computational cost and transmission cost, an event-triggered

methodology was developed, and a novel trigger threshold was designed based on the system states and

event-triggered control law to ensure closed-loop stability. The simulation results demonstrated that the

proposed method can significantly reduce resource costs without sacrificing control performance.

In practical applications, especially for NCSs, delays and packet losses are inevitable, which can se-

riously degrade the control performance and even cause system instability. Therefore, event-triggered

RHAC design for nonlinear NCSs will be carried out. In addition, at present the length of prediction

horizon is selected by empirical value. It is possible to develop learning-based strategy to adaptively

determine the length in the future.
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