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Abstract In this paper, a dynamic output feedback control problem is investigated for systems with event-

driven control inputs. With both continuous and sampled output measurements in the systems, two types of

dynamic output feedback controllers are designed based on a predefined event-driven scheduler for the control

signals, respectively. With the proposed event-driven control scheme, the Zeno behavior can be avoided, and

the states of closed-loop systems are also guaranteed to be globally uniformly ultimately bounded. Detailed

parameters of the event-driven controllers are constructed under the stabilizable conditions of the closed-

loop systems. Finally, both the effectiveness and merits of the proposed design techniques are verified by the

numerical examples.
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1 Introduction

In many industrial control applications, such as manufacturing plants, power plants, automobiles, air-

crafts, and robot manipulators, networks have played important roles for the rapid development of com-

puter and communication technologies [1–3]. Especially in some engineering applications, measurements

and control signals are exchanged among spatially distributed system components by networks [4–6]. In

this situation, the traditional control systems have been evolved to networked control systems (NCSs).

As shown in [7–9], there exist many advantages of NCSs such as low cost, simple installation and main-

tenance, reduced weight and power requirements as well as high reliability comparing with traditional

feedback control systems.

In NCSs, network communication constraints, e.g., networked data dropouts and induced delays, make

a great influence on the control performance of NCSs [10–13]. In order to attenuate the negative effects

of the network communication constraints, it is feasible to save the usage of communication resources

while maintaining the system performance at a good level. Based on an idea of that the control inputs

are updated or transmitted only when the chosen error signals exceeding a designed threshold, the event-

driven control (is also called as event-triggered control) approach is proved to be an effective manner to

reduce the utilization of the communication networks in theory and applications, which has attracted

many scholars to do relative researches in recent years (please refer to [14–18]). Moreover, to produce

the continuous-time input signal, a zero-order-holder (ZOH) is always implemented in the event-driven

control systems. It is worth considering that, for many practical applications, the full state information
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is not always available, and only the output is accessible. But in [14–17], the assumption is provided in

the developed event-driven approaches that all the internal plant states are available to the control law.

One solution to address this problem is to use a state observer to reconstruct the system states. It should

be pointed out that the reconstruction of system states requires to obtain the current inputs of plants

at the controller sides [19]. In NCSs, owing to the distributive location of controller and actuator, and

data dropouts and time-varying network communication delays in the controller-to-actuator channel, the

current inputs of plants are complicated and challenging to acquire at the controller sides. Alternatively,

the dynamic output feedback (DOF) control strategies can be employed in which the control law only

requires knowledge of measured output [20–22]. Especially, it is practicable and effective for most of

NCSs in engineering to obtain reliable stabilisation with the information of dynamic observers from the

designed DOF controller [23, 24].

In this paper, we pay attentions to the construction of DOF controllers for the systems with event-driven

control inputs, and both the event-driven schedulers and the DOF controller parameters are determined

for systems with continuous and sampled output measurements, respectively. By utilizing the designed

controllers, transmission frequencies of control signals are significantly reduced in the communication

channels, and the closed-loop control systems are guaranteed to satisfy the uniform ultimate bounded

stability. Moreover, the Zeno behavior can be avoided because the minimum inter-scheduling interval

between two consecutive transmitting instants is shown to be lower bounded by a positive scalar. Further-

more, the proposed DOF control schemes are applied to a linearized satellite system model, which shows

that the proposed method significantly reduces the updating frequency of the controller while guarantees

a certain performance of the control system in this simulation. The main contributions are highlighted

as follows:

(1) For the continuous-time control systems with both continuous and sampled output measurements,

two types of DOF controllers are designed, and two predefined event-driven schedulers are also proposed

by using the control signals, respectively.

(2) Under the proposed event-driven control schemes, the Zeno behavior can be avoided, and the states

of closed-loop systems are globally uniformly ultimately bounded, and the explicit parameter design of

the event-driven controllers is proposed.

Notation. If not explicitly stated, matrices in this paper are assumed to have compatible dimensions.

R
n denotes n dimensional Euclidean space. R

m×n is a set of all m × n real matrices. ‖ · ‖ means the

2-norm of vectors and matrices. For any matrix A, λ(A) denotes the eigenvalue of matrix A. Inequality

M > N means that matrix M −N is positive definite. Then, sup{·} denotes the supremum of set {·},
and diag{a, b, c} is a diagonal matrix with a, b, c as main diagonal elements.

2 Problem statement

A linear time-invariant (LTI) plant is considered with event-driven control inputs in the following:

ẋ(t) = Ax(t) +Bu(tk), y(t) = Cx(t), t ∈ [tk, tk+1), k ∈ N, (1)

where x(t) ∈ R
n represents the state vector, u(t) ∈ R

m denotes the control input, y(t) ∈ R
q is the

measured output, and A, B, C are the system matrices with appropriate dimensions. The transmitting

instants {tk}k∈N are defined as an increasing sequence of positive scalars with
⋃

k∈N
[tk, tk+1) = [0,+∞)

holding, and {tk}k∈N are determined by a predefined event-driven scheduler. To hold the control signal

continuous, a ZOH is embedded, and thus, during the inter-scheduling interval [tk, tk+1), u(t) ≡ u(tk).

In this paper, we consider that only the output variables of the physical system can be obtained online.

Then the DOF control problem for system (1) is researched in Sections 3 and 4, and three main problems

are aimed to be addressed as follows:

(1) How to design output feedback controllers for system (1) with either continuous or sampled output

measurements?

(2) How to exclude the Zeno behavior by determining the transmitting instants {tk}k∈N?

(3) For the closed-loop systems, how to analyze the stability with the designed transmitting instants?
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3 Control of systems with continuous output measurements

In this section, by assuming that the continuous output measurements y(t) are available, we design the

DOF controller as

˙̂xc(t) = K1x̂c(t) +K2y(t), u(t) = K3x̂c(t) +K4y(t), (2)

where the x̂c(t) ∈ R
n is the controller state, andKi, i = 1, 2, 3, 4, denote the controller parameter matrices

to be ascertained. Thus, for t ∈ [tk, tk+1), the plant and controller can be reorganized as

ẋ(t) = Ax(t) +Bu(tk)

= Ax(t) +Bu(t)−Bu(t) +Bu(tk)

= Ax(t) +BK3x̂c(t) +BK4y(t)−Be(t)

= (A+BK4C)x(t) +BK3x̂c(t)−Be(t),

where e(t) = u(t)− u(tk) and

˙̂xc(t) = K1x̂c(t) +K2y(t) = K2Cx(t) +K1x̂c(t).

Defining an augmented state ξ(t) = [xT(t), x̂Tc (t)]
T, we arrive at the closed-loop system as

ξ̇(t) = Āξ(t) + B̄e(t), t ∈ [tk, tk+1), (3)

where

Ā =

[

A+BK4C BK3

K2C K1

]

, B̄ =

[

−B
0

]

.

Moreover, the global uniform ultimate bounded stability of closed-loop system (3) is shown in the following

theorem.

Theorem 1. For the closed-loop system (3), an event-driven scheduler is designed to determine the

transmitting instants as follows:

tk+1 = sup
{

t > tk|‖e(t)‖2 6 ε+ ̺ ‖u(t)‖2
}

, ∀k ∈ N, (4)

where ε > 0 and ̺ > 0 are two user-defined parameters. If the following matrix inequality,

Q , ĀTP + PĀ+ PB̄B̄TP + ̺C̄TC̄ < 0, (5)

holds with C̄ = [K4C,K3] for a symmetric and positive definite matrix P , then the system (3) gets the

global uniform ultimate bounded stability.

Proof. With a symmetric and positive definite matrix P > 0 which is a solution of (5), the Lyapunov

function candidate is chosen as V (t) = ξT(t)Pξ(t) for t ∈ [tk, tk+1). Then the derivation of V (t) is

V̇ (t) = ξ̇T(t)Pξ(t) + ξT(t)P ξ̇(t)

= (Āξ(t) + B̄e(t))TPξ(t) + ξT(t)P (Āξ(t) + B̄e(t))

= ξT(t)(ĀTP + PĀ)ξ(t) + eT(t)B̄TPξ(t) + ξT(t)PB̄e(t)

= ξT(t)(ĀTP + PĀ+ PB̄B̄TP )ξ(t)− ‖e(t)− B̄TPξ(t)‖2 + ‖e(t)‖2.

It can be seen that, with the transmitting instants defined in (4), ‖e(t)‖2 6 ε+ ̺‖u(t)‖2 always holds for

t ∈ [tk, tk+1). Hence, for ∀t ∈ [tk, tk+1), we have

V̇ (t) 6 ξT(t)(ĀTP + PĀ+ PB̄B̄TP )ξ(t) + ‖e(t)‖2

= ξT(t)(ĀTP + PĀ+ PB̄B̄TP + ̺C̄TC̄)ξ(t) + ε
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6 −λmin(−Q)

λmax(P )
ξT(t)Pξ(t) + ε

= −δV (t) + ε, (6)

where δ = λmin(−Q)
λmax(P ) . From inequality (6), we obtain that the Lyapunov function V (t) will decay in each

time interval [tk, tk+1). By the comparison lemma in [5], inequality (6) is obtained as

V (t) 6 e−δtV (0) +

∫ t

0

e−δ(t−s)εds

= e−δt
(

V (0)− ε

δ

)

+
ε

δ
,

which leads to

V (t) 6 e−δ(t−tk)V (tk) +

∫ t

tk

eδ(t−s)εds

= e−δ(t−tk)V (tk) +
ε

δ

(

1− e−δ(t−tk)
)

,

implying

‖ξ(t)‖ 6

√

λmax(P )

λmin(P )
e−δ(t−tk)‖ξ(tk)‖2 +

ε
(

1− e−δ(t−tk)
)

δλmin(P )

6

√

λmax(P )

λmin(P )
‖ξ(tk)‖2 +

ε

δλmin(P )
. (7)

Therefore, the closed-loop system (3) can arrive at the global uniform ultimate bounded as inequality

Q < 0 holds, which completes the proof.

For avoidance of the Zeno behavior, in the next, it will be shown that a positive lower bound of the

minimum inter-scheduling interval tmin , mink∈N{tk+1 − tk} always exists for the event-driven strategy.

Theorem 2. In the closed-loop system (3), for the minimum inter-scheduling interval tmin, there always

exists a positive lower bound tlmin > 0 which satisfies tmin > tlmin > 0, with the transmitting instants

determined by (4).

Proof. For ∀k ∈ N, let tk be an arbitrary transmitting instant. Note that u(tk) is constant in the time

interval [tk, tk+1). Then, for t ∈ [tk, tk+1), according to the definition of e(t), we have

ė(t) = K3
˙̂xc(t) +K4Cẋ(t)

= K3K1x̂c(t) +K3K2Cx(t) +K4CAx(t) +K4CBu(t)−K4CBu(tk) +K4CBu(tk)

= K4CBe(t) + (K3K2C +K4CA)x(t) +K3K1x̂c(t) +K4CBK4Cx(tk) +K4CBK3x̂c(tk)

= Σ1e(t) + Σ2ξ(t) + Σ3ξ(tk),

where Σ1 = K4CB, Σ2 = [K3K2C +K4CA K3K1 ], Σ3 = [K4CBK4C K4CBK3 ]. Moreover, we have

e(t) = eΣ1(t−tk)e(tk) +

∫ t

tk

eΣ1(t−s) (Σ2ξ(s) + Σ3ξ(tk)) ds

=

∫ t

tk

eΣ1(t−s) (Σ2ξ(s) + Σ3ξ(tk)) ds. (8)

Define

ψ(tk) =

√

λmax(P )

λmin(P )
‖ξ(tk)‖2 +

ε

δλmin(P )
.
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Then, it follows from (7) and (8) that

‖e(t)‖ =

∥

∥

∥

∥

∫ t

tk

eΣ1(t−s) (Σ2ξ(s) + Σ3ξ(tk)) ds

∥

∥

∥

∥

6

∫ t

tk

e‖Σ1‖(t−s) (‖Σ2‖‖ξ(s)‖+ ‖Σ3‖‖ξ(tk)‖) ds.

If ‖Σ1‖ 6= 0, we have

‖e(t)‖ 6
‖Σ2‖ψ(tk) + ‖Σ3‖‖ξ(tk)‖

‖Σ1‖
(

e‖Σ1‖(t−tk) − 1
)

.

Note that the next transmission will not happen before ‖e(t)‖2 = ε+̺‖u(t)‖2 according to the definition

of transmitting instants (4). Therefore, the lower bound on the inter-scheduling interval tlmin can be

determined by

‖Σ2‖ψ(tk) + ‖Σ3‖‖ξ(tk)‖
‖Σ1‖

(

e‖Σ1‖tlmin − 1
)

=
√

ε+ ̺ξT(t)C̄TC̄ξ(t) >
√
ε,

which means that

e‖Σ1‖tlmin > 1 +

√
ε

∆(tk)
,

where ∆(tk) =
‖Σ2‖ψ(tk)+‖Σ3‖‖ξ(tk)‖

‖Σ1‖ . Note that conditions ‖Σ1‖ > 0 and
√
ε

∆(tk)
> 0 hold, which indicates

that for any given transmitting instant tk, t
l
min > 0 always holds.

If ‖Σ1‖ = 0, we have

‖e(t)‖ 6 (t− tk) (‖Σ2‖ψ(tk) + ‖Σ3‖‖ξ(tk)‖) .

As aforementioned before, because the next transmission will not happen before ‖e(t)‖2 = ε+ ̺‖u(t)‖2,
the lower bound on the inter-scheduling interval tlmin can be determined by

tlmin (‖Σ2‖ψ(tk) + ‖Σ3‖‖ξ(tk)‖) =
√

ε+ ̺ξT(t)C̄TC̄ξ(t),

which means that

tlmin (‖Σ2‖ψ(tk) + ‖Σ3‖‖ξ(tk)‖) >
√
ε,

which also implies that tlmin > 0.

From the above discussion, a positive lower bound of the minimum inter-scheduling interval always

exists, which completes the proof.

Combining with the stability condition proposed in Theorem 1, a solution of the controller parameters

K1, K2, K3 and K4 is presented in the following theorem.

Theorem 3. For system (1) with the event-driven inputs, there always exists a DOF controller which is

in the form of (2) such that states of the closed-loop control system (3) are globally uniformly ultimately

bounded, if there exist matrices W , R, L, F , X > 0 and Y > 0, satisfying













Ξ11 + ΞT
11 W + ΞT

21 −XB √
̺CTRT

∗ Ξ22 + ΞT
22 −B √

̺FT

∗ ∗ −I 0

∗ ∗ ∗ −I













< 0 (9)

and I − Y X < 0, where Ξ11 = XA+ LC, Ξ21 = A+BRC, Ξ22 = AY + BF .
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Furthermore, if the above conditions are satisfied, parameters of the desired DOF controller should be

chosen as

K1 = U−T(W −XAY −XBF − LCY +XBRCY )V −T,

K2 = U−TL− U−TXBR, K3 = FV −T −RCY V −T, K4 = R,
(10)

where V and U are two any nonsingular matrices satisfying I − Y X = V U .

Proof. Define matrix P = T2T
−1
1 , where T1 and T2 are given as

T1 =

[

I Y

0 V T

]

, T2 =

[

X I

U 0

]

,

and Y X + V U = I, and U , V are any nonsingular matrices. It can be verified that

T−1
1 =

[

I −Y V −T

0 V −T

]

,

and thus

P =

[

X UT

U −UY V −T

]

.

Note that Y X − I > 0 holds, thus V UY = Y (Y −1 − X)Y < 0 and −UY V −T = −V −1Y (Y −1 −
X)Y V −T > 0. Moreover, referring to the well-known Schur complement lemma, it is obtained that

X − UT(−UY V −T)−1U = X + UTV TY −1 = Y −1 > 0,

which implies that P > 0.

With the DOF controller parameters Ki, i = 1, 2, 3, 4, it can be shown that

TT
2 ĀT1 =

[

Ξ11 W

Ξ21 Ξ22

]

, TT
2 B̄ =

[

−XB
−B

]

, TT
1 C̄

TC̄T1 =

[

CTRTRC CTRTF

∗ FTF

]

.

Thus, by the Schur complement lemma, the inequality (9) is rewritten as
[

TT
1 Ā

TT2 + TT
2 ĀT1 + ̺TT

1 C̄
TC̄T1 T

T
2 B̄

B̄TT2 −I

]

< 0.

Moreover, notice that
[

ĀTP + PĀ+ ̺C̄TC̄ P B̄

B̄TP −I

]

=

[

T−T
1 0

0 I

][

TT
1 Ā

TT2 + TT
2 ĀT1 + ̺TT

1 C̄
TC̄T1 T

T
2 B̄

B̄TT2 −I

][

T−1
1 0

0 I

]

.

Thus, the inequality (5) holds, and the closed-loop event-driven control system (3) obtains global uniform

ultimate bounded stability.

Remark 1. In Theorem 3, it is worth obtaining that all designed conditions are LMIs. By a standard

numerical software, it is easy to solve the decision variables W , R, L, F , X > 0 and Y > 0 in the

LMIs. Thus, based on (10), a desired event-driven DOF controller is immediately constructed when

these conditions are feasible.

4 Control of systems with sampled output measurements

In this section, we consider that with a constant sampling period h > 0, the system output is sampled

in periodic. In other words, only the sampled output measurements y(ih), i ∈ N, are available for

controller (2). In such a case, the DOF controller (2) is modified as

˙̂xc(t) = K1x̂c(t) +K2x̂c(ih) +K3y(ih),

u(t) = K4x̂c(t) +K5x̂c(ih) +K6y(ih),
(11)
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Sampling instants
... ...

... ...

Event-driven instants

i1h1h (i1+1)h (i1+2)h (i1+j)h2h jh... ... i2h ikh

tk tt1 t2

0

0

... ...

Figure 1 (Color online) Illustration of signal transmission.

where x̂c(t) ∈ R
n denotes the controller state, x̂c(ih) denotes the controller state at sampled instants and

y(ih) denotes the sampled output measurement. In this situation, the controller in (11) will receive the

sampled output signal y(ih) at the sampling instant ih, and the y(ih) will be held until next sampling

instant (i+ 1)h.

In Section 3, the control input of the plant will be updated at tk defined in (4). To determine the

transmitting instants tk in (4), the continuous supervision of e(t) is required. As shown in Figure 1,

the event-driven scheduler is assumed to work in a discrete manner here, and monitor the control signal

u(t) with a constant sampling period h. In this situation, we can determine the transmitting instants

by tk = ikh, where ik are some integers and {i0, i1, i2, . . .} ⊂ {0, 1, 2, 3, . . .} with i0 = 0 and ik < ik+1.

To hold the control signal continuous, a ZOH is embedded, and thus u(tk) will be held during the

time-interval [tk, tk+1).

Define lk,j = (ik + j)h, j = 0, 1, 2, . . . , ik+1 − ik − 1, which leads to [tk, tk+1) = ∪ik+1−ik−1
j=0 [lk,j , lk,j+1).

Let τ(t) = t − lk,j , which satisfies 0 6 τ(t) 6 h with t ∈ [lk,j , lk,j+1), obviously. Furthermore, we define

eσ(t) = u(lk,j)−u(ikh), j = 1, 2, . . ., and thus eσ(t) is a continuous-from-the-right and piecewise constant

function. Above all, the transmitting instant ik+1h can be determined by

ik+1 = max
m∈Z

{m > ik|‖eσ(mh)‖2 6 ε̄+ ¯̺‖u(mh)‖2}, (12)

where ε̄ and ¯̺ are the event-driven parameters chosen in advance. It can be verified that, inequality

‖eσ(t)‖2 6 ε̄+ ¯̺‖u(t)‖2 always holds for t ∈ [ikh, ik+1h).

For time t ∈ [lk,j , lk,j+1), the plant and controller system can be reorganized as

ẋ(t) = Ax(t) +Bu(tk)

= Ax(t) +Bu(lk,j)−Bu(lk,j) +Bu(tk)

= Ax(t) +B(K4 +K5)x̂c(lk,j) +BK6y(lk,j)−Beσ(t)

= Ax(t) +B(K4 +K5)x̂c(t− τ(t)) +BK6Cx(t− τ(t)) −Beσ(t),

˙̂xc(t) = K1x̂c(t) +K2x̂c(lk,j) +K3y(lk,j)

= K1x̂c(t) +K2x̂c(t− τ(t)) +K3Cx(t− τ(t)).

Define variable ξ(t) = [xT(t), x̂Tc (t)]
T. It is easy to obtain a closed-loop system as follows:

ξ̇(t) = Ãξ(t) + Ãdξ(t− τ(t)) + B̃eσ(t), t ∈ [lk,j , lk,j+1), (13)

where

Ã =

[

A 0

0 K1

]

, B̃ =

[

−B
0

]

, Ãd =

[

BK6C B(K4 +K5)

K3C K2

]

.

Before studying the stability of closed-loop system (13), the following lemma is given in advance.

Lemma 1 ([25]). Let x(t) : (p, q) →∈ R
n be absolutely continuous with ẋ(t) ∈ L2(p, q) and x(p) = 0,

and then inequality
∫ q

p

xT(s)Mx(s)ds 6
4(q − p)2

π
2

∫ q

p

ẋT(s)Mẋ(s)ds

holds for any M > 0.
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Motivated by [25], we can arrive at the following results.

Theorem 4. Consider the closed-loop system (13) with transmitting instants determined by

tk+1 = ik+1h, (14)

where ik is given by (12) and h denotes the sampling period. For a given parameter ¯̺ > 0, if there

exist matrices N1, N2, P > 0 and S > 0 with appropriate dimensions satisfying the following matrix

inequality:

Φ̃ , Φ+NTB̃B̃TN + ¯̺C̃TC̃ < 0, (15)

where

Φ =









Φ1 P −NT
1 + (Ã+ Ãd)

TN2 −NT
1 Ãd

∗ h2S −N2 −NT
2 −NT

2 Ãd

∗ ∗ −π
2

4 S









,

C̃ =
[

K6C K4 +K5 0 0 −K6C −K5

]

, N =
[

N1 N2 0
]

,

with Φ1 = NT
1 (Ã + Ãd) + (Ã + Ãd)

TN1, then system (13) obtains the global uniform ultimate bounded

stability.

Proof. Consider the following Lyapunov functional for t ∈ [lk,j , lk,j+1),

V (t) = ξT(t)Pξ(t) + h2
∫ t

t−τ(t)
ξ̇T(s)Sξ̇(s)ds− π

2

4

∫ t

t−τ(t)
νT(s)Sν(s)ds,

where P > 0, S > 0 and ν(t) = ξ(t) − ξ(t − τ(t)). It turns out that τ̇ (t) = 1, ξ̇(t − τ(t)) = 0, and thus

ν̇(t) = ξ̇(t). By using the Wirtinger inequality, V (t) > 0 is solved, and the last two terms in V (t) vanish

at t = lk,j , i.e., V (lk,j) = ξT(lk,j)Pξ(lk,j). Hence, condition limt→lk,j
V (t) > V (lk,j) holds.

Differentiating V (t) along system (13), we have

V̇ (t) = 2ξT(t)P ξ̇(t) + h2ξ̇T(t)Sξ̇(t)− π
2

4
νT(t)Sν(t),

which together with the fact

2(ξT(t)NT
1 + ξ̇T(t)NT

2 )((Ã + Ãd)ξ(t)− Ãdν(t) + B̃eσ(t)− ξ̇(t)) = 0

gives that

V̇ (t) 6 ηT(t)Φη(t) + 2(ξT(t)NT
1 + ξ̇T(t)NT

2 )B̃eσ(t),

where η(t) = [ξT(t), ξ̇T(t), νT(t)]T. Note that

2(ξT(t)NT
1 + ξ̇T(t)NT

2 )B̃eσ(t) 6 ηT(t)









NT
1

NT
2

0









B̃B̃T
[

N1 N2 0
]

η(t) + ‖eσ(t)‖2,

which together with ‖eσ(t)‖2 6 ε̄+ ¯̺ηT(t)C̃TC̃η(t) yields

V̇ (t) 6 ηT(t)Φ̃η(t) + ε̄. (16)

Thus, states of the closed-loop system (13) are shown to be globally uniformly ultimately bounded, which

completes the proof.

With the stability condition presented in Theorem 4, the following theorem presents a solution of the

sampled output controller parameters Ki, i = 1, 2, 3, 4, 5, 6.
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Theorem 5. For system (1) with event-driven inputs, there exists a dynamic sampled output controller

in the form of (11) such that the closed-loop control system (13) obtains the global uniformly ultimate

bounded stability, if there exist matrices W , R, L, F , H , Z, X > 0 and Y > 0 satisfying








Λ11 Λ12 Λ13

∗ Λ22 Λ23

∗ ∗ Λ33









< 0 (17)

and I − Y X < 0, where

Λ11 =

[

Ξ11 + ΞT
11 H + ΞT

21

∗ Ξ22 + ΞT
22

]

, Λ12 =

[

ΞT
11 ΞT

21 −LC −W
HT ΞT

22 −BRC −BF

]

,

Λ13 =

[

−XB √
¯̺CTRT

−B √
¯̺FT

]

, Λ22 =













(h2 − 2)X (h2 − 2)I −LC −W
∗ (h2 − 2)Y −BRC −BF
∗ ∗ −π

2

4 X −π
2

4 I

∗ ∗ ∗ −π
2

4 Y













,

Λ23 =













−XB 0

−B 0

0
√
¯̺CTRT

0
√
¯̺ZT













, Λ33 =

[

−I 0

∗ −I

]

,

with Ξ11 = XA+ LC, Ξ21 = A+BRC and Ξ22 = AY +BF .

Furthermore, if the above conditions are satisfied, parameters of the desired DOF controller can be

chosen as

K1 = U−T(H −W −XAY )V −T,

K2 = U−T(W −XBF − LCY +XBRCY )V −T,

K3 = U−T(L−XBR), K4 = (F − Z)V −T,

K5 = (Z −RCY )V −T, K6 = R,

(18)

where V and U are any nonsingular matrices satisfying V U = Y X + I.

Proof. With the same definitions for T1 and T2 in the proof of Theorem 3, letting P = S = N1 =

N2 = T2T
−1
1 , we can arrive at conditions P > 0 and S > 0. Moreover, with the dynamic sampled output

feedback controller parameters Ki, i = 1, 2, 3, 4, 5, 6, it can be obtained that

TT
2 (Ã+ Ãd)T1 =

[

XA+ LC H

A+BRC AY +BF

]

, TT
2 ÃdT1 =

[

LC W

BRC BF

]

,

TT
1 T2 = TT

2 T1 =

[

X I

I Y

]

, TT
2 B̃ =

[

−XB
−B

]

,

C̃1T1 =
[

RC F

]

, C̃3T1 =
[

−RC −Z
]

,

where C̃1 = [K6C K4+K5] and C̃3 = [−K6C −K5]. With the using of Schur complement, inequality (15)

can be rewritten as

Φ̃ =



















NT
1 (Ã+ Ãd) + (Ã+ Ãd)

TN1 P −NT
1 + (Ã+ Ãd)

TN2 −NT
1 Ãd N

T
1 B̃

√
¯̺C̃T

1

∗ h2S −N2 −NT
2 −NT

2 Ãd N
T
2 B̃ 0

∗ ∗ −π
2

4 S 0
√
¯̺C̃T

3

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I



















< 0.
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f

k

Figure 2 (Color online) The satellite system.

Then, we have

Φ̃ = diag{T−T
1 , T−T

1 , T−T
1 , I, I}Φ̄diag{T−1

1 , T−1
1 , T−1

1 , I, I},

where

Φ̄ =



















TT
2 (Ã+ Ãd)T1 + TT

1 (Ã+ Ãd)
TT2 T

T
1 (Ã+ Ãd)

TT2 −TT
2 ÃdT1 T

T
2 B̃

√
¯̺TT

1 C̃
T
1

∗ (h2 − 2)TT
1 T2 −TT

2 ÃdT1 T
T
2 B̃ 0

∗ ∗ −π
2

4 T
T
1 T2 0

√
¯̺TT

1 C̃
T
3

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −I



















< 0.

Thus, inequality (17) is obtained, and the closed-loop control system (13) gets the global uniformly

ultimate bounded stability, which completes the proof.

Remark 2. Note that the structure of the dynamic sampled output feedback controller (11) is different

from the DOF controller (2). Because there must exist two nonlinear terms in (17) which is arrived from

condition (15) when the form of dynamic sampled output feedback controller is taken as (2), we redesign

the dynamic sampled output feedback controller (11) for the solvable LMI condition (17) by introducing

two terms of the controller state x̂c(ih) in this paper. This method will be shown to be effective for a

closed-loop system with the dynamic sampled output feedback control by an illustrative simulation in

the following.

Remark 3. In Theorem 5, the LMI condition (17) is satisfied over the decision variables X > 0, Y > 0,

W , R, L, F , H and Z. Moreover, by solving the conditions in Theorem 5 via a standard numerical

software, parameters of the desired dynamic sampled output feedback controller (11) can be received

based on (18).

5 Illustrative example

In this section, the proposed control approaches will be applied to a satellite system, whose sketch is

shown as Figure 2.

For the convenience of analysis, the state vector is chosen as x(t) = [ θT1 (t) θ
T
2 (t) θ̇

T
1 (t) θ̇

T
2 (t) ]

T, where

θ1(t) and θ2(t) denote the yaw angles for the main body and the instrumentation module, respectively.
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According to [26], the state-space representation of the satellite system can be linearized as

ẋ(t) =













0 0 1 0

0 0 0 1

−0.09 0.09 −0.04 0.04

0.09 −0.09 0.04 −0.04













x(t) +













0

0

1

0













u(t),

y(t) =
[

0 1 0 0
]

x(t).

The initial state x(0) is assumed as [0.2 0.3 − 0.3 − 0.2]T, and then event-driven parameters are given

as
√
ε = 0.005 and

√
̺ = 0.005. From Theorem 3, the controller parameter matrices K1, K2, K3 and K4

can be computed as

K1 =













50.3502 2.8629 28.1404 5.9067

−50.6963 −2.967 −31.179 −5.0432

−80.7737 −4.5354 −44.266 −9.5086

−107.8983 −7.2436 −58.7651 −13.2154













,

K2 =
[

1.2551 −17.8524 1.2157 −37.7471
]T

,

K3 =
[

−80.6856 4.5995 43.4514 9.5605
]

,

K4 =
[

−0.1168
]

.

Thus, the simulation results are shown in Figures 3 and 4. Figure 3 shows the state responses of the

closed-loop system with the traditional continuous-time control scheme and proposed event-driven control

scheme. It can be seen that the performance of the system with event-driven control scheme is almost

same as that of the traditional continuous-time control one, and the states of the closed-loop system

are globally uniformly ultimately bounded. Furthermore, the error signal ‖e(t)‖ and inter-scheduling

intervals are shown in Figure 4. It turns out from Figure 4 that the communication frequency can be

highly reduced for the closed-loop system with an event-driven DOF controller. Especially, the control

signals are scarcely transmitted when the closed-loop system gets the global uniformly ultimate bounded

stability.

The simulation results of the proposed event-driven control approach will be shown for the system with

sampled outputs in the following.

Take the sampling period h = 0.015 s. The initial state x(0) is also assumed as [0.2 0.3 − 0.3 − 0.2]T,

and then event-driven parameters are given by
√
ε̄ = 0.001 and

√
¯̺ = 0.01. From Theorem 5, the

controller parameter matrices Ki, i = 1, 2, 3, 4, 5, 6 can be computed as

K1 =













−0.3721 0.0769 0.9076 −0.0577

9.5757 2.2631 1.577 2.0642

−0.4246 0.0074 −1.0244 0.006

−2.2813 −2.0573 −4.5547 −0.9468













,

K2 =













6.4422 −0.022 3.2386 0.6606

−6.072 −2.3385 0.7294 −1.5865

−8.4414 −0.0294 −4.1502 −0.8894

−27.8418 1.0270 −15.4902 −2.4742













,

K3 =
[

−1.9098 −5.1231 2.3316 10.9882
]T

,

K4 =
[

3.5304 0.3441 1.2059 0.5074
]

,
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Figure 3 (Color online) State responses: continuous controller and event-driven controller (continuous outputs case).
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Figure 4 (Color online) (a) State error ‖e(t)‖ and (b) the corresponding inter-scheduling intervals (continuous outputs

case).

K5 =
[

5.105 −0.3181 3.0463 0.4008
]

,

K6 =
[

−2.3973
]

.

Then, the simulation results are shown in Figures 5 and 6. Obviously, with the designed dynamic sampled

output feedback controller (11), the states of the closed-loop system are globally uniformly ultimately

bounded. Furthermore, the controller rarely triggers as the closed-loop system runs in a stable state

meanwhile the controller performance can also be guaranteed, and the effectiveness of the proposed

event-driven control approach is illustrated ultimately.
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Figure 5 (Color online) State responses: continuous controller and event-driven controller (sampled outputs case).
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Figure 6 (Color online) (a) State error ‖eσ(t)‖ and (b) the corresponding inter-scheduling intervals (sampled outputs

case).

6 Conclusion

This paper has investigated the problem of DOF control on systems with event-driven control inputs,

and the control schemes have been proposed for systems with continuous and sampled output measure-

ments, respectively. The event-driven instants and the controller parameters have been designed with the

avoidance of the Zeno behavior. It has been illustrated that with the designed event-driven scheduler,

states of the resulting closed-loop system are uniformly ultimately bounded. A numerical example has

been provided to explain the applicability of developed results in the end.
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