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Abstract Stream cipher is an important branch of symmetric cryptosystems, which takes obvious advan-

tages in speed and scale of hardware implementation. It is suitable for using in the cases of massive data

transfer or resource constraints, and has always been a hot and central research topic in cryptography. With

the rapid development of network and communication technology, cipher algorithms play more and more

crucial role in information security. Simultaneously, the application environment of cipher algorithms is in-

creasingly complex, which challenges the existing cipher algorithms and calls for novel suitable designs. To

accommodate new strict requirements and provide systematic scientific basis for future designs, this paper

reviews the development history of stream ciphers, classifies and summarizes the design principles of typical

stream ciphers in groups, briefly discusses the advantages and weakness of various stream ciphers in terms of

security and implementation. Finally, it tries to foresee the prospective design directions of stream ciphers.
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1 Introduction

The widely applied e-commerce, e-government, along with the fast developing cloud computing, big data,

have triggered high demands in both efficiency and security of information processing. As the core of

information security, cryptography is facing new opportunities and challenges. Higher speed and higher

security level are both crucial, while lower implementation cost also becomes important in order to cater

for the resource constraint scenarios such as wireless networks and radio frequency identification devices

(RFID) tags. Among all kinds of cryptographic primitives, stream ciphers stand out play an important

role in protecting the confidentiality of information.

Nowadays, the stream ciphers are featured with easy hardware and software implementation, fast

encryption and decryption, no or only limited error propagation, thus they maintain the predominance

in applications of special and confidential organizations, like diplomacy communication, government and

military affairs. Many international standards and civil communication systems are also adopting stream

cipher algorithms as their main components for protecting confidential information. Such examples are

the RC4 [1] stream cipher in IEEE 802.11 wireless network standard, the A5/1 [2] stream cipher for the

European GSM system, the SNOW 3G [3] and ZUC [4] stream ciphers for 3GPP standard, E0 stream

cipher [5] for bluetooth system. Governments all over the world are also devoting significantly to the

development of stream ciphers. In 2000, European government launched the NESSIE plan aiming at new

signature, integrity, and encryption scheme. The program lasted until 2003, but unfortunately, of all the

submitted stream ciphers, including the relatively famous SNOW 1.0 [6,7], LILI-128 [8], none were finally
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selected due to security flaws [9–11]. In the same year, Japanese government proposed the CRYPTREC

project [12], to collect and evaluate cryptographic algorithms for applications in government and industry.

Some nicely designed primitives like MUGI [13] have been selected. In 2004, Europe launched the

ECRYPT projcect [14], which contains a special plan, eSTREAM [15], dedicated to stream ciphers. It

collected 34 algorithms of diverse designs in total and 7 of them are finally selected. In particular,

the 7 selected eSTREAM ciphers can be divided into algorithms for constrained hardware environment

(portfolio 2), such as Grain-v1 [16], Trivium [17], Mickey-v2 [18], which are generally bit-oriented, and

algorithms for high-speed software applications (portfolio 1), such as Salsa20/12 [19], SOSEMANUK [20],

Rabbit [21], HC-128 [22], which are mostly word-oriented. The eSTREAM program has significantly

affected the development of stream ciphers, especially the design and analysis on the stream ciphers with

maximum internal state and high round initialization. Besides the projects dedicated designs, other kinds

of cryptographic primitives can also be adapted to stream ciphers. The winner of NIST’s SHA-3 hash

function competition, Keccak, has an additional stream cipher mode [23]. Many authenticated encryption

schemes submitted to the CAESAR campaign are adopting stream ciphers as their subroutines [24, 25].

As can be seen, the systematic study of stream ciphers is drawing more and more attentions, becoming

one of the central topics of cryptography. In fact, the study of stream ciphers dates back to early 20th

century. In the 1940’s, Shannon theoretically proved that the one-time pad (OTP) cipher is fully secure

in the ciphertext-only scenario [26]. OTP uses a completely random keystream whose digits are combined

with the plaintext digits at a time to form the ciphertext. However, the keystream must be generated

completely at random with at least the same length as the plaintext and cannot be used more than

once, making the whole system quite cumbersome for practical use. Stream cipher borrows the idea of

OTP by replacing the completely random keystream to a pseudo-random one generated from a secret

key with much smaller length. In comparison with OTP, stream ciphers provide easier key generation,

distribution and management which are crucial in practical applications. Meanwhile, well-designed stream

ciphers will guarantee high secure margin as well, since it is computationally infeasible to distinguish the

pseudo-random keystream from a complete random one, or to recover the secret key from the whole key

space. Generally stream ciphers can be divided into synchronous and self-synchronous stream ciphers. In

synchronous stream cipher, the generated keystream is independent of the sending, and the internal state

only depends on the preceding internal state, that has nothing to do with the plaintext [27]. The advantage

of synchronous stream ciphers lies in limited error propagation. Inversely, the keystream generated by

self-synchronous stream cipher depends on the previous plaintext or ciphertext information making the

security analysis hard to be performed [28]. Therefore, most modern stream ciphers are synchronous

stream ciphers in current whose resistance against known attacks can be theoretically evaluated.

The execution of modern stream ciphers usually consist of two stages: the initialization stage and

the keystream generation stage. In the initialization phase, the stream cipher first loads the secret key

and initialization vector (IV) into an internal state and then updates the internal state by iteratively

calling an updating function for sufficiently many rounds so that the secret key and IV are thoroughly

mixed. In the keystream generation phase, the stream cipher generates the pseudo-random keystream

digits from the highly diffused internal state by calling an output function while further updates the

internal state with the updating function. The designs of the cipher structures and the updating, output

functions are crucial to generate highly qualified pseudo-random keystream in an efficient manner. After

decades of development, many well-designed stream ciphers have been proposed. Each of them has its

unique feature catering for specific applications. The structures of stream ciphers are now highly diverse.

In late 20th century, many stream ciphers are using completely linear updating functions so that the

internal states can be regarded as concatenations of linear feedback shift registers (LFSR). Due to the

LFSR has no immunity against cryptanalysis as Berlekamp-Massey algorithm [29] for its linear nature, it

needs to adopt various nonlinear components to enhance its nonlinearity, where common methods include

nonlinear combination, nonlinear filtering, irregular clock control, and combinations with memories. A

typical LFSR based stream cipher is E0 [5] but it is soon realized that such LFSR based stream ciphers are

vulnerable to various cryptanalysis techniques [30, 31]. Therefore, in eSTREAM, many of the candidate

algorithms adopt more new structures such as nonlinear feedback shift register (NFSR). Among the 7
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eSTREAM winners, Trivium [17] can be regarded as a typical NFSR-based stream cipher consisting of 3

NFSRs. Grain-v1 [16] is also an NFSR-based primitive concatenating an NFSR with an LFSR. In order

to cater for resource-constrained applications (such as Internet of things (IoT)), small-state lightweight

stream ciphers are proposed aiming at resisting the time-memory-data tradeoff (TMDTO) attacks while

maintaining a small internal state. Typical examples are Sprout [32], Fruit [33, 34], and Plantlet [35],

but some of them have been frequently challenged the security [36–38]. To meet the requirements for

the application environment of homomorphic encryption, a new stream cipher structure was proposed

in Eurocrypt 2016, called substitution filter generation, which can be regarded as a variant of filter

generator [39]. Such a structure has been proved secure theoretically but some concrete instances of

this stream cipher have been attacked [40]. There are also several provably secure structures of stream

ciphers designed to resist side channel attacks, such as the leakage-resilient stream ciphers proposed at

some international conferences such as CCS 2010 [41], CHES 2012 [42], CT-RSA 2013 [43].

In this paper, we try to classify highly diverse designs of stream ciphers according to their structures.

The categories are LFSR based stream cipher, NFSR based stream cipher, shift register with carry

feedback (FCSR) based stream cipher, PANAMA-like stream cipher, random shuffled stream cipher,

ARX (addition, rotation, XOR) based stream cipher, Sponge structure stream cipher, block cipher based

stream cipher, block cipher work mode based stream cipher, and other stream ciphers including fully

homomorphic encryption systems used stream cipher, provable secure stream cipher. We also analyze

the advantages and weakness of these stream ciphers in terms of security and implementation. Finally,

we try to predict the future research directions of stream cipher designs.

2 Basic component

Cryptographic function. In symmetric cipher system, ones seek for Boolean functions and vectorial

functions with various cryptographic properties to construct cryptographic algorithms in resistance of

different kinds of attacks appeared by years (differential attack, linear attack, correlation attack, and

algebraic attack, etc.). Especially, searching for or constructing cryptographic functions with a series of

more optimal properties (balance, higher algebra degree, high order correlation immune, larger nonlin-

earity, and higher algebraic immunity, etc.) to resist various attacks at the same time, is a challenging

topic in the study of the current cryptography and information security. Boolean function is mainly used

for the design of stream cipher such as nonlinear combination, nonlinear filtering, and irregular clock

control. Vectorial function is mainly used for the design of block cipher, such as S-box which is a non-

linear vectorial function providing confusion for cryptographic algorithms, and P-permutation which is a

linear vectorial function that provides the diffusion for cryptographic algorithms. Research in this field

mainly concerns on the construction, count and equivalence of perfect nonlinear (PN) and almost perfect

nonlinear (APN) function, Bent and almost Bent function, and maximum algebraic immunity (MAI)

function. Great contributions have been made by scientists [44–46] in the constructions and analysis of

Boolean functions. For example, Qi et al. [47] has solved the construction of the symmetric Boolean

functions with optimal algebraic immunity on odd number of variables, and Kan et al. [45] has solved the

case of the symmetric Boolean functions with optimal algebraic immunity on even number of variables

as well as decided all of their cryptographic properties. These results play a positive role in promoting

the research of stream cipher designs.

Feedback shift register. Feedback shift register is one most common component of stream ciphers,

divided into LFSR and NFSR according to whether its feedback function is linear, and further divided

into Fibonacci pattern and Galois pattern (in Figure 1) depending on the presentation mode, between

which exist certain conversion relations. Moreover there is another FCSR.

Basic operations. For hardware and software acceleration, basic operations are usually used in

stream ciphers design. The three operations of module addition (⊞), interword rotation (≪) and XOR

(⊕) qualify the completeness.



Jiao L, et al. Sci China Inf Sci March 2020 Vol. 63 131101:4

a
r−1

a
r−1

q
r−1 q

r−1 q
r−2

q
1

q
0

q
1 q

0

a
0

a
0

a
1 a

1

F

Fibonacci FSR Galois FSR

LFSR LFSR 1

LFSR 2

LFSR 3

Filter generator Combiner generator

f

f

z

z

Figure 1 Types of feedback shift registers. Figure 2 LFSR based generators.

3 LFSR based stream cipher

Rueppel [48] divided the design of stream ciphers into two parts: the driving part and nonlinear part,

where the driving part is used to generate the basic source sequences with good properties, such as the

m-sequence, and the nonlinear part is mainly used to cover the linear properties of source sequences to

generate keystreams with high nonlinearity.

3.1 Bit-oriented

The most common structure of keystream generators in the 60’s of last century is driven by one or more

bit-unit LFSRs for a large cycle and good statistical properties, and usually combined with means of

filter, combiner, or clock control to realize the nonlinearly scrambling.

3.1.1 Filter generator

The keystream of nonlinear filter generator is generated directly by a nonlinear function acting on some

internal states of one LFSR (in Figure 2).

3.1.2 Combiner generator

Nonlinear combiner generator (in Figure 2) is composed of several LFSRs and a nonlinear combining

function, with a balance of properties on nonlinearity, correlation immunity, algebraic degree and algebraic

immunity. This structure is threatened by correlation attacks in the way of divide and conquer.

There are conversion relations between filter generators and combiner generators. These two kinds of

generators have mature theoretical analysis results, especially on linear complexity, and high efficiency

in both software and hardware. However, they are both vulnerable against algebraic attack series for the

constant algebraic degree, and lose their allure in current stream cipher designs.

3.1.3 Combiner generator with memory

Nonlinear combiner generator with memory is a generalization of combiner generators, which possesses

good cryptology properties and is widely used in theory and practice. One instance is Bluetooth encryp-

tion algorithm E0, which is used for point-to-point communication in wireless and Bluetooth networks.

E0. The core of E0 [5] is a typical nonlinear combiner generator, which consists of four regularly-

clocked LFSRs of lengths 25, 31, 33 and 39 bits, and 4 bit memory, with the structure shown in Figure 3.

The memory bits (c1t−1, c
0
t−1, c

1
t , c

0
t ) are updated by (c1t , c

0
t , c

1
t+1, c

0
t+1), where c1t+1 = s1t+1 ⊕ c1t ⊕ c0t−1,

c0t+1 = s0t+1 ⊕ c0t ⊕ c1t−1 ⊕ c0t−1, and (s1t+1, s
0
t+1) = ⌊(b

1
t + b2t + b3t + b4t + 2c1t + c0t )/2⌋. The initialization

of the two-level E0 scheme is shown in Figure 3, exploiting 128-bit secret key and 74-bit IV, where G1,

G2 and G3 are public affine transformations. The keystream generated for each frame is only 2745 bits.

In Crypto 2013, a real time attack against two-level E0 by the new technique of condition masking and

correlation attacks was presented.



Jiao L, et al. Sci China Inf Sci March 2020 Vol. 63 131101:5

LFSRs

Memory

Z

Cc
t

a
t

z
t

c
t+1

LFSRs Select

Output

controller

Feedback controller

Register 1

Register 2

z

z

Figure 3 Combiner generator with memory. Figure 4 Clock controlled generator.

3.1.4 Clock controlled generator

Another approach to introduce nonlinearity is to have the LFSR clocked irregularly shown in Figure 4.

The disadvantage is that irregular clock control may reduce the output efficiency. Such generators include

the following models.

Stop-and-go generator. The stop-and-go generator consists of two LFSRs. One LFSR is clocked if

the output of the second is a 1, otherwise it repeats its previous output.

Alternating step generator. The alternating step generator comprises three LFSRs, and the output

of one of the registers decides which of the other two is to be used. The keystream is the exclusive OR

(XOR) of the last bits produced by these two LFSRs.

Shrinking generator and self-shrinking generator. The shrinking generator takes two LFSRs,

both clocked regularly. If the output of the first LFSR is 1, the output of the second LFSR becomes the

keystream and otherwise, the output of the second is discarded, and no bit is output by the generator.

The self-shrinking generator takes only one LFSR, which works as clocking the LFSR twice to obtain a

pair of bits, and if the pair is 10 outputs a zero, if the pair is 11 outputs a one, otherwise, outputs nothing

as the keystream.

All of the above clock controlled generators have been analyzed thoroughly, and out of use.

LILI-128. LILI-128 [49] is designed for NESSIE project, while it has been broken by algebraic attack,

correlation attack, and time memory trade off (TMTO) attack. Its structure consists of two subsystems

for clock control and data generation, supported by two binary LFSRs of 39-bit and 89-bit length each,

and two filter functions. In the initialization, the 128-bit key is used directly to form the initial values of

these two LFSRs. The LFSR for the clock-control is regularly clocked and the output of this subsystem

is an integer sequence which controls the clocking of the LFSR for the data-generation, where z(t) =

fd(LFSR
k(t)
d ) and k(t)← k(t− 1) + c(t).

A5/1. A5/1 [2] is an encryption algorithm used by about 130 million GSM customers in Europe

to protect the over-the-air privacy of their cellular voice and data communication. For each frame, the

64-bit session key is mixed with a 22-bit publicly known frame counter to generate the initial state of the

generator, which just produces 228 pseudo random bits. It is a good example for avoiding the reduction

of output efficiency caused by irregular clock control, in the use of a majority function of the clocking

taps, and only those registers whose clocking taps agree with the majority bit are actually clocked, and

at each clock cycle, the output bit is produced as an XOR of the msb’s of these three registers. However,

it suffers the attacks of correlation, TMTO, guess-and-determine, initialization analysis, for its minor

64-bit internal state, which only costs several seconds to break it with three GPUs.

MICKEY 2.0. MICKEY 2.0 [18] is a hardware oriented selection in eSTREAM finalists. Unlike the

above clock controlled generator, it controls the feedback of the registers instead of the output. It maps an

80-bit secret key and a variable length IV (0 to 80 bits) to a keystream with maximum length of 240 bits.

The generator is built from two registers, each of 100-bit length. The clock control bit for each register is

derived from an XOR of different pair of state bits from both registers. The update mechanisms for these

two registers are linear and nonlinear respectively, in the charge of their input bits and control bits. In

the keystream generation stage, each register updates itself with its own internal state bits independently

in hand of its control bit, and it takes an XOR of the msb’s from these two registers as the keystream

bit. In the initialization stage, registers are set to all zero, and then the IV, key are successively used as

the input bits to update the state by executing the keystream generation routine, where one state bit of
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the nonlinearly update register always participates the update of the other. The structure of MICKEY

2.0 is totally different from the previous clock controlled generators. It adopts the work mode that these

two registers control and influence each other, thus the analysis of MICKEY 2.0 is still few. There is also

a version named MICKEY-128 that supports an extended key length of 128 bits.

3.2 Word-oriented

Compared with bit-oriented stream ciphers, word-oriented stream ciphers usually perform better in soft-

ware implementations. A word-oriented stream cipher usually works on and outputs words of certain

size, like 32, 16, 8 bits. The general structure of this kind of LFSR-based stream ciphers basically con-

sists of the linear driver in finite field extension and a nonlinear finite state machine (FSM), which can

be regarded as a generalization of filter generators, shown in Figure 5. Many stream ciphers designed

with such structure have been used widely, such as ISO/IEC international standard encryption algorithm

SNOW 2.0, 3GPP LTE international encryption standard algorithm SNOW 3G and ZUC.

SNOW series. SNOW 1.0 is a submission for NESSIE project, however it has a security issue.

SNOW 2.0 [6] is a new version of SNOW series under the control of a 128-bit key and a 128-bit IV. The

word size is 32 bits, and the LFSR is of length 16 with a feedback polynomial in F232 [x]. The nonlinear

part takes an FSM with two 32-bit memory units, and a transform using the S-box and mixcolumn in

advanced encryption standard (AES), whose structure is similar to the diffusion and confusion form of

block ciphers and has high security. The two-word input of the FSM is taken from the LFSR, and the

keystream word is formed by an XOR of the FSM output and the last stage of the LFSR. The LSFR is

initialized with the key and IV, while the memory units of FSM are set to zero. Then the cipher is clocked

32 times incorporated the output of the FSM in the feedback loop, and once more blank clock before the

first keystream word producing. The analysis difficulty of this kind of structure is that if we transform

the LFSR in the finite field extension into a binary representation, it will appear a very complex form.

To solve this problem, in Crypto 2015, a fast correlation attack over extension fields was proposed, and

reduced the analysis complexity of SNOW 2.0 to the best known result of 2164.15. SNOW 3G [3] forms

the heart of the 3GPP confidentiality algorithm UEA2 and the 3GPP integrity algorithm UIA2. Its only

difference from SNOW 2.0 is that the FSM has three 32-bit memory units, and two different S-box layers

are used to respectively update the last two units. A new version of SNOW family called SNOW-V is

recently designed for 5G application [50].

ZUC series. ZUC-128 [4] is the core of the standardized 3GPP confidentiality and integrity algorithms

128-EEA3 & 128-EIA3, which takes a 128-bit key and a 128-bit IV, and outputs a keystream of 32-bit

words. There are 3 parts involved in ZUC-128: an LFSR defined over the field GF(231 − 1), consisting

of sixteen 31-bit cells; a bit reorganization layer, which extracts the content of the LFSR to form four

32-bit words, used in the following FSM; an FSM with two 32-bit memory units, which executes the

operations of linear transform and S-box parallelly. The initialization stage of ZUC is similar with that

of SNOW series. Recently, a new version that supports 256-bit key is published, with only differences in

the initialization and message authentication codes (MAC) generation phases, designed for the upcoming

applications in 5G with high compatibility of ZUC-128.

Sosemanuk. Sosemanuk [20] is a winner of eSTREAM project, accommodates a 128-bit key and

128-bit IV. It is a 32-bit word-oriented stream cipher, composed of three parts: an LFSR containing

10 elements of F232 , an FSM with a transition function and a chosen function, a round function from

block cipher SERPENT, aiming at improving SNOW 2.0 both from the security and efficiency. The

special point of this design is that the output transformation derived from the S-box of SERPENT mixes

four successive outputs of the FSM in the bit-slice mode. Its initialization process is fully influenced by

Serpent, which contains a key setup that corresponds to the Serpent24 key schedule, an IV injection that

uses Serpent24 block cipher with the preceding generated subkeys and an input of the IV, and finally the

Sosemanuk internal state is initialized with the outputs of the block cipher. The analysis of Sosemanuk

is about correlation attacks and guess-and-determine attacks, while it still unbroken.
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4 NFSR based stream cipher

After eSTREAM project, many new design ideas and methods emerge endlessly. Among them a typical

kind of stream ciphers take NFSR as the basic components. It usually utilizes both the nonlinear feedback

and the nonlinear output to provide good sequence properties and security. There has not been yet unified

mode or route to analyze the security of stream ciphers based on NFSR, but it can be expected as a

mainstream of design scheme in quite a long time.

4.1 Grain series

Grain family. Grain family is a series of algorithms that combine the LFSR with the NFSR, and its

feature is using the LFSR to provide good statistical characteristics and using the NFSR to add nonlinear

disturbance, finally exploiting a filter function to mix the state from both two registers to further enhance

good cryptographic properties as high nonlinearity, good correlation degree and statistical property. Its

initialization is processed by loading the key and IV into the internal state, and clocking iterations of the

state length, incorporated the output both to the LFSR and NFSR in the feedback loop shown in Figure 6.

There are three stream ciphers, Grain-128a, Grain-128, and Grain-v1, in the Grain family, where Grain-

v1 is in the eSTREAM portfolio and Grain-128a is standardized by ISO/IEC. In Crypto 2018, Grain

family has been broken all (except the authenticated encryption mode) by a new fast correlation attack

based on finite field extension and multiple linear approximations.

Grain-v1 [16] is tweaked to remove the vulnerability of Grain-v0 by increasing taps of filter function

from the NFSR. It takes an 80-bit key and an 80-bit IV, using the LFSR and NFSR each of 80-bit

length, and a filter function of 5 variables and algebraic degree 3. The near collision attack is the most

important previous attack against Grain-v1. Grain-128 [51] supports a 128-bit key and a 96-bit IV, using

the LFSR and NFSR each of 128-bit length, and a filter function of 9 variables and algebraic degree 3.

Unfortunately, the low degree feedback of NFSR (a quadratic function) causes vulnerability against the

dynamic cube attack. Grain-128a [52] has two operation modes, stream cipher mode and authenticated

encryption mode, with higher degree of 6 for the nonlinear feedback polynomial, designed to avoid the

attack against Grain-128. Its authenticated routine is similar with ZUC using the universal hash function.

Small state stream ciphers. Currently RFID technology has been widely used in access control,

high speed charge, identification, cargo tracking, and other fields. Internet of things with a combination of

RFID technology, which is a typical example of the new informatization tide generation, is gradually deep

into people’s lives in various aspects. The reliable information transmission for Internet of things must

base on cryptographic algorithms to provide security services, and as a cryptographic algorithm using

environment, it mainly has the following characteristics: application components are generally embedded

processors of less computing power; the storage available for computing is often small due to constrained

resource; the power consumption must be controlled within a certain range considering the functional

requirements. Therefore, the traditional cryptographic algorithms cannot adapt well to this restricted

environment, which makes the study of lightweight cryptographic algorithms a hot issue. An important

principle in the design of traditional stream ciphers is that the size of the internal state is at least 2 times

of the security level in order to resist TMDTO attacks, which makes the design of lightweight stream
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ciphers a difficulty in terms of hardware implementation. To solve this difficulty, several novel lightweight

stream cipher designs are proposed based on the Grain family’s structure.

(1) Method one. Allowing for the key is fixed stored in some equipment, and the area to store a fixed

value is much smaller than a same length register, in FSE 2015, Armknecht put forward a design method

that to divide the internal state of the stream cipher into two parts, one is a variable state changed with

time, the other is the fixed, which is generally realized by reusing the key for feasibility. Thus this kind of

stream ciphers are also called CKU (continuous key-use) stream cipher, shown in Figure 7. The feature

of such stream ciphers is that the key does not only participate in the initialization, but also work for

the state update in the key generation. Its representative instances are Sprout, Fruit, Plantlet stream

ciphers, in which the key section at the top is fixed, while the NFSR and LFSR section are mutable. The

variable states in these three ciphers are 80, 80, and 101 bits respectively, but the goals are all to provide

80-bit security, which equal the key length.

In Sprout cipher [32], the key bit linearly participates or even does not participate in the state update

of the NFSR, with the feedback function nt+40 = g(Nt)+k∗t + lt+c4t , round key function k∗t = k(t mod 80) ·

(l4 + l21 + l37 + n9 + n20 + n29) and 9-bit counter. It is the design difference from Grain family, and

also the main revealed weakness. In addition that the register size is too small, several TMTO attacks

and guess-and-determine attacks were presented and broke the cipher. These results prompt designers

to carefully construct the key round function. The initialization of Sprout is processed by loading the

70-bit IV into the internal state and clocking 320 above iterations, XORed the output both to the LFSR

and NFSR in the feedback loop.

For Fruit [33], there is an original version, which is broken by correlation attack and divide-and-conquer

attack for the nonlinearity of its filter function is low. Then the designer modified the algorithm and

presented Fruit-v2. The internal state consists of a 43-bit LFSR, a 37-bit NFSR, a 7-bit counter and an

8-bit counter. In Fruit, the key nonlinearly participate in the state update of the NFSR controlled by the

different bit combinations of the counter. The initialization phase is a little complicated, by expanding

the 70-bit IV to 130 bits, loading the key into the internal state, clocking 130 iterations XORed the

output bit and expanded IV bit to the NFSR and LFSR in the feedback loop, setting the 7-bit counter,

and clocking 80 blank iterations more without the feedback to the LFSR and NFSR.

Plantlet [35] takes much bigger internal state of a 40-bit NFSR, a 61-bit LFSR and a 9-bit counter,

and a 90-bit IV. In Plantlet, the key is directly injected into the update function of the NFSR, where

kt = k(t mod 80), which makes the cipher much safer. The initialization phase of Plantlet is similar with

that of Sprout. Plantlet takes 2 different phase-dependent LFSRs: a 60-bit LFSR for the initialization

and a 61-bit LFSR for the keystream generation, while to save area, both LFSRs use the same register

and logic, which is called double-layer LFSR. Moreover, a paper was published in eprint in 2017, which

proposed a construction method of distinguishing attacks based on TMTO technique against such kind

of CKU stream ciphers, and pointed out a solution that the IV should also be involved in the updates.

(2) Method two. The state update function of most stream ciphers either in the keystream generation

or the state initialization is efficiently invertible. As a consequence, if an attacker manages to recover

any internal state in keystream generation, he will also be able to recover the corresponding initial state,

and by inverting the state initialization, the secret key, which is the key recovery process of TMDTO

attacks. To break this basis for TMDTO attacks, the state initialization algorithm of Lizard cipher [53]

represents the first instantiation of the FP(1)-mode [54], which works in the way:

• Loading : Sload = (IV,K);

• Mixing : Sload → Smixed;

• Hardening : Sinit = Smixed ⊕K.

The structure of Lizard is similar to the Grain family, while its 121-bit internal state is distributed over

two interconnected NFSRs. It takes 120-bit key and 64-bit IV, in order to achieve 80-bit security. We

can see that computing the initial state from any of the later internal states is also possible for Lizard,

but the secret key cannot be computed efficiently from the initial state due to the FP(1)-mode. It was

proved that by using the FP(1)-mode, one can reach 2
3n-bit security against TMDTO attacks aiming at

key recovery for a keystream generator with an internal state of length n, instead of 1
2n-bit security.
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Figure 7 Schematic of small state stream cipher. Figure 8 Schematic of Trivium-like cipher.

4.2 Trivium series

Trivium series are hardware oriented stream ciphers with extremely simple design, which take the struc-

ture of three interconnected NFSRs with low degree feedback functions and linear or quadratic filter

functions, shown in Figure 8.

Trivium. Trivium [17] belongs to the eSTREAM final portfolio, which takes an 80-bit key and an

80-bit IV, generates up to 264 keystream bits. It contains a 288-bit internal state. At each step, 15 specific

state bits are extracted in three quadratic feedback functions to update 3 bits of the internal state in the

initialization and keystream generation, and 6 of them are linearly XORed to compute the keystream bit.

After loading the key and IV, the state is rotated over 1152 rounds for the initialization without outputs.

Although its simple design is likely vulnerable to possibly devastating attacks, it survives a long period

of public scrutiny despite. Its main attacks are cube attack against reduced-round Trivium, and the best

known result is 855 rounds, while yet no attack has been discovered on its full version, which inspires

more confidence in such simple design.

TriviA-SC. Trivia-SC [24] is the based stream cipher modified from Trivium with much larger internal

state, for the authenticated encryption algorithm TriviA-ck (v2), which is a submission to CAESAR

competition. Trivia-SC is loaded with 128-bit key and 128-bit IV, and uses three NFSRs of size 132, 105,

and 147 bits, respectively. It also extracts 15 specific state bits in three quadratic feedback functions

to update 3 bits of the internal state at each step, while a quadratic term of another two state bits is

added into the linear sum to compute the keystream bit. Its initialization is similar with Trivium of

1152 rounds. Trivia-SC is parallelizable up to 64 bits. Its main attacks are also cube attacks against the

reduced-round version, and the best known result just exceeds the 1000-round barricade.

Kreyvium. Kreyvium [55] is oriented to efficient homomorphic-ciphertext compression, which consists

of five registers. While the modification from Trivium is the 128-bit top register and the 128-bit bottom

registers, the three middle registers of length 93, 84, 111 bits are corresponding to Trivium. Kreyvium

claims 128-bit security and accepts 128-bit key and 128-bit IV. Its initial loading is with a difference

from the case of Trivium, that is, the IV and the key are also loaded to the top and bottom register

respectively. Besides, the initialization is similar with Trivium of 1152 rounds. At each step, the key and

IV both linearly participate in the state update, and the key also linearly participates in the keystream

generation. The best known distinguishing attack against the reduce-round Kreyvium is 872.

4.3 Others

ACORN. ACORN [25] is a bit-oriented authenticated encryption algorithm in the finalistss of CAESAR,

with the advantage of lightweight hardware realization. It adapts to 128-bit key, 128-bit nonce and less

than or equal to 128-bit tag length, contains a state of 293 bits which is concatenated by six small

LFSRs (in Figure 9). The function to compute the overall feedback bit and the function to filter the

keystream from the state are both quadratic based on the majority function and chosen function. ACORN

includes four stages of a non-invertible initialization of 1792 steps, an associated data processing of

at least 256 steps, a plaintext encryption of at least 256 steps, an authentication tag generation of
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768 steps, which presents better protect of the secret key in case of nonce reuse. It provides different

parameters to distinguish different stages for resistance to sliding attacks. ACORN works without the

need of the plaintext padding, the information of the plaintext length, and the steps for the finalization

is fixed. ACORN can be implemented in parallel of 32 steps and as a result, its software implementation

performance is also good. Its design is simple, and remains secure for the moment.

5 FCSR based stream cipher

There is another shift register, known as the FCSR, provided by rational 2-adic numbers. The sequence

obtained from an FCSR has the same suitable statistical properties with the LFSR sequence, such as

the known period, balancedness, equal distribution of patterns, moreover it has intrinsic nonlinearity

inherited from its quadratic transition function added with carries. Thus a linear filter can be used

to extract the keystream from the internal state, since FCSR sequences are predictable by synthesizing

algorithms and therefore not suitable to be directly output. Even though the algorithm F-FCSR designed

based on FCSR, which was submitted to eSTREAM project, was eventually found not secure, it cannot

rule out the possibility of new safe stream cipher instances based on FCSR structure. That is, this kind

of shift register is still a potential alternative source sequence.

There also exist two presentation forms for FCSR: the Galois setup and Fibonacci setup. Here we

focus on the Galois setup, which is an automaton that computes the binary expansion of the quotient of

an integer p by a fixed odd integer q following the ascending order of the powers of 2. Let d = (1− q)/2

and put d =
∑n−1

i=0 di2
i, with di ∈ {0, 1}, dn−1 = 1. The FCSR automaton is composed of a main register

M and a carry register C. The main register M is composed of n binary cells, where each bit is denoted

by mi(t) (0 6 i 6 n− 1). The carry register C consists of l cells, where l + 1 is the Hamming weight of

the binary expansion of d. ci(t) denotes the carry bit, and it is present only if di = 1, i < n − 1. For

FCSRs generators, it requires that q is a prime of bit size n + 1, and the order of 2 modulo q is |q| − 1,

while T = (|q| − 1)/2 is also prime and the Hamming weight of the binary expansion of d = (1 + |q|)/2

is about n/2 or slightly greater. The n bit word d can define a filter which outputs a keystream word

of bitsize s as follows: bit j of output word =
∑n/s−1

i=0 dsi+jmsi+j . The total structure of the keystream

generator based on an FCSR is showed in Figure 10.

F-FCSR. F-FCSR [56] contains two designs: F-FCSR-H, which takes an 80-bit key and an 80-bit IV,

and F-FCSR-16 which takes a 128-bit key and a 128-bit IV. The initialization phase of F-FCSR consists

of three steps: K/IV loading to the internal state, re-initializing the main register with its 20/16 clocks

outputs, clocking n+2 times more before the keystream output. It chose q = −19935245913182750153280

41611344215036460140087963 and q = − 1839714408456194711298691618093441316582983176559231357

53017128462155618715019 for F-FCSR-H and F-FCSR-16, respectively. F-FCSR was broken by Hell et

al. [57], mainly using its linear translation features, i.e., if all the carry registers and feedback bits value

0, the register values will be linear changed in the flip-flop. The attacker just used about 226 bytes of

keystream to list enough linear equations in order to break F-FCSR.

6 PANAMA-like stream cipher

PANAMA structure designed by Daemen et al. [58] has not yet been found any security problem as a

keystream generator. A PANAMA-like keystream generator consists of two internal states: state a and
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buffer b, their update functions ρ and λ, and an output function f , where ρ includes a substitution-

permutation network (SPN) transformation that uses parts of buffer b as a parameter a(t + 1) =

ρ(a(t), b(t)), λ is a linear transformation that uses a part of state a as a parameter b(t+1) = λ(b(t), a(t)),

f outputs a part of state a which is typically no more than 1/2.

Enocoro. Enocoro is a lightweight stream cipher family standardized by IEC and ISO in ISO/IEC

29192-3, which has two versions named according to their key lengths as Enocoro-80 and Enocoro-128v2

both with 64-bit IV. There has not been any attacks ever violated their full-round security. Enocoro (in

Figure 11) is a byte-oriented stream cipher with excellent software performance, of the structure specified

by 11 parameters (nb; bk1
, bk2

, bk3
, bk4

, q1, p1, q2, p2, q3, p3). Here nb is the buffer size in byte, and the state

a consists of two bytes. Parameters bk1
to bk4

are the inputs from the buffer to the ρ function. The ρ

function works as shown in the schematic, with a linear transformation L as a 2-by-2 matrix over GF(28),

and four S-boxes of S8 permutation. Parameters q1, p1, q2, p2, q3, p3 define the linear λ function, which

shuffles as shown in the schematic. The output is a1,t. The initialization firstly sets the registers with the

K/IV and constants, then updates the state by clocking 96 blank iterations with an XOR of the counter

to bnb−1.

MUGI. MUGI is a typical PANAMA-like stream cipher with a 128-bit key and a 128-bit IV, suitable

for both software and hardware implementations. It was selected for standardization by the Japanese
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government project CRYPTREC and is also one of the proposed ISO stream cipher standards. No security

flaw of the full MUGI stream cipher has been reported so far. MUGI is word-oriented with a word size

of 64 bits, and its internal state consists of 19 words. The update function ρ of state is a kind of Feistel

structure, where the F -function consists of a data addition from the buffer, a non-linear transformation

using the S-box, a linear transformation using the maximum distance separable (MDS) matrix and a byte

shuffling, which are the same as for AES. The update function λ of buffer b is a linear transformation as

bi,t+1 = bi−1,t (i 6= 0, 4, 10), b0,t+1 = b15,t⊕ a0,t, b4,t+1 = b3,t⊕ b7,t, b10,t+1 = b9,t⊕ (b13,t ≪ 32), which is

similar as Enocoro. The initialization of MUGI is divided into three steps: initializes the buffer with 16

rounds of ρ function on key, initializes the state with another 16 rounds of ρ function on IV, mixes the

whole internal state with 16 more rounds of the whole update function.

7 Random shuffled stream cipher

In order to achieve high efficiency of software implementation, a series of algorithms represented as RC4

cipher are proposed with an employ of randomly shuffled tables, which shuffle a list to create random

permutations. Since RC4 has got a number of applications in practice, it inspired subsequent designs

of this type of structure, against which the state recovery attacks often require extremely high time

complexity. Now the understanding for this type of stream ciphers is still at the stage of development,

and any influential analysis result on RC4 may advance the acknowledge of this type of structure with

leaps.

RC4 series. RC4 [1] is a byte-oriented stream cipher, which uses a numerical table containing 0 to

255, and a permutation mode to generate replacements with two bytes index-pointers. The key length

of RC4 is variable typically between 40 and 128 bits, and it does not take a separate nonce alongside

the key as the modern stream cipher. The table is initialized with a mix of the key. And then in the

keystream generation phase, it modifies the table and outputs a byte of the keystream at each iteration (in

Figure 12). Its speed and simplicity leads to efficient implementation in software and easy development in

hardware, which makes it a success over a wide range of applications until that in 2015 it was prohibited

for all versions of TLS. Although the initialization phase of RC4 and the statistical properties of its first

several bytes have been questioned a lot, its key generation phase is still considered secure by abandoning

enough keystream bytes ahead, especially for its 128-bit security.

In view of the above weaknesses, the designer upgraded the algorithm named Spritz [59], which still

adopts the similar structure of RC4, while the state update function is more complex in order to obtain

better randomness. However, in FSE 2016, Banik and Isobe found that the randomness of the first two

bytes of Spritz was still not ideal enough to resist to distinguish attacks [60].

HC-128. HC-128 [22] is a software-efficient cipher in eSTREAM portfolio, which maps a 128-bit key

and a 128-bit IV to at most 264 keystream bits. It also has an extended version of HC-256 [61]. HC-

128 consists of two secret tables, each one with 512 elements of 32 bits. At each step in the keystream

generation phase, one element of a table is updated with a function of the elements from its own table,

meanwhile one 32-bit output is generated by a function of elements from both two tables. These four

functions are nonlinear with operations of modulo-232 addition, modulo-512 subtraction, XOR, shift

(rotation) and table look-up. The initialization process of HC-128 consists of expanding the key and

IV into these two tables, and running the cipher 1024 steps with the outputs being used to replace the

elements in these two tables. That is, these two tables are interrelated controlled in the initialization like

a combination of the alternating step generator with RC4 cipher, while they are self-controlled in the

keystream generation. HC-128 is suitable for modern superscalar microprocessors since the dependency

between operations in HC-128 is very small. HC-128 seems secure, for it is lack of effective analysis

method and means, which on the other hand, limits its further application in actual.
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8 ARX based stream cipher

Many modern stream ciphers are proposed as ARX based algorithms, whose round function only involves

three hybrid operations of module addition (⊞), interword rotation (≪) and XOR (⊕), to achieve

required security strength. These ARX operations are popular since they are relatively fast and cheap in

software implementation, and also run in constant time which is immune to timing attacks. ARX based

stream ciphers have attracted a number of scholars’ interest and the security analysis method for this

kind of designs have made good progress.

Salsa20 and ChaCha. Salsa20 [19] and the closely related ChaCha family [62] are both 32-bit module

addition, XOR and rotation operations based core hash functions, where Salsa20 is the original cipher

selected in eSTREAM software profile, and ChaCha is a modification published in 2008 using a new round

function to increase diffusion. Google has selected ChaCha20 along with Bernstein’s Poly1305 message

authentication code as a replacement for RC4 in TLS used for Internet security. Salsa20 and ChaCha

both work on an internal state of sixteen 32-bit words arranged as a 4× 4 matrix and map a 256-bit key

(128-bit key is also suitable for Salsa20), a 64-bit nonce, and a 64-bit counter to the keystream of 512-bit

blocks. Their initial state are both made up of 8 words of key, 2 words of stream position (counter), 2

words of nonce, and 4 words of constant, while the arrangements are different. The core operation in

Salsa20 is the quarterround function (4 word → 4 word), shown in Figure 13. Two consecutive rounds

of columnround and rowround (16 word→ 16 word) together, that applies the quarterround function to

vectors of the four columns and then the four rows in the 4× 4 matrix with the starting element in the

diagonal, are called a doubleround. Salsa20 performs 10 doubleround on its input, and finally the mixed

matrix is added word by word to the original matrix to obtain the 64-byte keystream block. Here it

uses littleendian function to transform between 4-byte sequence and a word. ChaCha replaces Salsa20’s

quarterround, shown in Figure 13, which updates each word twice with the same number of operations

in Salsa20. Rather than alternating quarterrounds down columns and across rows in Salsa20, ChaCha

performs quarterrounds down columns and along diagonals in a doubleround. ChaCha20 also uses 10

iterations of the doubleround and the same output function. There have been only attacks on reduced

round Salsa20/12 rather than the full round Salsa20/20 so far, and there have been attacks for 256-bit

ChaCha6 with complexity 2139, 256-bit ChaCha7 with complexity 2248, 128-bit ChaCha6 with 2107, while

128-bit ChaCha7 is still secure.

Rabbit. Rabbit [21] is selected in eSTREAM software Profile, using a 128-bit key and a 64-bit IV

to generate up to 264 blocks of keystream. The size of the internal state is 513 bits, divided into eight

32-bit state variables, eight 32-bit counters and one counter carry bit. The counter carry bit is initialized

to zero. The state variables and counters are initialized by loading the expended key, followed with

four iterations of the next-state function and one more XORing operation on the counters, and then

the counters are XORed with the IV, followed with four more system iterations. Each state variable is

updated by a coupled nonlinear consecutive iterations of a g-function, which squares a 32-bit number to

produce a 64-bit number and then combines the left half and the right half of that square number with

XOR to produce a 32-bit result, and the modulo-232 addition and rotation operations. The counters are
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updated with the dynamics carry bit, which ensures a lower bound on the period length for the state

variables. Rabbit generates a 128-bit block of keystream at each iteration, which is derived by XORing

the internal state bits. The cipher’s strength rests on a strong mixing of its inner state. There exists

a small bias in the output of Rabbit, however the best known attack against Rabbit is with complexity

2158, which is still not a threat to its security.

MORUS. MORUS [63] is a family of authenticated ciphers selected in the additional finalists of

CAESAR, with three parameter sets including MORUS-640-128, MORUS-1280-128, MORUS-1280-256,

in which the internal state of size either 640 or 1280 bits consists of five elements of size either 128 or

256 bits, and the key size is either 128 or 256 bits. MORUS uses a 128-bit nonce that should not be

reused, and generates 128-bit tag for authentication. The design of MORUS is based on ARX operations,

with a similar structure to HELIX/PHELIX. It includes four stages of 16 step associated initialization,

data processing, plaintext encryption, more than 8 steps tag generation with the length of the associated

data and message. Each state update of MORUS contains a short critical path of 5 rounds with similar

operations to update the state, where the associated data or plaintext blocks are embedded in round 2

to 5. The round function uses the basic operations of bit-wise AND (&), XOR (⊕) and rotation, where

the rotation involves Rotl xxx yy function, which divides an xxx-bit state element into 4 words of yy-

bit and then performs left rotation operation for every yy-bit word, and the left rotation of the whole

state element for better diffusion. Each keystream word is a nonlinear combination of the internal state

passed the critical path. MORUS is software-oriented aimed at high-end CPU application, which no

more depends on the AES instructions to achieve high performance. It makes full use of the advantages

of AVX2 instruction set, and provides good software and hardware performance, strong adaptability

and security. However, all versions of full MORUS were broken by the correlation of quadratic Boolean

functions to search for linear trails in Crypto 2019.

9 Sponge structural stream cipher

Since Keccak won the SHA-3 competition, there recently emerged a series of stream ciphers designed

based on permutations or Sponge structure, which outputs some internal state directly as the keystream

sequence. Keccak [23] is based on a novel approach called Sponge construction, which uses a wide

random permutation, and allows inputting (absorbing) and outputting (squeezing) any amount of data,

which leads to great flexibility. The advantage of this structure is that it can provide authentication

function naturally without additional authentication module, and provide high security as long as the

round function of the hash algorithm has good security properties. It can be expected that this kind of

stream cipher structure will be greatly developed in future, but its security analysis is still a problem to

be solved for whether such ciphers have undiscovered weaknesses is unknown. From the implementation

point of view, how many rounds should be included in the permutation is also a very important issue.

The representation of Sponge structure stream ciphers includes KETJE, NORX, ICEPOLE, Ascon, APE,

which are all embodied in fixed permutations, where Ascon takes SPN structure with a nonlinear layer

similar to SHA3, Ketje and Keyak both directly adopt the fixed permutation of SHA3 with only difference

in the state scale, and NORX uses the design method of ARX class.

Ascon. Ascon [64] is a family of authenticated encryption designs selected as the first choice for use case

1 in the finalists of CAESAR, including Ascon-128 and Ascon-128a two algorithms, both with 128-bit key,

128-bit nonce, and 128-bit tag. Ascon adopts a Duplex structure (in Figure 14), and a fixed permutation

of iterative functions with SPN structure. The core permutations operate on a Sponge state of 320 bits,

including a rate of r bits and a capacity of c bits. During the initialization and finalization stage, the

number of iterations in Ascon-128 and Ascon-128a’s permutation are both 12 rounds, while in the message

processing stage, the number of iterations in Ascon-128’s permutation is 6 and each time a 64-bit message

block is embedded, the number of iterations in Ascon-128a’s permutation is 8, and each time a 128-bit

message block is embedded. According to the security proofs of Sponge structure, the design core of Ascon

is the fixed permutation. The iterative function for Ascon’s permutation consists of constant addition,
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Figure 14 Schematic of Ascon.

substitution layer and linear diffusion layer. The substitution layer uses a 5× 5 S-box similar to Keccak,

which is directly constructed with the bit-slice technology, so it can be parallel implemented efficiently on

the 64-bit processor without the need of table look-up, which resists to the cache timing attack. The linear

diffusion layer is similar to SHA2’s
∑

function, which uses five similar linear transformations, employing

the operations of XOR and 64-bit word rotation for internal diffusion. Each linear transformation has a

branch of 4, and the rotation parameters are carefully selected to increase the number of minimum active

S-boxes in Ascon’s permutation. The main feature of Ascon is lightweight, and taking into account both

of hardware implementation cost and software performance. Compared with other algorithms based on

the Sponge structure, Ascon uses more complex initialization and finalization, which makes it hard to

restore the key or forge the message even acquired the intermediate state information. The analyses on

Ascon are mainly based on cube attacks, and the best known result is a key recovery attack against

7-round Ascon.

10 Block cipher based stream cipher

Many stream ciphers are proposed with the design idea of block ciphers, such as based on the basic

operation, round function or algorithm structure of a block cipher, even the entire block cipher with

efficient software-oriented instruction set (such as AES) and the tweakable block cipher with work mode.

This kind of stream ciphers are difficult to evaluate with the traditional analysis method against stream

ciphers, since its internal state is always very large.

AEGIS. AEGIS [65] is an authenticated encryption scheme in the finalists of CAESAR, which uses the

AES encryption round function as the basic module, and builds its round transform with the paralleliza-

tion of several AES round functions, making full use of AES instructions and resources in modern CPU.

It contains three parameter selections of AEGIS-128L, AEGIS-128, AEGIS-256 with 128/128/256-bit

key, 128/128/256-bit nonce, 1024/640/768-bit state, 128/128/128-bit tag, and 8/5/6 AES round func-

tions to process 32/16/15-byte message block in each step. Since their structures are similar, only the

state update function of AEGIS-128 is shown in Figure 15, where R indicates the AES encryption round

function without XORing the round key and w is a temporary 16-byte word. The initialization of AEGIS

consists of loading the key and IV into the state, and running the cipher for steps with the key and

IV being used as message to make the difference fully random. Next, the associated data is used to

update the state. At each step of the encryption, a plaintext block is used to update the state, and also

encrypted with the leakage information achieved by processing simply operations like &, ⊕ on some of

the intermediate state. Finally, the authentication tag is generated by updating the state with the length

of the associated data and message. AEGIS is fast software implemented with about half computational

cost of AES, and suitable for network communication. It also offers a high security as long as the nonce

is not reused, which takes full use of the analysis results of AES, while the techniques adopt in its IV and

key processing, plaintext embedding, ciphertext leakage, and message length processing are still worthy

of further analysis.

Tiaoxin. Tiaoxin [66] is an authenticated encryption scheme submitted to CAESAR, which con-

structed by AES round function and generalized feistel structure. It takes 128-bit key and 128-bit nonce,

with three substates of 3/4/6 128-bit words. Each substate update round function is independent and

calls two AES round functions as the basic operations parallelly, where the former is keyless and the pos-



Jiao L, et al. Sci China Inf Sci March 2020 Vol. 63 131101:16

s
0

s
1

s
2

s
3

s
4

s
0

s
1

s
2

s
3

s
4

m

R R R R R

z

K K K

AES AES AES

z z

IV

Figure 15 Schematic of AEGIS-128. Figure 16 Schematic of LEX.

terior uses a constant as the subkey. It processes the associated data and message in blocks of 2 words,

which are respectively XORed to the first and second state, and meanwhile their XOR is embedded to the

third state, in order to improve the whole security and reduce the average use of AES round functions.

Tiaoxin works in four phases of initialization, processing associated data, encryption, and finalization.

The initialization loads the key and nonce into the three substates and conducts 15 rounds. Then the

associated data and message blocks are processed, and the ciphertext blocks are generated by XOR and

AND operations on the words of the state. Finally, it goes through 20 more rounds to produce the tag

as an XOR of all the words of the state. Although the security of Tiaoxin is not verifiable, it is easy to

provide the optimal difference path and rule out the high difference, since the substates adopt different

scales without diffusions to one another and the state update process is simple for analysis. The output

function also makes it impossible to get the internal state value directly. Different constants are used

for initialization and finalization to improve the security against sliding attacks, cyclic difference attacks,

etc. Tiaoxin needs to call 3 times of AES round functions to process 128-bit data, which improves the

previous 4 times design. Thus, Tiaoxin has a good software implementation performance.

LEX. LEX [67] is a 128-bit key stream cipher, which is a submission for the eSTREAM project. The

design is simple and uses AES in a natural way: at each AES round it outputs certain four bytes (different

in the even and odd rounds) from the intermediate variable as the keystream (in Figure 16), where the

roundkeys are generated first by a standard AES key-schedule with the secret key, and the 128-bit IV

is encrypted as the input of AES. Although LEX has some security problem, it still provides a general

design principle that can take an application of any other block ciphers, but a careful study is required

in each particular case, in order to decide which parts of the internal state may be given as the output

and at what output frequency. This mainly depends on the strength of the cipher’s round function and

the cipher’s key-schedule. For example, ciphers with good diffusion may allow to output larger parts of

the internal state at each round than ciphers with weak diffusion.

Scream. Scream [68] is a word-oriented stream cipher, aimed to be a more secure SEAL, which is fast

for software implementations with a block cipher-like round function. Its half round function operates on

a 64-bit block represented as a 2× 4 matrix of bytes, where each byte is sent through an S-box, then the

second row in the matrix is cyclic shifted, and finally each column of the matrix is mixed by multiplying

an invertible matrix (in Figure 17). The round function F is a mix of a Feistel ladder and an SP-network,

using two half-round functions with different S-boxes and invertible matrixes, where the S-boxes are

derived from the AES S-box in a key-dependent fashion. Scream maintains a state that consists of the

evolving state x and some round keys y, z, each of one 16-byte block, and a mask table W of 16 blocks.

At round i, the evolving state is modified by x = F (x⊕ y)⊕ z, and then it outputs x⊕W [i mod 16] and

rotates y by a few bytes after each use, which provides some protection against low-diffusion attacks and

linear analysis. Both the mask table and the round keys are modified every pass of 16 rounds. Scream

uses a 128-bit key and a 128-bit nonce, and the initialization is straightforward designed using the round

function F to derive all the quantities needed.

Deoxys. Deoxys [69] is an authenticated encryption cipher in the finalists of CAESAR, based on a

tweakable block cipher Deoxys-BC with work mode. Deoxys-BC is an AES-like design that uses rounds of

SPN transformations, where only its subtweakeys production is different under a TWEAKEY framework
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generally proposed to unify the key and tweak into 128-bit words, which are iteratively XORed as the

subtweakey and updated by parallel byte permutation and byte shuffle (in Figure 18). The security

of the tweakable block cipher designed under TWEAKEY framework is worth of further consideration.

Deoxys-BC has two versions: Deoxys-BC-128 and Deoxys-BC-384 with 256/384-bit cumulative size of

the key and tweak, 14/16 rounds of SPN transformations, used to build Deoxys with 128-bit and 256-

bit key, respectively. Deoxys has two modes: nonce-respecting Deoxys-I and nonce misuse-resistance

Deoxys-II. Several parameter sets are recommended as Deoxys-I-128-128, Deoxys-I-256-128, Deoxys-II-

128-128, Deoxys-II-256-128, where the parameters are the key length and tag length. The nonce size is

64 bits for Deoxys-I and 120 bits for Deoxys-II. The handling of the associated data for Deoxys-I and

Deoxys-II has the same work mode. The message processing for Deoxys-I is similar to the tweakable block

cipher generalization of OCB3, and the message processing for Deoxys-II heavily relies on an inverse-free

authenticated encryption mode SCT, where the main difference is that Deoxys-I applies one pass on

the message blocks, while Deoxys-II performs two passes, shown in Figure 18. Here ET
K denotes the

tweakable block cipher with key K and tweak T , and N denotes the nonce. Deoxys performs well in

software, particularly for small messages. The authenticated encryption algorithm based on a tweakable

block cipher is clear in structure, easy for security proof, and likely to obtain birthday-bound security.

11 Block cipher work mode based stream cipher

Using the block cipher work mode, a block cipher can be converted into stream ciphers. Under the

assumption that the based block cipher is safe, the work mode can provide some verifiable security for

the generated stream cipher. There are several authenticated encryption algorithms designed with block

cipher work mode in CAESAR, they usually call AES block cipher as a black box, and optimize the

software implementation with AES instruction set.

CFB. The cipher feedback mode (CFB) transforms a block cipher into a self-synchronous stream

cipher, shown in Figure 19. Its main advantage is of a limited error propagation, can be used for

authentication and realize the synchronization, while the disadvantage is that the encryption efficiency

is relatively low.
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Figure 19 Block cipher work modes.

OFB. The output feedback (OFB) mode makes a block cipher into a synchronous stream cipher. It is

quiet similar to the CFB mode, while it encrypts the previous keystream block rather than the previous

ciphertext block as CFB mode. The concrete structure is shown in Figure 19.

CTR. The counter mode can turn a block cipher into a stream cipher in the way of generating the next

keystream block by encrypting successive values of a counter with IV. The advantages of counter mode

encryption (CTR) is safe, effective, parallelized, and suitable for any length of plaintext information.

Moreover only encryption algorithm is used in the process of both encryption and decryption.

OCB. Offset codebook (OCB) [70] is one of the most classic authenticated encryption mode, which is

adopted as ISO/IETF standards and in the finalists of CAESAR. It works as using maskings to disguise

plaintext and ciphertext, where the last message block is a little different in cases, and generating the

tag in the Checksum manner (in Figure 20). The processing of each message block just need some

simple XOR operations beside invoking the encryption of AES. OCB does not need to pad the message,

and is almost as fast as CTR mode. OCB has good parallel property, since most OCB calculations are

independent from each other, which allow to accelerate the software and hardware implementation with

more computing resources. OCB is online, which does not need to know the information of all the message

or associated data before do the processing, and the processing can be done in any order. When multiple

associated data in a series of encryption remain the same, it does not need to recalculate the associated

data, which reduces an amount of calculation. Compared with Galois counter mode (GCM), the function

and safety of OCB is similar, while its software achievement is more efficient. In addition, OCB tags can

be truncated to shorter length, while GCM cannot. The security of OCB is fully demonstrated in 10

years of research and development. OCB requires non-reused nonce, and does not have birthday-beyond

security. If the underlying block cipher is a strong pseudo-random permutation, OCB is a proven safe

nonce-based authenticated encryption algorithm. Various key lengths of 128/192/256 bits and tag lengths

of 64/96/128 with no more than 120-bit nonce are provided for different security levels in OCB.

COLM. COLM [71] is selected in the finalists of CAESAR, which combines PHASH and EME

(encrypt-mix-encrypt) modes. It first processes the associated data and nonce with parallelizable mes-

sage authentication code (PMAC) to achieve the intermediate variable IV, then executes the first layer

of electronic codebook (ECB) after masking the plaintext, next linearly mixes the IV and the successive

accumulation output from the first layer of ECB as the inputs of the second layer of ECB, finally masks

the output of the second layer of ECB to generate the ciphertext (in Figure 21). COLM is designed with

the goal to achieve online misuse resistance, to be fully parallel and secure against blockwise adaptive
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adversaries. COLM uses AES-128 with a key and state of 128 bits, takes a nonce of 64 bits and has two

parameters for intermediate tag interval and length to set the param of 64 bits, aiming to achieve 64-bit

security, which is supported by security proofs corresponding to the birthday bound security of the block

size of AES.

JAMBU. JAMBU [72] is a lightweight authenticated encryption mode submitted to CAESAR, mo-

tivated by developing secure structure that can convert lightweight block ciphers to lightweight authen-

ticated encryption ciphers. It uses SIMON/AES-128 to construct the specific ciphers. JAMBU contains

four parts of initialization, associated data processing, plaintext processing and tag generation. The

initialization processes the nonce with an encryption, and then does a simple state expansion. The asso-

ciated data is padded and divided into data blocks, which are embedded to update the state sequentially,

while the plaintext processing is similar and the ciphertext blocks are output simultaneously. For the last

block of message, its ciphertext block should be truncated to ensure the same length with the plaintext.

The tag is generated by once state update without data embedding, one more encryption on the state,

and an XOR of the words of state. JAMBU accepts the underlying block ciphers with 2n-bit block size,

and a key size same with the block cipher, a tag length of n bits, and the message length is limited with

2n bits under a single key. For SIMON-JAMBU, the designer recommends SIMON64/96, SIMON96/96,

SIMON128/128 with parameters of 96/96/128-bit key, 32/48/64-bit nonce, 96/144/192-bit state and

32/48/64-bit tag. For AES-JAMBU, AES-128 is used with parameters of 128-bit key, 64-bit nonce, 192-

bit state and 64-bit tag. The padding mode of JAMBU does not need to store the data length. It uses

different constants to distinguish the four stages to resist sliding attacks, etc. For lightweight purposes,

the internal state of JAMBU has not extended to twice the length of key, so it is necessary to explore its

security in the tweakable key mode.
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12 Stream ciphers for fully homomorphic encryption systems

Homomorphic encryption (HE) technology can directly operate the ciphertexts without decryption, and

the result is the same as directly operate the corresponding plaintext, which makes it of great importance

to areas such as cloud computing, ciphertext search, electronic voting, and multi-party computing. How-

ever its actual application is still faced with two problems of realization consumption and homomorphism

capacity limitation. In order to solve the problems, some scholars proposed to apply symmetrical ciphers

as fully homomorphic encryption, in order to minimize the current inherent cost of the homomorphism

implementation, such as time and storage, meanwhile improve the homomorphism ability, i.e., limit the

noise level.

For example, in cloud applications, it is often assumed that some data is sent encrypted under an HE

scheme to the cloud to be processed in a way or another. It is thus typical to consider in the first step

that a user (Alice) encrypts some data m under some other user’s public key pk (Bob) and sends some

homomorphic ciphertext c = HEpk(m) to a third-party evaluator in the Cloud (Charlie). However, all

HE schemes proposed so far suffer from a very large ciphertext expansion; the transmission of c between

Alice and Charlie is therefore a very significant bottleneck in practice. The problem of reducing the size

of c as efficiently as possible is to encrypt m with a symmetric encryption scheme E under some key k

randomly chosen by Alice, who then sends a much smaller ciphertext c′ = (HEpk(k), Ek(m)) to Charlie.

Given c′, Charlie then exploits the homomorphic property of HE and recovers the original c = HEpk(m) =

CE−1(HEpk(k), Ek(m)) by homomorphically evaluating the decryption circuit. This can be assimilated

to a compression method for homomorphic ciphertexts, c′ being the result of applying a compressed

encryption scheme to the plaintext m and c being recovered from c′ using a ciphertext decompression

procedure. In that approach obviously, the new encryption rate |c′|/|m| becomes asymptotically close

to 1 for long messages, which leaves no significant margin for improvement. However, the paradigm of

ciphertext compression leaves totally open the question of how to choose E in a way that minimizes

the decompression overhead, while preserving the same security level as originally intended. Typical

algorithms used in fully homomorphic encryption are represented by the block cipher LowMC [73], the

aforementioned stream cipher Kreyvium and the following new structure stream cipher FLIP, which is

designed according to a natural idea that possesses both the constant noise properties of block cipher

sequence and the low noise properties of stream cipher sequence. A generic construction based on an HE

with stream ciphers is shown in Figure 22.

FLIP. FLIP [39], a new stream cipher structure named filter permutator is proposed recently. The

structure consists of a constant key register, a permutation generator, a pseudo-random generator and

a nonlinear filter function (in Figure 23). In each clock cycle, the permutation generator first creates a

bit-permutation according to the output of the pseudo-random generator, then uses the permutation to

transform once the key register, finally uses the nonlinear filter function on the key register to produce

one keystream-bit . The key length of FLIP is much more than its security level, such as the latest version

uses 530-bit key length to achieved 80-bit security. From the perspective of the current analysis results,

the filter function used in this kind of structure is of strictly high requirement, otherwise the cipher is

easy to be broken for revealing a lot of key information. The main advantage of FLIP is that the filter

function always acts directly on the key bit, which makes the output noise always a constant, and with

a great homomorphism ability.

13 Provable secure stream cipher

The current status of stream cipher design is characterized by a considerable discrepancy between theory

and practice. On the theoretical side, seminal work by Shamir [74], Blum et al. [75], Yao [76], and

Goldreich et al. [77] in the early 1980s produced the well founded theory of pseudo-random generators,

which represents one of the major achievements in the area of provable security. A pseudo-random

number generator (PRNG) can be viewed as an IV-less stream cipher. It expands a short seed, e.g., a
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key, into a larger bit string in such a way that if the input seed is secret and randomly drawn, then the

resulting output is computationally indistinguishable from a perfect random sequence. The research effort

on security proofs for PRNGs has not only led to remarkable generic results, it has also led to “provably

secure” PRNG constructions exploiting the conjectured one-wayness of some specific permutation or

function f , which generally rely on the iteration of f and the extraction of a few bits at each iteration.

However, current provably secure PRNGs are still generally regarded as too complex and inefficient to

provide really practical stream ciphers. The lack, for these various algorithms, of an extra IV parameter

represents an additional drawback.

On the practical side, extremely efficient stream ciphers have been proposed, which allow much faster

software encryption than existing block ciphers such as AES and/or require much lower computing

resources for hardware implementations. However, the design of secure stream ciphers is not currently

as well understood as the design of secure block ciphers. The state of the art of the cryptanalysis of

stream ciphers has evolved significantly over the last ten years with the development of attack techniques

such as algebraic attacks, fast correlation and linear masking attacks, resynchronization attacks against

IV dependent stream ciphers, and it turns out that many recent proposals still suffer from security

weaknesses. The main design objective of provable secure stream ciphers is to contribute to reducing the

discrepancy between practical stream ciphers and provably secure PRNG constructions depicted above

by specifying a practical stream cipher with provable security arguments.

QUAD. QUAD [78] is a stream cipher designed with provable security arguments. QUAD relies on

the iteration of a randomly chosen multivariate quadratic system S = (Q1, . . . , Qkn) of kn equations

in n unknowns over a finite field GF(q). The keystream generation consists of iterating the steps that

computes the kn-tuple of GF(q) values S(x) = (Q1(x), . . . , Qkn(x)) where x is the current internal state,

outputs the sequence (Qn+1(x), . . . , Qkn(x)) as (k−1)n keystream blocks on GF(q), updates the internal

state x with the sequence of (Q1(x), . . . , Qn(x)). Before generating any keystream, the internal state x is

initialized with the key and IV, using two additional multivariate quadratic functions described by two

systems of n randomly chosen polynomials in n variables over GF(q). The designer recommends to use

a version of QUAD with an 80-bit key, an 80-bit IV and an internal state of n = 160 bits. It outputs

160 keystream bits (k = 2) at each iteration until 240 bits of keystream have been produced in order to

provide 280 security. The security of QUAD is provably reducible to the conjectured intractability of the

MQ problem (solving a multivariate system of quadratic equations).

14 Stream ciphers cryptanalysis

Cryptanalysis plays an essential role in the design of ciphers. A good cipher should be designed by taking

into account all the known cryptanalysis techniques. Thus we briefly describe some well-known attacks

on stream ciphers here due to the space limitation. The general attacks include exhaustive search, time-

memory trade-off, algebraic, correlation and linear, guess-and-determine, resynchronization (differential,

slide), cube and fault attacks. Exhaustive search is also called brute force that searches through all
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possible states/keys and checks for a match with keystream, which is always a baseline. Time-memory

tradeoff attack can be seen as a tradeoff exhaustive search that has two phases: in the preprocessing

phase, one explores the general structure of the cryptosystem, and summarize the findings in large tables

not tied to particular keys; in the realtime phase, given actual data one tries to find the key using the

precomputed tables. To resist such attack, it requires that the state size is at least twice of the key

size [79]. Algebraic attack is used in LFSR-based stream cipher since any stream cipher can be expressed

as a system of multivariate algebraic equations depending on the secret key and known keystream, and the

system can be solved to recover the secret key, where the algebraic immunity was proposed for resistance

of the crucial degree reducing [80, 81]. Correlation attack exploits statistical dependence between the

keystream and the output of LFSR and fast correlation attack develops with parity check equations

created from feedback polynomial of LFSR. Linear attack tries to take advantage of high probability

occurrences of linear relations involving keystream bits and initial state bits. To resist such attacks, a

Boolean functions used should be correlation immune, have large distance to affine functions and algebraic

degree to counter Berlekamp-Massey synthesis [82, 83]. Differential cryptanalysis is a general method to

analyze the initialization phase of stream ciphers, and the keystream allows computation of the output

difference. Guess-and-determine attack is defined as guessing a set of state elements of the cryptosystem

and determining the remaining state elements by the keystream, which is efficient for block-wise stream

ciphers. Resynchronization attack targets the key/IV setup of stream ciphers. The reuse of key with

many different IVs allows the key/IV setup being attacked similar to attacks on block ciphers as chosen-

IV attacks. Differential cryptanalysis and linear cryptanalysis are two powerful attacks where differential

cryptanalysis exploits the biased distribution of the difference of keystream pairs corresponding to a

particular IV difference pattern; and linear cryptanalysis exploits the biased distribution of the parity of

some IV and keystream bits. To resist the resynchronization attack, there should be sufficient confusion

and diffusion in the key/IV setup [84]. Slide attack works as sliding one copy of the encryption process

against another valid setup to find relations between these two keystreams to recover some information of

the key, and adding the round constant is the most effective way for resistance [85]. Cube attack exploits

the existence of low degree polynomial representation of a single output bit as a function of the key and

IV bits and sums this bit over all possible values of a subset of the IV bits to derive linear equations and

recover the secret key [86]. Fault attack is a powerful cryptanalytic tool that can apply some bit flipping

faults to either the RAM or the internal register of the cryptographic device but have only a partial

control over their number, location and timing [87]. In recent years, the analysis technology of stream

ciphers has not achieved breakthrough development. The research of security analysis mainly focuses on

two aspects: firstly, the improvement of traditional analysis methods by using new technologies or tools;

secondly, the analysis of new design methods or new algorithms.

15 Conclusion and outlook on the future trend

In conclusion, it introduced many famous design methods of stream ciphers up to now, and presented

some typical instances of these classic design methods in this paper. According to the different design

methods, we analyzed their advantages and shortages in order to inspire the further research in stream

cipher designs. For now though, both the stream cipher design and the analysis strategy are gradually

diversified. In the hardware aspect, stream ciphers purely based on LFSR design have been out of

historical stage over time, but it still can be used as a cipher component, and the stream ciphers based on

NFSRs have become the mainstream design. In the software aspect, the groups of stream cipher designs

based on the operations (ARX), components (S-box, diffusion layer), structures (Feistel, SPN), round

functions (especially the AES round function), entire encryptions and work mode of the block ciphers

have been rapidly grown, which call for correspondingly appropriate security analysis methods. Besides,

stream cipher designs based on the fixed permutation of hash functions are also a hot research direction.

On the whole, the stream cipher designs mainly focus on the cipher structure and the basic operations

employed, which must assure the security that resists to all the existing attack category, and keep easy to
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be evaluated further cryptographic properties. Moreover, it is in urgent need of lightweight designs, which

puts emphasis on implement considering state storage, component consumption. In addition, leakage-

resilient techniques also should be taken into account in the process of stream cipher design. Meanwhile,

the design and analysis of authenticated encryption algorithms based on stream ciphers are still a hot spot.

In the view of stream ciphers workflow, it can be concluded that there always take two stages in modern

stream ciphers, which contains an initialization of key and IV loading, and a keystream generation that

limits the keystream length with a pair of key and IV. For the initialization, it should consider the loading

mode, number of blank rounds, and the key length which should be quantum-resistant after split-half.

Compared with block ciphers, we believe that although the implementation efficiency of block ciphers is

considerable in terms of hardware and software speed, the inherent advantages of stream ciphers will not

be diminished. In contrast, stream ciphers will show a greater speed advantage under new programming

instructions. New design ideas and new evaluated methods are needed by deepening the understanding

of stream ciphers, such as new cipher structure and key/IV diffusion mode.
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