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Abstract Homomorphic cryptosystems are fundamental and highly effective cryptographic primitives for

addressing security problems arising in information processing, data analysis and data applications, particu-

larly in secure cloud computing and secure multiparty computation. To privately compute functions such as

E(x1∧· · ·∧xt), E(x1∨· · ·∨xt) and E[(x11∧· · ·∧xm1)∨· · ·∨ (x1n ∧· · ·∧xmn)] (m disjunctive normal form

(mDNF)) on E(x1), . . . , E(xt) and E(x11), . . . , E(xmn) without knowing the decryption key, Boolean homo-

morphic cryptosystems are necessary. Exploring new homomorphic cryptosystems to solve these problems is

appealing, and is of high theoretical and practical significance. To solve problems such as these, we propose

a polynomial AND homomorphic cryptosystem based on the ideal theory of abstract algebra; the scheme

can be obtained from available multiplicatively homomorphic cryptosystems such as the ElGamal. We prove

that the cryptosystem is semantically secure. This polynomial AND homomorphic cryptosystem is a highly

effective tool for designing various cryptographic protocols. As examples, we demonstrate its applications to

privately compute any DNF (i.e., P (X1, . . . , Xm) = E[(x11∧· · ·∧xm1)∨· · ·∨(x1n∧· · ·∧xmn)] on ciphertexts

E(xij) of xij without knowing the decryption key) and the intersection and union of certain private sets.
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1 Introduction

Homomorphic cryptosystem was first proposed by Rivest et al. [1]. A homomorphic cryptosystem

E enables us to compute a ciphertext E(f(x1, . . . , xm)) of a function f(x1, . . . , xm) on ciphertexts

E(x1), . . . , E(xm) of x1, . . . , xm without knowing the decryption key. Homomorphic cryptosystems are

fundamental and highly effective primitives in cloud computing security [2–5] and in the construction of

other secure systems such as secure voting systems, collision-resistant hash functions and private informa-

tion retrieval systems. They are also highly effective building blocks for secure multiparty computation

(SMC) [6–9], which is a crucial privacy-preserving technology in cooperative computation [10] and a

major area of focus in the international cryptographic community.

There are two types of homomorphic cryptosystems: partially homomorphic cryposystems and fully

homomorphic ones. Partially homomorphic cryptosystems include (1) multiplicatively homomorphic

cryptosystems such as RSA [11], ElGamal [12] and Rabin [13], (2) additively homomorphic ones such as

the Okamoto–Uchiyama [14], Paillier [15], elliptic curve [16], NTRU [17], GGH [18] (This cryptosystem
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had been broken by Hu et al. [19]), Benaloh [20], Naccache–Stern [21], Damg̊ard–Jurik [22] and Ishai–

Paskin cryptosystems [23], and (3) XOR-homomorphic cryptosystems such as the Goldwasser–Micali

cryptosystem [24]. The BGN cryptosystem [25] permits us to homomorphically compute a quasi-2DNF

formula. All the partially homomorphic cryptosystems are expressed as algebraic formulae; we can also

call them algebraic homomorphic cryptosystems.

Partially homomorphic cryptosystems are highly effective primitives for addressing both secure cloud

computing and SMC problems. There are no adequate partially homomorphic public key cryptosystems

to be used, and the functions that can be privately computed on ciphertexts using partially homomor-

phic cryptosystems are limited. Exploring new homomorphic cryptosystems is appealing and is of high

theoretical and practical significance.

Theoretically, fully homomorphic encryption (FHE) schemes [26–28] are the most effective building

blocks for addressing cloud computing security and SMC problems [8]. They enable the computation of

ciphertextE(f(x1, . . . , xt)) of any function f(x1, . . . , xt) by performing a few operations on the ciphertexts

E(x1), . . . , E(xt) of x1, . . . , xt without knowing the decryption key. However, unless the ‘function’ is

expressed as a Boolean circuit C(x1, . . . , xt), we cannot compute it on ciphertexts. Although the concept

of FHE is old, the first construction was given until 2009 by Gentry [26].

There are two types of FHE schemes: one with a packing technique (such as BGV12 [29], FV12 [30]

and CKKS17 [31]) and the other one with rapid bootstrapping such as CGGI16-18 [32–34]. The first

type exhibits larger parameters and consumes a longer time for bootstrapping to lower the noise such

that it does not hit the maximum noise level; however, they can encrypt multiple plaintexts in a single

ciphertext and therefore, have highly marginal amortized expansion rate and timing. The second type

can encrypt only a bit, although it has a short latency with bootstrapping.

In the literature, bootstrapping (which has remained highly expensive [35]) is generally used to convert

a somewhat homomorphic encryption into an FHE. In the last few years, researchers managed to construct

significantly more efficient schemes by speeding up the bootstrapping, bringing practical applications close

to reality. Chillotti et al. [35,36] made bootstrapping run in 13 ms. They also reduced the bootstrapping

key size from 1 GB to 16 MB (however, it is still very large). According to their paper, achieving this

will make their scheme forgo certain composability properties in the design of homomorphic circuits [35].

Gentry’s FHE is based on hard problems on lattice. Lattice-based cryptography is the strongest can-

didate for post-quantum cryptography; moreover, in the future they are likely to replace available public

key cryptosystems that are based either on the hardness of factoring or on the hardness of computing

discrete logarithm problem (DLP). However, at present, the public key cryptosystems based on these

two problems play important roles in cryptography. To sum up, the available FHE schemes exhibit high

potential for applications in the future, although they are inefficient and impractical at present.

SMC, an area of focus in the international cryptographic community, depends substantially on partially

homomorphic cryptosystems. Most SMC protocols and secure cloud computing protocols are constructed

using partially homomorphic cryptosystems in conjunction with secret sharing, oblivious transfer, one-

way hash function, etc. Furthermore, a number of real-world applications in areas such as medical,

financial and advertising only require that the cryptosystems is partially homomorphic. To sum up,

partially homomorphic cryptosystems are highly powerful albeit limited.

Numerous decisional problems can be reduced to Boolean operations; however, these problems can-

not be addressed conveniently and securely owing to the limited availability of Boolean homomorphic

cryptosystems. For example, the following problems cannot be addressed conveniently at present.

Suppose t members are going to vote on a policy. To accept the policy, the vote must be passed with all

in favour. For example, in the European Union (EU), certain policies that are considered to be sensitive

remain subject to unanimous voting, such as taxation, social security, social protection, the accession of

new states to the EU, foreign and common defence policy and operational police cooperation between

the member states. If a member votes against the policy, it will not be passed. Occasionally, the voting

is open; however, in most cases, if a proposal fails, the number of members who voted for or against it

must be concealed. That is, although the correct result of the voting must be guaranteed, only the final
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result is publicized. This problem can be abstracted as the private computation of

P (x1, x2, . . . , xt) = x1 ∧ x2 ∧ · · · ∧ xt. (1)

Some other problems (for example, if we wish to know whether there is one voting for a proposal) may

be reduced to the private computation of

Q(x1, x2, . . . , xt) = x1 ∨ x2 ∨ · · · ∨ xt. (2)

Oblivious transfer-based secure two-party AND computation, which needs to invoke secret sharing and

oblivious transfer primitives, is rather complicated and inefficient [37, 38] and is likely to disclose some

information that should not be disclosed.

Occasionally, for X,Y ∈ {0, 1}m, we have to privately compute the following predicate:

F (X1, X2) = (x1 ∧ y1) ∨ · · · ∨ (xm ∧ ym). (3)

This formula is called 2DNF. The problem of privately computing 2DNF has not been satisfactorily

solved. Based on bilinear pairing, Boneh et al. [25] first proposed a public key cryptosystem that can

privately compute a quasi-2DNF (It discloses how many xiyi = 1):

s =

m
∑

i=1

xiyi = x1y1 + · · ·+ xmym. (4)

This pairing-based protocol needs to compute a discrete logarithm in a finite field and is of high

computational complexity. Notwithstanding we use it to compute
∑m

i=1 xiyi, its applicability is highly

limited due to the hardness of computing discrete logarithm. It does not compute a real 2DNF, and we

do not know how to privately compute (x1 ∧ y1)∨ (x2 ∧ y2)∨ · · · ∨ (xm ∧ ym) with this protocol. Neither

can it be used to privately compute a more complicated m-DNF:

F (X1, . . . , Xm) = (x11 ∧ · · · ∧ xm1) ∨ · · · ∨ (x1n ∧ · · · ∧ xmn). (5)

If there is an AND homomorphic cryptosystem, by combining it with the De Morgan law, private

computation problems such as (1)–(5) can be solved trivially. This is of substantial theoretical significance

because based on a simple solution, we can construct a new solution that is secure in the malicious model

more conveniently. Theoretically, an FHE can solve these problems; however, available FHE schemes are

inefficient (in terms of computational complexity, communication complexity, ciphertext expansion rate

or key size) to be applied in practice, and solutions based on FHE are not effective [39]1).

Previous studies have attempted to design AND-homomorphic cryptosystems. For example, Sander et

al. [40] changed the Goldwasser–Micali XOR-homomorphic cryptosystem [24] into an AND-homomorphic

one. However, this scheme is inefficient and approximate, and the ciphertext expands several thousands

times. Based on this AND-homomorphic property, Fischlin [41] constructed a protocol for the millionaires

problem; the protocol is highly inefficient.

The ElGamal is one of the earliest and the most popular public key cryptosystems. It is based on the

hardness of computing discrete logarithm in certain finite field and has withstood 40 years of extensive

cryptanalysis. In the past few years, there have been several advancements in the number field sieve

and function field sieve algorithms for computing discrete logarithms in finite fields Fpk ; here p is prime,

and k > 1 is a small integer. These advancements render the DLP in small-characteristic finite fields

(characteristic-two or characteristic-three field) solvable in quasi-polynomial time [42].

For computing the DLP in a finite extension field Fqk with medium large prime number q, new al-

gorithms with different computational complexities have been constructed for different q, k, since 2015.

The complexities of the new algorithms are sub-exponential time; however, the asymptotic complexities

1) https://www.networkworld.com/article/3196121/security/how-to-make-fully-homomorphic-encryption-practical-

and-usable.html.
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are less than those of the previous algorithms. Computing the DLP in a finite field Fq with a carefully

selected large prime number q is still hard [43], and the cryptosystems based on the hardness of computing

DLP are still secure.

To enable private computation of functions similar to (1)–(5) on ciphertexts, we modify the ElGamal

public key cryptosystem to obtain a polynomial AND homomorphic cryptosystem. The cryptosystem is

of high theoretical and practical interest. Our main contributions are as follows:

• Based on the ideal theory of abstract algebra and the ElGamal public key cryptosystem, we construct

a polynomial AND homomorphic cryptosystem.

• We prove that our variant is semantically secure. This cryptosystem can also be used to privately

compute E(m1 ∨m2) on E(m1), E(m2) without knowing the private key.

• It is convenient to privately compute functions (1)–(5) using this new primitive. With regard to

applications, we demonstrate its applications in privately computing the intersection set of certain private

sets and function (3); this can be conveniently extended to privately compute function (5).

The remainder of this paper is organized as follows: In Section 2, we introduce a few preliminaries.

Section 3 explains the concept for obtaining Boolean homomorphic cryptosystems from available public

key cryptosystems and an efficient construction. In Section 4, we illustrate its applications. We enumerate

our conclusion in Section 5.

2 Preliminaries

2.1 Homomorphic cryptosystem

A public key cryptosystem E consists of three algorithms: KeyGenE , EncE and DecE .

KeyGenE takes a security parameter k as an input and outputs a public key pk, the corresponding

secret key sk as well as the definitions of the plaintext space P and the ciphertext space C. (pk, sk,P , C)←

KeyGenE(k).

EncE . By taking pk and a plaintextM ∈ P as inputs, it outputs a ciphertext C ∈ C. C ← EncE(pk,M).

DecE . By taking a ciphertext C ∈ C and the secret key sk as inputs, it outputs the plaintext M ∈ P .

M ← DecE(sk, C).

A homomorphic public key cryptosystem E is a special public key cryptosystem. In addition to the

three conventional algorithms described above, it also has an efficient algorithm EvaluateE ; given the

public key pk, a function F and a tuple of ciphertexts C = 〈C1, . . . , Ct〉 (where Ci =EncE(Mi)), this

algorithm can output the ciphertext of F (M1, . . . ,Mt), denoted by EncE(pk, F (M1, . . . ,Mt)), i.e.,

EncE(pk, F (M1, . . . ,Mt)) = EvaluateE(pk, F, (C1, . . . , Ct)).

2.2 ElGamal public key cryptosystem

The ElGamal is a popular and widely used public key cryptosystem. It is multiplicatively homomorphic.

The KeyGen, Enc and Dec of the ElGamal public key cryptosystem are as follows [12]:

KeyGen. On a security parameter k, it generates a k-bit large random prime p and a generator α of

the multiplicative group Z∗
p , selects a random integer x, 1 6 x 6 p − 2 as a private key and computes

h = αx mod p as the public key. Both the plaintext and ciphertext space are Z∗
p = {1, . . . , p− 1}.

Enc. To encrypt a message m ∈ Z∗
p , it chooses a random number r ∈ Z∗

p and then sets

C = E(m) = (c1, c2) = (αr mod p,mhr mod p).

Dec. To decrypt a ciphertext C = (c1, c2) ∈ Z∗
p , it computes m = c2c

−x
1 mod p.

Homomorphism. If C1 = (gr1 mod p,m1h
r1 mod p), C2 = (gr2 mod p,m2h

r2 mod p), then

C1C2 = (gr1+r2 mod p,m1m2h
r1+r2 mod p) = E(m1m2).

Therefore, this cryptosystem is multiplicatively homomorphic. It can be used to encrypt ones, whereas

it cannot be used to encrypt zeros. In the subsequent section, we modify this cryptosystem such that
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it can be used to encrypt zeros and ones simulataneously and that when it is used to encrypt zeros and

ones, it exhibits AND homomorphism.

2.3 Semantic security

An important criterion of security for a public key cryptosystem is semantic security. Semantic security is

defined using the following IND-CPA mental game: (1) the adversary is given the public key generated by

the challenger and the adversary can use it to encrypt whatever he wants; (2) the adversary generates two

equal length messages M0 and M1, transmits them to the challenger and receives a ciphertext E(Mb) of

Mb from the challenger; here, b is randomly chosen from {0, 1}; (3) the adversary guesses b′ and wins the

game if b = b′. A public cryptosystem is said to be semantically secure if no polynomial time adversary

can win the game with a non-negligible advantage. Semantic security captures the intuition that given a

ciphertext, the adversary learns nothing about the corresponding plaintext.

We state that a public cryptosystem E is semantically secure if no polynomially bounded adversary A

has a non-negligible advantage against the challenger in the following game:

Setup. The challenger takes a security parameter k and executes the KeyGen algorithm. It gives the

public key pk to the adversary, who can use it to encrypt whatever he wants, and keeps the secret key

sk private.

Challenge. The adversary generates two equal length messages M0,M1 on which he wishes to be

challenged and transmits them to the challenger. The challenger picks a random bit b ∈ {0, 1} and

computes C = E(Mb). He transmits C as the challenge to the adversary.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We refer to such an adversary A as an IND-CPA adversary. The advantage of an IND-CPA adversary

A against the cryptosystem E is the following function of k:

AdvE,A(k) = Pr[b = b′]−
1

2
.

The probability is over the random bits used by the challenger and adversary.

Definition 1. We state that a public key cryptosystem E is semantically secure if for any polynomial

time IND-CPA adversary A, the function AdvE,A(k) is negligible.

3 Polynomial AND homomorphic cryptosystems

If there is a multiplicatively homomorphic cryptosystem that could be used to encrypt zeros and ones

simultaneously and if it is used in this manner, the cryptosystem will be AND homomorphic; this is

because if x, y ∈ {0, 1}, x × y = x ∧ y (this can be conveniently verified via truth table) and thus,

E(x) × E(y) = E(x× y) = E(x ∧ y). However, no available multiplicatively homomorphic cryptosystem

can encrypt zeros and ones simultaneously. For example, RSA and Rabin cryptosystem cannot be used

to encrypt either ones or zeros; ElGamal cryptosystem cannot be used to encrypt zeros.

Our goal is to modify the ElGamal cryptosystem such that it can simultaneously encrypt zeros and ones

and therefore, it exhibits AND homomorphism. A polynomial AND homomorphic cryptosystem should

satisfy the following criterions: (1) it can encrypt zeros and ones simultaneously; (2) it is semantically

secure; (3) it is probabilistic; (4) it is AND homomorphic and (5) the homomorphism should preserve

for polynomial many operations on ciphertext. Our concepts arises from the Ideal theory of abstract

algebra.

3.1 Semigroup and ideal

A semigroup is an algebraic structure consisting of a set in conjunction with an associative binary opera-

tion. For example, the set of all integers mod n, denoted by Zn, together with the multiplication modulo

n forms a semigroup (Zn,×). This semigroup is highly similar to a group except that not every element
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Table 1 Multiplication table for Z8

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

of it has a multiplicative inverse. If n is a prime number, (Zn,×) forms a group. If n is an even integer,

the semigroup (Zn,×) exhibits certain interesting properties [44]:

(1) Zn has a subset I. I together with multiplicative modulo n also forms a semigroup (I,×), which

is called a subsemigroup of (Zn,×).

(2) For ∀x ∈ I, ∀y ∈ Zn, we have x× y ∈ I, y × x ∈ I (If × is commutative, x× y ∈ I is sufficient).

(3) We denote Zn \ I by Ī; then, for any x, y ∈ Ī , x× y, y × x ∈ Ī.

(2) and (3) can be summed up as x × y ∈ Ī ⇔ x ∈ Ī ∧ y ∈ Ī. Such an (I,×) is called an ideal of Zn.

For example, Table 1 presents the multiplication table for Z8.

Here, I = {0, 2, 4, 6} is the subset of Z8 and (I,×) forms a subsemigroup of (Z8,×). (I,×) is an ideal

of (Z8,×).

Formally, an ideal of a semigroup (S, ∗) is a subsemigroup (I, ∗) of (S, ∗) such that if a ∈ I and r ∈ S,

r ∗ I ⊂ I and I ∗ r ⊂ I.

3.2 AND homomorphic cryptosystem from ElGamal

Suppose that E is a multiplicatively homomorphic cryptosystem whose plaintext space is P and Zn ⊂ P

(where n is an integer). If n is an even integer, (Zn,×) forms a semigroup and has an ideal.

Suppose that (I,×) is an ideal of (Zn,×) and Zn ≃ P . When we need to encrypt zero, we encrypt

x ∈ I \ {0}; when we need to encrypt one, we encrypt y ∈ Ī. Suppose that c = EncE(m). We stipulate

that DecE(c) ∈ I implies m = 0 and that DecE(c) ∈ Ī implies m = 1. With this modification, E can be

used to encrypt zeros and ones simultaneously; thus, it exhibits AND homomorphic property because if

x, y ∈ {0, 1}, x×y = x∧y and Enc(x)×Enc(y) = Enc(xy) are equivalent to Enc(x)×Enc(y) = Enc(x∧y).

This is what AND homomorphic cryptosystem implies.

For the ElGamal probabilistic cryptosystem, the plaintext space is Z∗
p = {1, 2, . . . , p− 1}; here p is a

large prime number. We know that (Zp−1,×) forms a semigroup with Zp−1 ≃ Z∗
p(Zp−1 = Z∗

p ∪ {0} \

{p− 1}); moreover, it is highly convenient to verify that semigroup (Zp−1,×) has an ideal (I,×). Here

I = {0, 2, 4, . . . , p − 3} and Ī = {1, 3, . . . , p − 2}. Because the ElGamal cryptosystem cannot encrypt

zero and 0 6∈ Z∗
p , when we need to encrypt zero, we choose x ∈ I\{0} and encrypt it; when we need

to encrypt one, we choose y ∈ I and encrypt it. We also stipulate that if c = Enc(m) and Dec(c) ∈ I,

m = 0; otherwise if Dec(c) ∈ Ī, then m = 1. Because the ElGamal is multiplicatively homomorphic,

we immediately obtain a polynomial AND homomorphic cryptosystem. The KeyGen, Enc, Dec and

Evaluate algorithms of the AND homomorphic cryptosystem are as follows:

KeyGen. On a security parameter k, it generates a k-bit random prime p and a generator α of

the multiplicative group (Z∗
p ,×), selects a random integer x, 1 < x 6 p − 2 as the private key and

computes h = αx mod p as the public key. The semigroup is Zp−1 which has an ideal (I,×); here,

I = {0, 2, . . . , p− 3}, Ī = {1, 3, . . . , p− 1}.

Enc. To encrypt a message m, choose two random numbers r ∈ Z∗
p and s and compute

C = Enc(m) = (c1, c2) = (αr mod p, shr mod p).

Here, if m = 0, s ∈ I \ {0}; otherwise, s ∈ Ī.
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Dec. To decrypt a ciphertext C = (c1, c2), where c1, c2 ∈ Z∗
p , compute s′ = c2c

−x
1 mod p mod p− 1. If

s′ ∈ Ī, Dec(C) = 1; otherwise, Dec(C) = 0.

Remark 1. Because for Zp−1, I ⊂ Zp−1 contains element zero, but the ElGamal cryptosystem cannot

encrypt zero, s should not be zero; i.e., one must choose s ∈ Zp−1\{0}.

Evaluate. Suppose C1 = Enc(m1), C2 = Enc(m2) (m1,m2 ∈ {0, 1}). This implies that there are two

random numbers s1, s2 ∈ Zp−1\{0} such that

C1 = (αr1 mod p, s1h
r1 mod p), C2 = (αr2 mod p, s2h

r2 mod p).

Then,

C1 · C2 = Enc(m1) · Enc(m2) = (αr1+r2 , s1s2h
r1+r2) = (c1, c2).

To decrypt C1C2, compute s′ = (c2c
−x
1 mod p) mod p− 1 = s1s2 mod p mod p− 1.

If s1s2 < p−1, c2c
−x
1 mod p mod p−1 = s1s2. By the properties of the ideal, s1s2 ∈ Ī ⇔ s1 ∈ Ī∧s2 ∈ Ī;

i.e.,

Enc(m1) · Enc(m2) = Enc(1)⇔ Enc(m1) = Enc(1) ∧ Enc(m2) = Enc(1).

This implies that Enc(m1) · Enc(m2) = Enc(m1 ∧m2).

Parameters. If Enc(xi) = (gri mod p, sih
ri mod p), and if we denote

l
∏

i=1

Enc(xi) =

(

g
∑

l
i=1

ri mod p, h
∑

l
i=1

ri

l
∏

i=1

si mod p

)

= (c1, c2),

then, c2c
−x
1 mod p =

∏l

i=1 si mod p.
∏l

i=1 si mod p =
∏l

i=1 si ⇔
∏l

i=1 si < p. The number of times

that we can perform homomorphic operations on ciphertext depends substantially on si and p. More

or less, the number is equal to log2 p/ log2 max{si}. The higher the number of operations that you

wish to perform, the smaller the si that you should choose. Typically, log2 p = 1024. If we choose

log2 max{si} = 16, we can perform 64 homomorphic operations on ciphertexts rather than infinite ho-

momorphic operations. Therefore, we call this a polynomial AND homomorphic cryptosystem. For most

applications, a polynomial AND homomorphic cryptosystem is adequate.

3.3 Performance

Security. The security of this AND homomorphic cryptosystem is identical to that of the original

ElGamal cryptosystem because it does not change the ElGamal cryptosystem. It uses s ∈ I \ {0} ⊂ Z∗
p

to respresent zero, and s ∈ Ī ⊂ Z∗
p to represent one and encrypts s. Thus, we have the following theorem.

Theorem 1. If the original ElGamal cryptosystem is semantically secure, the variant is also semantically

secure.

Here ‘secure’ implies that no polynomial time algorithm can distinguish Enc(m1) = (gr1 mod p, s1h
r1

mod p) (s1 ∈ I\{0}) from Enc(m2) = (gr2 mod p, s2h
r2 mod p) (s2 ∈ Ī) with non-negligible advantage.

Proof sketch. Suppose there was a polynomial time algorithm A that can distinguish Enc(m1)(m1 =

0) from Enc(m2)(m2 = 1) with advantage ε (implying that given (gr mod p, shr mod p), A can determine

whether s ∈ Ī with advantage ε); we could use this algorithm to construct a new algorithm B that would

win the IND-CPA game that defines the semantic security of the original ElGamal cryptosystem with

the same advantage ε as follows.

In the challenge phase, algorithm B, simulating the adversary, generates two messages M0,M1 ∈ Z∗
p

of identical length (although M0 ∈ I,M1 ∈ Ī) and transmits M0,M1 to the challenger. The challenger

randomly chooses a bit b ∈ {0, 1}, encrypts Mb to obtain Enc(Mb) and transmits it back to B; B invokes

A with Enc(Mb). Because A can determine whether Mb ∈ Ī with advantage ε, if A outputs that Mb ∈ Ī,

B outputs that b = 1; otherwise, B outputs that b = 0. Because A’s advantage is ε and B uses A’s output

to make its guess, B will win the game with an identical advantage ε. This implies that the original

ElGamal cryptosystem is not semantically secure.
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Figure 1 (Color online) The execution time increases almost linearly as the bits to be encrypted increase and does not

significantly increase as the length of the module increases.

Table 2 Ciphertext expansion and noise comparison

Cryptosystem G-M O-U Paillier FHE-derived a) Ours

Ciphertext expansion 2k 3k 4k 16000 2k

a) FHE refers to the FHE from [35].

Computational complexity. Goldwasser-Micali (G-M), Okamoto-Uchiyama (O-U), Paillier and

FHE-derived cryptosystems as well as our new cryptosystems can be used to encrypt zeros and ones.

To encrypt a bit, the G-M cryptosystem requires only a modular multiplication, the O-U cryptosystem

requires a modular exponentiation, the Paillier cryptosystem requires a modular exponentiation and

our cryptosystem requires two modular exponentiations. The computational complexity of the G-M

cryptosystem is the lowest. Because it is challenging to theoretically analyze the complexity of FHE

cryptosystem, we conduct an experimental comparison.

We do not know the implementation detail of [35]; we accept its result. There is no data to reveal the

time required to encrypt a bit using the fastest FHE. Ref. [36] demonstrates that the bootstrapping of a

gate requires 13 ms (on a 2.9 GHz computer with 64-bit single core (i7-4910MQ)).

We implement our cryptosystem on a benchmark computer with an Intel(R) Core(T) i5-6600 3.30 GHz,

3.31 GHz, 8.00 GHz RAM, myeclipse 10 and without optimization. We choose three prime numbers with

512, 768 and 1024 bits to test. The results are shown in Figure 1.

Ciphertext expansion. Because the G-M, the O-U, the Paillier and the FHE-derived cryptosystems

as well as our new cryptosystem can be used to encrypt zeros and ones, we compare their ciphertext

expansion when the plaintext space is {0, 1}. Suppose that the bit number of p used in our cryptosystem

is k and that the p, q used in the G-M, the O-U and the Paillier cryptosystems are also k-bit prime

numbers. Their ciphertext expansions are presented in Table 2. Typically, k =768.

Remark 2. By the De Morgan law, x ∨ y = x ∧ y, this variant can be used to privately compute x ∨ y

as follows: (1) Alice and Bob compute E(x), E(y); (2) compute c = E(x) ·E(y); (3) decrypt c to obtain

Dec(c) = x ∧ y = x ∨ y; (4) flip the value of Dec(c) to obtain x ∨ y.

4 Applications

Homomorphic cryptosystems are highly effective primitives for addressing SMC problems. The AND-

homomorphic cryptosystem can be directly used by multiple parties to privately address numerous SMC

problems in a trivial manner, such as the problems described in the introduction, i.e., privately computing

P (x1, . . . , xt) = x1 ∧ x2 ∧ · · · ∧ xt, and Q(x1, . . . , xt) = x1 ∨ x2 ∨ · · · ∨ xt.

In this section, we provide a few examples to illustrate the applications of this new homomorphic

cryptosystem to privately address the set intersection problem and 2-DNF problem in the semi-honest

model. Rather than demonstrate that the solution to a specific problem based on the new homomorphic

cryptosystem will certainly outperform the available solutions, we demonstrate that our new homomorphic
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cryptosystem can provide a new tool to solve these problems and that in certain cases, it is likely to be

the most effective tool, e.g., to privately compute the intersection of over two private sets.

4.1 Security of SMC

In SMC, we generally do not consider the external attackers and rather consider three (models) types of

internal attackers: (1) fully honest model; (2) semi-honest model, or passive attacker model, or honest-

but-curious attacker, and (3) malicious model or active attacker model.

A fully honest party would properly follow the prescribed protocol and would delete the record of all

its intermediate computations at the end of the protocol. A protocol that is secure against fully honest

attackers is the weakest secure protocol, and it is not reasonable to ask a party to necessarily delete its

record. Therefore, a protocol that is secure against fully honest parties is not considered in SMC.

Loosely speaking, a semi-honest party is one who follows the protocol properly with the exception that

it keeps a record of all its intermediate computations. He may use the record to attempt to derive other

parties’ private inputs. This constrained model may be justified in certain settings and certainly provides

an effective methodological locus. In addition to being of independent interest, the semi-honest model

will play a major role in the construction of protocols for the malicious model [37].

A malicious party is likely to arbitrarily deviate from the prescribed functionality. However, we do not

consider three malicious behaviours [37]: (1) parties refusing to participate in the protocol; (2) parties

substituting their local input (and entering the protocol with an input other than the one provided to

them), and (3) parties aborting the protocol prematurely (e.g., before sending their last message). A

protocol that is secure in the malicious model should prevent all other malicious behaviours.

Goldreich [37] designed a compiler which can automatically produce a protocol that is secure in the

malicious model, given a protocol that is secure in the semi-honest model. Furthermore, whereas general

malicious behaviour may be infeasible for numerous users, semi-honest behaviour is likely to be feasible

for them (moreover, one cannot assume that they behave only in a fully honest way). Consequently, in a

number of settings, one may assume that although the users are likely to desire to cheat, they can behave

in a semi-honest way. Therefore, designing protocols that are secure in the semi-honest model is of high

theoretical and practical significance.

Definition 2 (Security in semi-honest model [37]). Let f : ({0, 1})m → ({0, 1})m bem-ary functionality,

where fi(x1, . . . , xm) denotes the i-th element of f(x1, . . . , xm). For I = {i1, . . . , is} ⊆ [m] = {1, . . . ,m},

we let fI(x1, . . . , xm) denote the subsequence fi1(x1, . . . , xm), . . . , fis(x1, . . . , xm). Let Π be m-party

protocol for computing f . The view of the i-th party during an execution of Π on x = (x1, . . . , xm),

denoted as viewΠ
i (x), is defined as (xi, ri,m

1
i , . . . ,m

τ
i ); here, ri represents the outcome of Pi’s internal

coin tosses and mj
i represents the j-th message Pi has received. Moreover, for I = {i1, . . . , is}, we let

viewΠ
I (x) = (I, viewΠ

i1
(x), . . . , viewΠ

is
(x)).

In case f is a deterministic m-ary functionality, we consider that Π privately computes f if there exists

a probabilistic polynomial-time algorithm, denoted by S, such that for each I ⊆ [m], it holds that

{S(I, (xi1 , . . . , xis), fI(x))}x∈({0,1}∗)m
c
≡ {viewΠ

I (x)}x∈({0,1}∗)m ,

where
c
≡ denotes computational indistinguishability.

4.2 Set intersection

There are t parties P1, . . . , Pt, and each party has a private set Xi ⊆ U . They wish to compute the

intersection of these sets X = X1 ∩X2 ∩ · · · ∩Xt without disclosing Xi.

This problem has numerous practical applications and has been extensively studied. Meadows [45]

introduced the first private set intersection protocol with high communication complexity. Freedman et

al. [46] proposed a protocol based on oblivious polynomial evaluation. Kissner et al. [47] extended and

improved Freedman’s approach. The most efficient protocol was proposed by Pinkas et al. [48] and was

improved in [49, 50]. Chen et al. [51] proposed the first FHE based set intersection protocol, and we
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will compare the computational efficiency of our protocol with that of this protocol subsequently. We

are not going to review these studies and compare our protocol with all efficient solutions; however, our

solution may not outperform the solution proposed in [46,47,51]. We wish to demonstrate that in certain

scenarios, where the available solutions are not effective, our solution is effective.

The above-mentioned protocols for this problem are applicable only to two parties, i.e., t = 2; moreover,

it is highly challenging to extend these protocols to multiparty (over two parties) cases. Although we

can first compute X1 ∩X2 and then compute X1 ∩X2 ∩X3, etc., computing in this manner will disclose

certain information that should not be disclosed. We develop a protocol applicable to both two-party

and multiparty cases. In a multiparty case, collusion attack must be considered. To resist collusion

attack, a threshold decryption cryptosystem is necessary. We use the ElGamal cryptosystem to construct

a threshold AND homomorphic cryptosystem.

In (m, t) threshold decryption cryptosystem, the public key is open, whereas the private key is shared

among t parties. Over m parties can cooperate to decrypt a ciphertext; however, parties numbering

less than m cannot obtain anything about the plaintext. In SMC, we wish to resist the collusion attack

launched by the maximum possible number of parties; therefore, we require a simple (t, t) threshold

decryption cryptosystem. A (t, t) threshold decryption ElGamal cryptosystem can be constructed as

follows.

KeyGen. To use the threshold decryption ElGamal cryptosystem with prime number p and generator

α of Z∗
p , each party Pi chooses a random number xi as its secret key, computes hi = αxi mod p and

publishes hi. All the parties cooperate to compute the public key:

h =

t
∏

i=1

hi =

t
∏

i=1

αxi = αx1+···+xt(mod p).

Enc. To encrypt M ∈ Z∗
p , choose a random number r ∈ Z∗

p , and compute

E(M) = (c1, c2) = (αr mod p,Mhr mod p).

Dec. To decrypt ciphertext (c1, c2), each party computes yi = cxi

1 mod p. Finally, they compute

M = c2

(

t
∏

i=1

yi mod p

)−1

mod p.

Correctness.

c2 = Mhr mod p = Mα(x1+···+xt)r mod p,

t
∏

i=1

yi =

t
∏

i=1

cxi

1 = cx1+···+xt

1 = αr(x1+···+xt)(mod p)

⇒ c2

(

t
∏

i=1

yi

)−1

= Mα(x1+···+xt)rα−r(x1+···+xt) = M(mod p).

With a specific encoding transformation, the intersection problem can be solved using the AND ho-

momorphic cryptosystem. Suppose U = {u1, . . . , um} and u1 < u2 < · · · < um. The parties can address

the problem as Protocol 1.

Correctness. In this threshold decryption cryptosystem, cj = E(
∏t

i=1 sij). sj ∈ Ī(vj = 1) implies

that all sij ∈ Ī(i = 1, . . . , t) and all vij = 1. By the encoding scheme, this implies that uj ∈ Xi (i =

1, . . . , t). Therefore, uj ∈ X1 ∩ · · · ∩Xt.

Security. The cryptosystem is probabilistic; therefore, by using the simulation paradigm [37], we can

establish the following theorem.

Theorem 2. Protocol 1 privately computes the intersection set of private sets X1, . . . , Xt in the semi-

honest model.
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Protocol 1 Privately compute X = X1 ∩ · · · ∩Xt in the semi-honest model

Inputs: Private sets X1, . . . ,Xt.

Output: X = X1 ∩ · · · ∩Xt.

Setup: All the parties cooperate to generate a public key h =
∏t

i=1 hi mod p. Pi keeps xi private. The secret key is shared

among all the t parties. They also agree that sij should be chosen from a subset of I and should be adequately small. For

example, sij ∈ {2, 4, 6, 8, 12, 16, 18, 20}.

(1) Each party Pi (i = 1, . . . , t) constructs a vector Vi = (vi1, . . . , vim) as follows: if uj ∈ Xi, vij = 1; otherwise, vij = 0.

Pi encrypts Vi with the public key h to obtain

Ci = (ci1, . . . , cim) = (E(vi1), . . . , E(vim)),

where cij = (αrij mod p, sijh
rij mod p). If vij = 0, sij ∈ I\{0}; otherwise, sij ∈ Ī. Pi publishes Ci.

(2) Each party can compute

C =
t
∏

i=1

Ci =

(

t
∏

i=1

ci1, . . . ,

t
∏

i=1

cim

)

= (c1, . . . , cm),

where cj = (αr1j+···+rtj mod p, (
∏t

i=1 sij)h
r1j+···+rtj mod p) = (αrj mod p, sjh

rj mod p).

(3) All the parties cooperate to decrypt C to obtain S = (s1, . . . , sm). Then, set X = φ. If sj ∈ Ī (j = 1, . . . ,m) and

uj ∈ X, set X ← X ∪ {uj}; otherwise, uj 6∈ X.

Proof. In our protocol, all the parties have an identical status. By Definition 2, it suffices to prove that

for the largest collusion structure set T = {P1, . . . , Pt−1} (Even if all the members of T cooperate, they

cannot obtain information beyond what X reveals. Neither can a subset of T obtain further information),

there exists a polynomial time algorithm S such that

{S(T, (x1, . . . , xt−1), fT (x))}x∈({0,1}∗)m
c
≡ {viewΠ

T (x)}x∈({0,1}∗)m .

During the execution, fT (x) = X1 ∩ · · · ∩Xt,

viewΠ
T (x) = ((x1, . . . , xt−1), (r1, . . . , rt−1), view

Π
1 (x), . . . , view

Π
t−1(x)).

As a group, the messages of the view that are not generated by the group are E(vt1), . . . , E(vtm). Even

if all the members of T conspire, they cannot decrypt E(vt1), . . . , E(vtm) without Pt’s cooperation.

viewΠ
T (x) can be expressed as follows:

viewΠ
T (x) = ((x1, . . . , xt−1), (r1, . . . , rt−1), E(vt1), . . . , E(vtm)).

Algorithm S operates as follows: on inputs (T, (X1, . . . , Xn−1), fT (x)), S chooses X ′
t such that fT (X1,

· · · , Xt−1, X
′
t) = fT (X1, . . . , Xt−1, Xt), and then simulates the execution of the protocol with X1, . . . ,

Xt−1, X
′
t to obtain E(v′t1), . . . , E(v′tm). Because the cryptosystem used in the protocol is probabilistic,

E(vt1), . . . , E(vtm)
c
≡ E(v′t1), . . . , E(v′tm).

Let S(T, (x1, . . . , xt−1), fT (x)) = ((x1, . . . , xt−1), r, E(v′t1), . . . , E(v′tm)). We have

{S(T, (x1, . . . , xt−1), fT (x))}x∈({0,1}∗)m
c
≡ {viewΠ

T (x)}x∈({0,1}∗)m .

This completes the proof.

Computational complexity. The computational complexity of Protocol 1 depends on the number

of parties and the cardinality of set U . It requires t modular exponentiations to generate the public

key. Because each party needs to encrypt m bits, they need to totally encrypt mt bits. Encrypting a

bit requires two modular exponentiations, and totally, 2mt modular exponentiations are required. They

need to decrypt m bits and each cooperative decryption requires t + 2 modular exponentiations. The

protocol totally requires 2mt+m(t+ 2) + t modular exponentiations.

Intersection cardinality. There are t parties P1, . . . , Pt, and each party has a private set Xi ⊆ U .

They wish to compute |X1 ∩X2 ∩ · · · ∩Xt| without disclosing either Xi or X . Suppose U = {u1, . . . , um}

and u1 < u2 < · · · < um. A minor modification of Protocol 1 (Pt and P1 each re-randomize and randomly

permutes (ct1, ct2, . . . , ctm) one time; performing this will keep the elements of the intersection set private)

can straightforwardly solve this problem.
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Subset problem. Alice has a private setX = {x1, . . . , xa}, and Bob has a private set Y = {y1, . . . , yb},

with X,Y ⊆ U and a 6 b. They wish to determine whether X is a subset of Y without disclosing X,Y .

Suppose U = {u1, . . . , um} and u1 < u2 < · · · < um. As X ⊆ Y ⇔ |X ∩ Y | = |X |, we can also

straightforwardly solve this problem by using the protocol for the intersection cardinality.

Set union problem. By the De Morgan law, we can transform OR operations to AND operations.

Therefore, we can also use the AND homomorphic cryptosystem to privately compute the union of private

sets X1, . . . , Xt.

4.3 Implementation and performance

We implement our private set intersection protocol described above and compare the results with that

of the available protocol based on FHE. We perform a test for a two-party case. We do not consider

collusion attack of the parties and therefore, the threshold decryption cryptosystem is not necessary.

Thus, the key generation requires only one modular exponentiation, and decryption only requires 2m

modular exponentiations. The computational complexity is 6m+1 modular exponentiations. We test 20

times and compute the average time required without preprocessing. The benchmark computer has an

Intel(R) Core(T) i5-6600 3.30 GHz, 3.31 GHz 8.00 GHz RAM with myeclipse 10. Suppose |U | = 10000,

and that a 512-bit prime number p is chosen. For any two private sets X,Y ⊆ U , the execution time of

the protocol is approximately 2.9 s. Because our protocol involves only the encryption of one and zero

and all the encryptions can either be outsourced to a cloud or be preprocessed, its performance can be

significantly improved. This is highly critical for a mobile equipment such as smart phone.

The most computationally efficient PSI protocols have been constructed using tools such as hash func-

tions and oblivious transfer; however, a potential limitation with these approaches is the communication

complexity which increases linearly with the size of the larger set. The fastest FHE-derived protocol

proposed in [51] uses batching and hashing to mainly reduce the communication complexity and uses

windowing and partitioning to reduce the circuit depth. Even with these optimizations, its execution

time on a benchmark computer with two 18-core Intel Xeon CPU E5-2699 v3 2.3 GHz and 256 GB of

RAM is approximately 120 s. The advantage of this protocol is its low communication complexity. It

functions particularly well when one of the two sets is significantly smaller than the other. For example,

if the private set sizes are NY , NX and NY ≪ NX , the communication overhead will be O(NY logNX).

This is important when a user has a constrained device (smart phone) and a service provider has a

large set and they wish to privately compute the intersection, such as in the private contact discovery

application.

4.4 DNF problem

DNF problem. Alice has a private vector X = (x1, . . . , xm) ∈ {0, 1}m, and Bob has another private

vector X = (x1, . . . , xm) ∈ {0, 1}m. They wish to cooperatively compute

P (X,Y ) = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xm ∧ ym)

without disclosing X,Y . Using the threshold decryption AND homomorphic cryptosystem, we can pri-

vately and more efficiently compute any DNF (real DNF), i.e., mDNF, for variables in {0, 1}. For example,

the 2DNF problem can be addressed as Protocol 2.

This protocol can be conveniently extended to privately compute mDNF

P (X1, . . . , Xm) = (x11 ∧ · · · ∧ xm1) ∨ · · · ∨ (x1n ∧ · · · ∧ xmn). (6)

Security. For the security of this protocol, we have the following theorem.

Theorem 3. Protocol 2 privately computes a 2DNF.

We can use the simulation paradigm to prove the security of this theorem similarly as the proof of

Theorem 3. Owing to the space limitation, we omit the proof.

Remark 3. With certain transformation, the AND homomorphic cryptosystem can be used to privately

compute the Hamming distance between two private binary strings.
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Protocol 2 Privately compute 2DNF

Inputs: X = (x1, . . . , xm), Y = (y1, . . . , ym) ∈ {0, 1}m.

Output: (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xm ∧ ym).

Setup: Alice and Bob cooperate to generate a public key h. The private key sk is shared by Alice and Bob.

(1) Alice encrypts X = (x1, . . . , xm) using the threshold decryption AND-homomorphic cryptosystem with the public key

pk to obtain C1 = (E(x1), . . . , E(xm)) and transmits it to Bob.

(2) Bob performs the following:

• Encrypts Y = (y1, . . . , ym) using the threshold decryption AND-homomorphic cryptosystem with the public key pk to

obtain C2 = (E(y1), . . . , E(ym)).

• Computes C = C1C2 = (E(x1)E(y1), . . . , E(xm)E(ym)) = (c1, c2, . . . , cm).

• Generates a random permutation of C, denoted by π1(C) = (cπ1(1), . . . , cπ1(m)) and transmits π1(C) to Alice.

(3) Alice re-randomizes π1(C) by multiplying each element of π1(C) with E(1), permutes it and publishes

π(C) = (cπ(1), . . . , cπ(m)) = (cπ2π1(1), . . . , cπ2π1(m)).

(4) For i = 1 to m, Alice and Bob cooperate to decrypt cπ(i). If there exists i such that D(cπ(i)) = 1, terminate the protocol

and output (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xm ∧ ym)=1; otherwise, output (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xm ∧ ym)=0.

Because (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xm ∧ ym)=0 iff ∀i (xi ∧ yi) = 0. If there exists i such that xi ∧ yi = 1, then

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xm ∧ ym)=1. This is the reason why step (4) works.

5 Conclusion

To solve the problems listed in the introduction, we analysed the property of the available homomorphic

cryptosystems and used the properties of ideal of abstract algebra and multiplicatively homomorphic

cryptosystems to design AND homomorphic one. Our main concept is to modify the original homomorphic

cryptosystems so they can be used to encrypt zeros and ones such that the ciphertexts of zeros and those of

ones are indistinguishable while maintaining the original homomorphic property. This new homomorphic

cryptosystem can be used to solve the problems listed in the introduction as well as others. We also

demonstrated the applications of the scheme to solve other SMC problems in the semi-honest model.

Compared to TFHE derived AND homomorphic cryptosystems, our AND homomorphic cryptosystem

is more time-space efficient, albeit less functional. Compared to the schemes of [29, 30], our scheme is

more effective in terms of latency, although not in terms of amortized timing or expansion rate. It can

be used to privately compute certain Boolean formulae straightforwardly, and the protocols based on it

are conveniently constructed and understood. In the future, we will explore the feasibility of modifying

this scheme so it is AND homomorphic, as well as method for reducing the ciphertext expansion, and the

feasibility of applying them to solve certain SMC problems in the malicious model.
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