
SCIENCE CHINA
Information Sciences

April 2020, Vol. 63 149203:1–149203:3

https://doi.org/10.1007/s11432-018-9571-5

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. LETTER .

A new stabilizing method for linear aperiodic

sampled-data systems with time delay inputs and

uncertainties

Shuangshuang GAO, Xiu YOU, Xinchun JIA* & Weiwei MA

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

Received 12 June 2018/Accepted 3 August 2018/Published online 16 September 2019

Citation Gao S S, You X, Jia X C, et al. A new stabilizing method for linear aperiodic sampled-data sys-

tems with time delay inputs and uncertainties. Sci China Inf Sci, 2020, 63(4): 149203, https://doi.org/10.1007/

s11432-018-9571-5

Dear editor,
With the rapid development of communication,
control, and computer technologies, networked
control systems (NCSs) have been widely used
in various fields owing to its advantages of shar-
ing information resources, reducing system wiring,
and increasing the flexibility and reliability of sys-
tems [1–3]. In NCSs, sampling-data systems com-
monly have aperiodic sampling characteristics ow-
ing to package dropouts, time triggering, net-
work environment effects, among other issues [4].
Therefore, aperiodic sampled-data systems have
been widely studied [5, 6]. An interesting idea
on aperiodic sampled-data systems was proposed
in [5], which proved that delays can impose a
positive effect on the stability of some NCSs.
The problem of robust stabilization of aperiodic
uncertain sampled-data linear systems was ad-
dressed in [6], and synthesis conditions in forms
of parameter-dependent linear matrix inequalities
were proposed. However, in these studies, only
the cases with time delays or uncertainties were
considered [5–7], which cannot fully satisfy the ac-
tual requirements of controlled systems (e.g., ape-
riodic sampling, time delays, and uncertainties be-
ing present simultaneously in vehicle systems [8]
and secure cooperative systems [9]). Therefore,
the manner in which the aperiodic sampled-data
systems with time delay inputs and uncertainties

is efficiently stabilized is of practical significance,
which motivates our current study.

The objective of this study is to introduce a new
stabilizing method to handle time delay inputs and
the uncertainties in a linear aperiodic sampled-
data system. By constructing a new Lyapunov
function, a less conservative stability criterion is
presented in terms of matrix inequalities, which
also provides the relationship among the parame-
ters such as the upper and lower bounds of both
sampling intervals and delays. Finally, two illus-
trative examples show the effectiveness and advan-
tages of our proposed method.

Notations. The transposed blocks in a symmet-
ric matrix are denoted by the symbol ‘∗’. The
superscript ‘T’ stands for matrix transposition. N
is the set of non-negative integers. Rn denotes the
n-dimensional Euclidean space with vector norm
‖ ·‖. Sn×n

+ represents the set of n×n positive defi-
nite matrices. I (or In ) means an identity matrix
with appropriate dimensions (or n-dimension).

Problem formulation. Consider the following
linear system with time delay inputs and uncer-
tainties:

ẋ (t) = (A+∆A)x (t) + (B +∆B)u(t− τk), (1)

where x (t) ∈ Rnx and u(t) ∈ Rnu are the sys-
tem state and control input, respectively; A and
B are known real constant matrices with appro-
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priate dimensions; ∆A and ∆B are time-varying
parameter uncertainties, which are given by

∆A = E∗H(t)F ∗
1 , ∆B = E∗H(t)F ∗

2 ,

where E∗, F ∗
1 and F ∗

2 are known real matrices
with appropriate dimensions. For any time t,
H(t) is an unknown matrix function satisfying
HT(t)H(t) 6 I . It is assumed that the system
state is sampled aperiodically and the sampling
instant sequence is denoted by set {sk}k∈N, where
0 = s0 < s1 < · · · < sk < · · · and limk→∞ sk = ∞.
Then, τk indicates the corresponding time delay of
the input at sampling instant sk and it is easy
to obtain tk = sk + τk. Note that tk satisfies
0 < τm 6 τk 6 τM for k ∈ N, in which τm and
τM are the lower and upper bounds of time delays,
respectively. Suppose that the sampling intervals
Tk = sk+1 − sk ∈ [Tm, TM ] for k ∈ N, where Tm

and TM are the lower and upper bounds of ape-
riodic sampling intervals, respectively. For conve-
nience, this study only focuses on the case that
sampling intervals Tk are always larger than the
corresponding delays τk, i.e., Tm > τM .

To effectively handle the time delay inputs and
analyze the stability of the system (1), a new
extending impulsive-system approach with two
modes is introduced. Then, the state-feedback
control law of the system (1) is designed as

u(t− τk) =

{

Kx (sk−1), t ∈ (sk, tk],

Kx (sk), t ∈ (tk, sk+1],
(2)

where K is the controller gain to be determined.
Thus, the system (1) is modeled as follows (k ∈

N):



















ẋ (t) = (A+∆A)x (t) + (B +∆B)z 1(t),

t ∈ (sk, tk],

ẋ (t) = (A+∆A)x (t) + (B +∆B)z 2(t),

t ∈ (tk, sk+1],

(3)

where z 1(t) = Kx (sk−1) and z 2(t) = Kx (sk)
for t ∈ (sk, sk+1]. At sampling instant sk, we
have z 2(s

+
k ) = Kx (sk), z 1(s

+
k ) = Kx (sk−1) =

z 1(sk), and ż 1(s
+
k ) = ż 2(s

+
k ) = 0. Let

ξ(t) = col{x(t), z 1(t), z 2(t)} belong to Rn, E1 =
[I nx

0 0], E2 = [0 0 I nu
], E3 = [0 I nu

0],
E0 = ET

1 E
∗, and Fσ(t) = F ∗

1 E1 + F ∗
2 Eσ(t)+1.

The system (3) is rewritten as follows:











ξ̇(t) = (Aσ(t) +∆Aσ(t))ξ(t),

t 6∈ {sk}k∈N ∪ {tk}k∈N,

ξ(t+) = Dσ(t)ξ(t), t ∈ {sk}k∈N ∪ {tk}k∈N,
(4)

where

A1 =







A 0 B

0 0 0

0 0 0






, A2 =







A B 0

0 0 0

0 0 0






,

D1 =







I nx
0 0

K 0 0

0 I nu
0






, D2 = I n,

and ∆Aσ(t) = E0H(t)Fσ(t), in which n = nx +
2nu. Note that the switching law in (4) is de-
scribed as when t ∈ (sk, tk], σ(t) = 1 and when
t ∈ (tk, sk+1], σ(t) = 2. Furthermore, define h1,k

and h2,k as the dwell times of impulsive switched
system modes 1 and 2, respectively. From (3), it
is known that h1,k = tk − sk = τk ∈ [hm

1 , hM
1 ] :=

[τm, τM ] and h2,k = sk+1 − tk = Tk − τk ∈
[hm

2 , hM
2 ] := [Tm − τM , TM − τm], k ∈ N, where

hm
i and hM

i are the lower and upper bounds of
hi,k, i = 1, 2.

Main result. Based on the above discussions, we
have the following result.

Theorem 1. Consider the system with time de-
lay inputs and uncertainties (1). The globally ex-
ponentially stabilization problem of the system is
solved by the control law (2), if there exist ap-
propriate matrices K ∈ Rnu×nx , P i ∈ S

n×n
+ , and

S i ∈ S
n×n
+ , such that the following matrix inequal-

ities hold for hi ∈ [hm
i , hM

i ] with i = 1, 2:

Ω
1
i =

[

Ω
1
11i Ω

1
12i

∗ Ω
1
22i

]

< 0, (5)

Ω
2
i =

[

Ω
2
11i Ω

2
12i

∗ Ω
2
22i

]

< 0, (6)

whereΩ1
11i = Sym(AT

i P i)+FT
i Fi+P iE0E

T
0 P i−

S i, Ω
1
12i = SiD i, Ω

1
22i = −D

T
i S iD i −

1
hi

P i−1, Ω
2
11i = 2(FT

i Fi + S iE0E
T
0 S i) +

Sym(AT
i S i), Ω

2
12i = −A

T
i S iD i, and Ω

2
22i =

D
T
i S iE0E

T
0 S iD i.

Proof. A Lyapunov function over the interval (α,
β] is chosen as

V (t) =V 1
σ(t)(t) + (β − t)eT(t)Sσ(t)e(t)

+
β − t

β − α
V 1
σ(α)(α),

where α and β are two adjacent impulse instants
of the system (4), V 1

σ(t)(t) = ξT(t)Pσ(t)ξ(t), and

e(t) = ξ(t) − ξ(α+). If σ(t) = i on (α, β], then
σ(α) = i − 1 for i ∈ VN/{1} and σ(α) = 2 for
i = 1. As P i > 0 and S i > 0, V (t) is posi-
tive. Let ζ(t) = col{ξ(t), ξ(α−)}, hi = β − α and
ε = t − α ∈ (0, hi]. Then, the time derivative of
V (t) along the trajectory of (4) is given by

V̇ (t) = 2ξ̇T(t)P iξ(t)− e
T(t)S ie(t)
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+2(β − t)ėT(t)S ie(t)

−
1

β − α
ξT(α)P i−1ξ(α)

6 ζT(t)Ωiζ(t).

As Ωi = Ω
1
i + (hi − ε)Ω2

i , hi − ε = b − t > 0, ac-
cording to (5) and (6), we have Ωi < 0, in which
hi ∈ [hm

i , hM
i ]. It follows that V̇ (t) < 0. This

completes the proof.
Illustrative examples. The active suspension

system in vehicles can be formulated by (1) [8]
with x (t) = [x1(t) x2(t) x3(t) x4(t)]

T,

A=











0 0 1 −1

0 0 0 1

− ks

ms

0 − cs
ms

cs
ms

ks

mu

− kt

mu

cs
mu

− cs+ct
ms











, B=











0

0
1
ms

− 1
mu











,

in which ms = 973 kg, mu = 114 kg, kt =
10115 N/m, ks = 10111 N/m, cs = 1095 Ns/m,
ct = 14.6 Ns/m; x1(t), x2(t), x3(t), x4(t) are the
suspension deflection, tire deflection, sprung mass
speed, and unsprung mass speed, respectively.
The uncertain parameters caused by uneven road

surfaces are expressed as H(t) = πH̃V
L

sin(2πV t
L

),
E∗ = [0.2 0.1 0.1 0.1]T, F ∗

1 = [0.1 0.2 0.1 0.2], and
F ∗
2 = 0.2, where V = 12.5 m is the vehicle forward

velocity; H̃ = 0.006 m and L = 5 m are the height
and the length of the bump, respectively. In this
study, we choose Tm = 1.51 s, TM = 1.87 s, τm =
0.1 s, and τM = 0.5 s. According to Theorem 1,
one has K = −[5.3712 9.1587 5.3329 6.0106].
The initial state of the system (1) is given by
x (0) = [0.2 0 0.1 − 2]T. Then, the system state
trajectories are shown in Figure 1 and illustrate
the effectiveness of the proposed result.
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Figure 1 (Color online) State trajectories of the sys-
tem (1).

An advantage of our proposed method is that
hm
i and hM

i synthetically consider the upper and

lower bounds of time delays and sampling inter-
vals. Compared to traditional studies, which con-
sider the aperiodic sampling case such as [6,7], our
proposed method can relax the restrictions on the
upper bound of aperiodic sampling intervals for
its fixed lower bound. Next, another example de-
scribed by the system (1) with A = [ 0 1

0 −0.1
],B =

[ 0

2
] is given to show this advantage. Consider

the uncertain parameters with E∗ = [0.2 0.02]T,
F ∗
1 = [0 1], F ∗

2 = 0, H(t) = 0.2. As there are no
time delays in [6,7], we choose τk ≡ 0. Using Theo-
rem 1, one has K = −[3.75 11.5]. The initial state
of the system (1) is given by x (0) = [5 − 5]T. For
the fixed lower bound Tm = 0.001 s, refs. [6, 7]
present that the maximum values of the upper
bound TM are 22.28 and 42.54, respectively. Our
proposed method however can obtain TM = 45.78,
which increases by 105.48% and 7.62% when com-
pared with the results of [6,7], respectively. It can
be seen that our method can provide less conser-
vative results.
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