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Dear editor,
During the past few decades, a significant amount
of attention has been focused on deterministic
time-delay systems. These studies are based on all
types of growth conditions on nonlinear functions.
In a recent study [1], Zhang et al. obtained partic-
ularly good results using a dynamic gain method
with wide practical use [2], and proved that restric-
tive growth conditions are unnecessary and can be
removed in the case of state feedback control.

The problem regarding the controller design
of stochastic nonlinear systems has been an ac-
tive area of research; see [3–5] and the references
therein. However, similar to deterministic sys-
tems, each of these studies also requires some
growth conditions on nonlinear functions, such as
[6, 7].

Considering stochastic nonlinear systems:

dxi = (xi+1 + fi(x̄i, x̄i(t− d)))dt

+ gTi (x̄i, x̄i(t− d))dω, i = 1, . . . , n− 1,

dxn = (u + fn(x, x(t − d)))dt

+ gTn (x, x(t − d))dω,

x(s) = ζ(s), s ∈ [−d, 0], (1)

where x = (x1, . . . , xn)
T ∈ R

n, u ∈ R are the sys-
tem state and control inputs; x̄i = (x1, . . . , xi)

T;
the drift terms fi : R

2i → R and the diffu-
sion terms gi = (gi1, . . . , gim)T : R

2i → R
m,

i = 1, . . . , n, are continuously differentiable with
fi(0, 0) = 0 and gi(0, 0) = 0; and ω is an m-
dimensional standard Wiener process on a com-

plete probability space (Ω,F , P ) with Ω being a
sample space, F being a σ-field, and P being a
probability measure.

The aim of this study is to construct a delay-
independent, dynamic state feedback controller
such that the equilibrium at the origin of the
closed-loop system is globally asymptotically sta-
ble in probability without imposing any growth
conditions on the nonlinearities.

It should be noted that, although the dynamic
gain design idea of the controller in this study
stems from [1], it only considers deterministic sys-
tems. Compared with [1], the contributions and
difficulties of this study are characterized through
the following novel features:

(i) The main contribution of this study is to
remove restrictive conditions in existing studies
for a stochastic nonlinear time-delay system (1).
Without imposing any growth conditions on the
nonlinearities fi and gi, a delay-independent, dy-
namic state feedback controller is constructed to
guarantee that the equilibrium at the origin of the
closed-loop system is globally asymptotically sta-
ble in probability.

(ii) For a stochastic system (1), the appearance
of the diffusion and Hessian terms will inevitably
produce many more nonlinear terms, and dealing
with them is not easy.

(iii) Because Eq. (1) describes a stochastic non-
linear time-delay system, its stability analysis is
much more difficult than its deterministic coun-
terpart.
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Preliminary results.

Lemma 1 ([8]). For positive real numbers m,n

and a real-valued function π(x, y) > 0, |xmyn| 6
m

m+n
π(x, y)|x|m+n + n

m+n
π−m

n (x, y)|y|m+n.

Lemma 2 ([9]). For a continuous function f(x,
y), there exist smooth functions a(x) > 0, b(y) >
0, c(x) > 1 and d(y) > 1 such that |f(x, y)| 6
a(x) + b(y), |f(x, y)| 6 c(x)d(y).

Lemma 3 ([9]). For the C1 function fi(x̄i, x̄i(t−
d)) with fi(0, 0) = 0, there exist smooth functions
γ̄ij(xj) > 0 and γ̄∗

ij(xj(t − d)) > 0, j = 1, . . . , i,

such that |fi(·)| 6
∑i

j=1(γ̄ij(xj)|xj | + γ̄∗
ij(xj(t −

d))|xj(t− d)|).

Remark 1. By Lemma 3, it is easy to see that
continuously differentiable nonlinear functions fi
and gik can be transformed into

|fi| 6

i
∑

j=1

(γ̄ij(xj)|xj |

+γ̄∗
ij(xj(t− d))|xj(t− d)|), i = 1, . . . , n,

|gik| 6

i
∑

j=1

(λi,k,j(xj)|xj |+ λ∗
i,k,j(xj(t− d))

·|xj(t− d)|), k = 1, . . . ,m, (2)

where γ̄ij(·) > 0, γ̄∗
ij(·) > 0, λi,k,j(·) > 0,

λ∗
i,k,j(·) > 0 are smooth functions.
Design and analysis of dynamic state feedback

controller. For simplicity, for any vector a =
(a1, . . . , an)

T, we define āi = (a1, . . . , ai)
T.

Initial step. Take ξ1 = x1 and V1(x1, l1) =
1
4 (1 +

1
l1
)ξ41 , where l1(t) > 1 is a dynamic gain to

be designed in Step 2. Then

LV1 6

(

1 +
1

l1

)

ξ31x
∗
2 + 2|ξ31ξ2|

+2|ξ31f1|+ 3ξ21 |g
T
1 g1| −

l̇1

4l21
ξ41 , (3)

where ξ2 = x2 − x∗
2. By (2) and Lemmas 1 and 2,

2|ξ31ξ2| 6
3

2
ξ41 +

1

2
ξ42 ,

2|ξ31f1| 6 2ξ41 γ̄11(x1) + ξ41

+4ξ41(t− d)γ̄∗4
11 (x1(t− d)), (4)

3ξ21 |g
T
1 g1| 6 ξ41Ψ11(x1)

+ξ41(t− d)Ψ∗
11(x1(t− d)),

where Ψ11(·) > 0 and Ψ∗
11(·) > 0 are smooth func-

tions. Construct the Lyapunov-Krasovskii (L-K)

functional V1LK = V1(x1, l1) +
∫ t

t−d
ξ41(s)(γ̄

∗4
11 (s) +

Ψ∗
11(s))ds. By (4), the following is obtained:

LV1LK 6

(

1 +
1

l1

)

ξ31x
∗
2 + ξ42 + ξ41(3 + 2γ̄11(x1)

+4γ̄∗4
11(x1) + Ψ11(x1) + Ψ∗

11(x1))−
l̇1

4l21
ξ41 . (5)

In view of (5) and l1 > 1, the virtual controller

x∗
2 = −ξ1

(n− 1

4
+ 4 + 2γ̄11(x1) + 4γ̄∗4

11(x1)

+Ψ11(x1) + Ψ∗
11(x1)

)

, −ξ1β1(x1) (6)

leads to LV1LK 6 −ξ41 − n−1
4 ξ41 + ξ42 −

l̇1
4l2

1

ξ41 .

Step 2. Construct L-K functional

V2 = V1LK+
1

l1
W2(x1, x2)+

1

l1l2

(

ξ41
4
+W2(x1, x2)

)

,

W2 =
1

4
ξ42 =

1

4
(x2 − x∗

2)
4, (7)

with l2(t) > 1 being a dynamic gain to
be designed in the next step. Construct L-
K functional V2LK = V2 +

∫ t

t−d
ξ42(s)A(s)ds +

∫ t

t−d
1

l1(s)
ξ41(s)B(s)ds, where A(·), B(·) are appro-

priate nonnegative smooth functions. Then,

LV2LK 6 −ξ41−
n− 1

4
ξ41−

l̇1

4l21
ξ41+

1

l1

(

1+
1

l2

)

ξ32

·(x∗
3+x3−x∗

3)+
1

l1
ξ41 [C(x1)+B(x1)]+

( 1

l1(t)

−
1

l1(t−d)

)

ξ41(t−d)B(x1(t− d))+ξ42 [1 +D(x1, x2)

+A(x1,x2)]−
l̇1

l21
W2(·)−

l̇1l2+l1l̇2

l21l
2
2

(

ξ41
4
+W2(·)

)

, (8)

where C(·) > 0, D(·) > 0 are smooth functions.
The gain update law is then designed as follows:

l̇1 = max{−l21 + l1ρ1(x1), 0}, l1(0) = 1,

ρ1(x1) = 4[C(x1) +B(x1)]. (9)

From (9), it is easy to verify that the gain l1 has
the following properties:

0 6 l̇1 6 l1ρ1(x1), l̇1 > −l21 + l1ρ1(x1),

l1(t) > l1(t− d) > 1. (10)

Using the relationship (10), we arrive at

−
l̇1

4l21
ξ41 6

ξ41
4
−

1

4l1
ξ41ρ1(x1),

1

l1(t)
−

1

l1(t−d)
6 0,

−
l̇1

l21
W2(·)−

l̇1l2 + l1 l̇2

l21l
2
2

(

ξ41
4

+W2(·)

)

6 −
l̇2

l1l
2
2

(

ξ41
4

+W2(·)

)

. (11)

Using Lemma 1, the following is obtained:

2|ξ32(x3 − x∗
3)| 6 ξ42 + c3ξ

4
3 , (12)

where ξ3 = x3 − x∗
3, and c3 is a positive constant.

Substituting (9), (11), and (12) into (8) and de-
signing a virtual controller as

x∗
3 = −l1ξ2[n+ 1 +A(x1, x2) +D(x1, x2)]

, −l1ξ2β2(x1, x2), (13)
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the following is obtained:

LV2LK 6 −

2
∑

j=1

ξ4j − (n− 2)

(

ξ41
4

+ ξ42

)

+c3ξ
4
3 −

l̇2

l1l
2
2

(

ξ41
4

+W2(·)

)

. (14)

Using the recursive method, we can obtain the
dynamic gains l1, . . . , ln−1 and a series of virtual
controllers x∗

1, . . . , x
∗
n+1 given by

l̇1 = max{−l21 + l1ρ1(x1), 0},

l̇k=max{−l2k+lkρk(l̄k−1, x̄k), 0}, k = 2,. . . , n−1,

x∗
1 = 0, x∗

2 = −ξ1β1(x1),

x∗
j = −l1 · · · lj−2ξj−1βj−1(l̄j−3, x̄j−2),

ξj−1 = xj−1 − x∗
j−1, j = 1, . . . , n, (15)

with ρk(·) > 0, βj(·) > 0 being smooth functions.
The controller

u = −l1 · · · ln−1βn(l̄n−2, x) (16)

renders LVnLK 6 −
∑n

i=1 ξ
4
i 6 0.

Theorem 1. For a stochastic nonlinear time-
delay system (1), there is a delay-independent,
dynamic state feedback controller (16) such that
the closed-loop system has a unique solution in
[−d,∞), and the equilibrium at the origin of the
closed-loop systems is globally asymptotically sta-
ble (GAS) in probability.
Proof. The proof is divided into two steps.

Step I: We first prove the almost sure bound-
edness of x1(t), . . . , xn(t), l1(t), . . . , ln−1(t) in
[−d,∞). It follows from Itô’s formula that

E{VnLK(x(σr ∧ t), l(σr ∧ t), σr ∧ t)}

6 VnLK(x(0), l(0), 0), (17)

where σr , inf{t > 0 : |x(t)| > r}, r > 0,
g = (g1, . . . , gn)

T. From the definition of VnLK,

E{VnLK(x(σr ∧ t), l(σr ∧ t), σr ∧ t)}

> E

((

1

4
x4
1(s)+

1

4l1(s)
(x2(s)−x∗

2(s))
4+· · ·

+
1

4l1(s) · · · ln−1(s)
(xn(s)−x∗

n(s))
4

)

∣

∣

∣

∣

s=σr∧t

)

.(18)

Letting r → ∞, it is easy to see from (17)
and (18) that x1(t),

1
4l1(t)

(x2(t) − x∗
2(t))

4, . . .,
1

4l1(t)···ln−1(t)
(xn(t) − x∗

n(t))
4 are bounded almost

surely in [−d, σ∞). It is clear from (8) that
the gain l1(t) is monotonously non-deceasing.
We claim that l1(t) is bounded almost surely
in [−d, σ∞). If not, suppose limt→σ∞

l1(t) =
∞. Through continuity, ρ1(x1) is almost surely
bounded from the almost sure boundedness of x1.

Thus, there is a time instant 0 < T1 < σ∞ such
that −l21(t)+ l1(t)ρ1(x1(t)) 6 0 on [T1, σ∞). From
(10), l̇1(t) = max{−l21(t) + l1(t)ρ1(x1(t)), 0} = 0
in [T1, σ∞), which contradicts limt→σ∞

l1(t) =
∞. Hence, l1(t) is almost surely bounded in
[−d, σ∞), and thus so is x2(t) based on the def-
inition of x∗

2(t). It is not difficult to see that
σ∞ = ∞. Hence, it is recursively easy to obtain
l2(t), x3(t), . . . , ln−1(t), xn(t), which are bounded
almost surely in [−d,∞).

Step II: It is easy to see that VnLK > 1
4ξ

4
1(t) +

1
4l1(t)

ξ42(t) +· · ·+ 1
4l1(t)···ln−1(t)

ξ4n(t). In view of the

almost sure boundedness of li and li > 1, there
is a class K∞ function α1(·) such that VnLK >
α1(|x(t)|). From the almost sure boundedness
of li and li > 1, it is easy to see that there
is a class K∞ function α2(·) such that VnLK 6
α2

(

sup−d6τ60 |x(τ + t)|
)

.
Hence, by Theorem 2 in [3], Theorem 1 holds.

Remark 2. From the controller design and sta-
bility analysis, we can see that the choice of
Lyapunov-Krasovskii function is important.

Conclusion. This study solved the important
problem of state feedback stabilization of stochas-
tic nonlinear time-delay systems without imposing
any growth conditions on the nonlinearities.
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