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Abstract Post-quantum cryptography has drawn considerable attention from cryptologists on a global

scale. At Asiacrypt 2017, Leander and May combined Grover’s and Simon’s quantum algorithms to break

the FX-based block ciphers, which were introduced by Kilian and Rogaway to strengthen DES. In this study,

we investigate the Feistel constructions using Grover’s and Simon’s algorithms to generate new quantum

key-recovery attacks on different rounds of Feistel constructions. Our attacks require 20.25nr−0.75n quantum

queries to break an r-round Feistel construction. The time complexity of our attacks is less than that observed

for quantum brute-force search by a factor of 20.75n. When compared with the best classical attacks, i.e.,

Dinur et al.’s attacks at CRYPTO 2015, the time complexity is reduced by a factor of 20.5n without incurring

any memory cost.
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1 Introduction

Due to the rapid development of quantum computers, the security of classical cryptographic schemes

is heavily debated. The most severe and notable threat is the Shor’s algorithm [1] which breaks the

most currently used public-key systems (such as the RSA [2] and elliptic-curve cryptosystems). Re-

cently, researchers have observed that quantum computing not only impacts public key cryptography,

but also breaks several secret key schemes in polynomial time, such as Even-Mansour block ciphers [3,4]

and some widely used modes of operation for authentication and authenticated encryption (e.g., CBC-

MACs, PMAC, GMAC, etc.) [5]. Investigation of the security of several classical and relevant crypto-

graphic schemes against quantum attacks is urgently required. At Asiacrypt 2017, Moody [6] on behalf

of National Institute of Standards and Technology (NIST) reported the ongoing competition for post-

quantum cryptographic algorithms, including signatures, encryptions, and key-establishments. The ship

for post-quantum crypto has sailed, cryptographic communities should become ready to welcome the

post-quantum age.

In case of a quantum computer, the adversaries were able to generate quantum queries on some super-

position quantum states of the relevant cryptosystem, which is the so-called quantum chosen-plaintext

attacks (qCPA) [7]. It is known that using the Grover’s algorithm [8] could accelerate the brute force

search. Given an m-bit key, the Grover’s algorithm allows for the recovery of the key using O(2m/2)

quantum steps. It is observed that doubling the key length of one block cipher could achieve a similar
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Figure 1 The ith round of the Feistel structure.

Table 1 Summary of the key-recovery attacks on Feistel schemes in classical and qCPA settings

Classical setting qCPA setting

Dinur et al. [14] Trivial bound Ours

Rounds Time Memory Time Time

5 2n 20.5n 21.25n 20.5n

7 21.5n 2n 21.75n 2n

8 21.75n 21.25n 22n 21.25n

15 23.5n 22n 23.75n 23n

31 27.5n 24n 27.75n 27n

32 27.75n 27.25n 28n 27.25n

amount of security against quantum attackers. However, Kuwakado and Morii [4] identified a new family

of quantum attacks that target certain generic constructions of secret key schemes. They exhibited that

the Even-Mansour ciphers could be broken in polynomial time using Simon’s algorithm [9], which could

estimate the period of a periodic function in polynomial time in case of a quantum computer. Kaplan

et al. [5] revealed that several widely used modes of operation for authentication and authenticated en-

cryption, such as CBC-MAC, PMAC, GMAC and some CAESAR candidates, could also be broken by

Simon’s algorithm.

Feistel block ciphers [10] are observed to be important and constitute one of the extensively researched

cryptographic schemes. Several block cipher standards, such as DES, Triple-DES, MISTY1, Camellia,

and CAST-128 [11], are based on the Feistel design. In a seminal work, Luby and Rackoff [12] proved that

a three-round Feistel scheme can securely perform pseudo-random permutation. However, Kuwakado and

Morii [13] introduced a quantum distinguisher attack on 3-round Feistel ciphers that could distinguish

between the cipher and a random permutation in polynomial time. In a classical setting, Dinur et

al. [14] generated a series of key-recovery attacks on 5- to 32-round Feistel ciphers. However, there are

no key-recovery attacks that are observed on Feistel ciphers in the qCPA setting.

In this study, we consider the quantum key-recovery attack on Feistel schemes for the very first time.

As depicted in Figure 1, in the ith round of the Feistel structure, the n-bit blocks were divided into two

equal parts, (xLi−1
, xRi−1

), whereas the n/2-bit subkeys ki were wrapped into the round function, Fi. The

output is (xLi , xRi). Similar to the attacks of Dinur et al. [14], our attacks also constitute generic attacks

that assume that the round functions in each round of the Feistel cipher are not necessarily identical and

that the round keys, ki, are independent of each other. Hence, using Grover’s algorithm to perform a

brute-force search on all the subkeys, ki, of an r-round Feistel cipher will require 20.25nr quantum queries.

We combine Grover’s and Simon’s algorithms to generate a series of quantum key-recovery attacks on

different rounds of Feistel structures. Our attacks require 20.25nr−0.75n quantum queries, which reduces

the time complexity by a factor of 20.75n as compared with that observed in the quantum brute-force

search. When compared with the best classical attacks, i.e., those observed by Dinur et al. [14], our results

reduce the time complexity by a factor of 20.5n without incurring any memory cost. All the results are

summarized in Table 1.

2 Related work

Our quantum attacks are based on two of the most popular quantum algorithms, namely Simon’s algo-

rithm [9] and Grover’s algorithm [8].
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Simon’s algorithm. Given a Boolean function, f : {0, 1}n → {0, 1}n, that is observed to be invariant

under some n-bit XOR period a, find a. In other words, find a when f(x) = f(y) ↔ x⊕ y ∈ {0n, a} is

given.

The optimal time to solve the problem is O(2n/2). However, Simon [9] presents a quantum algorithm

that provides exponential speedup and requires only O(n) quantum queries to find a. The algorithm

includes five quantum steps that are as follows:

(i) Initialization of two n-bit quantum registers to state |0〉⊗n|0〉⊗n. Then apply the Hadamard trans-

form to the first register to attain an equal superposition in the following manner:

H⊗n|0〉|0〉 = 1√
2n

∑

x∈{0,1}n

|x〉|0〉. (1)

(ii) A quantum query to the function f maps this to

1√
2n

∑

x∈{0,1}n

|x〉|f(x)〉.

(iii) While measuring the second register, the first register is observed to collapse to the following state:

1√
2
(|z〉+ |z ⊕ a〉).

(iv) Applying the Hadamard transform to the first register, we obtain

1√
2

1√
2n

∑

y∈{0,1}n

(−1)
y·z

(1 + (−1)
y·a

)|y〉.

(v) The vectors, y, are selected such that y · a = 1 depict an amplitude of zero. Hence, measuring the

state yields a value, y, which depicts that y · a = 0.

Repeat O(n) times, we can obtain a by solving a system of linear equations.

Kuwakado and Morii [4] used Simon’s algorithm to break the Even-Mansour (EM) cipher [3]. For a

given permutation P , the EM cipher is Enc(x) = P (x⊕ k1)⊕ k2. Classically, an EM cipher is secure for

up to 2n/2 queries, where n is the input size of P . However, using Simon’s algorithm [9], Kuwakado and

Morii [4] presented a quantum key-recovery attack on EM ciphers with a time complexity of O(n). They

define f(x) = Enc(x) ⊕ P (x) = P (x ⊕ k1) ⊕ P (x) ⊕ k2. Clearly, it is a periodic function that satisfies

f(x⊕ k1) = f(x).

Grover’s algorithm. Given a set, X , in which some elements are marked, the objective is to find

a marked element from X . We denote the subset of the marked elements by M ⊆ X . Classically, one

can solve the problem in a time of |X |/|M |. However, in a quantum computer, the problem is solved

with high probability in a time of
√

|X |/|M | using Grover’s algorithm. The steps of the algorithm are

as follows:

(i) Initialization of a n-bit register |0〉⊗n. Apply the Hadamard transform to the first register to attain

an equal superposition that can be given as follows:

H⊗n|0〉 = 1√
2n

∑

x∈{0,1}n

|x〉 = |ϕ〉. (2)

(ii) Construct an oracle O: |x〉 O−→ (−1)f(x)|x〉, where f(x) = 1 if x is the correct state; otherwise,

f(x) = 0.

(iii) Apply Grover’s iteration R ≈ π

4

√
2n times that can be given as follows:

[(2|ϕ〉〈ϕ| − I)O]R|ϕ〉 ≈ |x0〉.

(iv) Return x0.

Further, Brassard et al. [15] generalized the Grover search as an amplitude amplification method.
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Theorem 1 (Brassard, Hoyer, Mosca and Tapp [15]). Let A be any quantum algorithm on q qubits

that performs no measurement. Let B : Fq
2 → {0, 1} be a function that classifies the outcomes of A as

either good or bad state. Let p > 0 be the initial success probability that the measurement of A|0〉 is

good. Set k = ⌈ π

4θ ⌉, where θ is defined using sin2(θ) = p. Furthermore, define the unitary operator

Q = −AS0A−1SB, where the operator SB changes the sign of the good state,

|x〉 7→
{

−|x〉, if B(x) = 1,

|x〉, if B(x) = 0.

Further, S0 changes the sign of the amplitude only in case of the zero state |0〉. Finally, after performing

the computation of QkA|0〉, the measurement yields a good state with probability a least max{1− p, p}.
Assume that |ϕ〉 = A|0〉 is the initial vector, whose projections on the good and the bad subspace are

denoted by |ϕ1〉 and |ϕ0〉, respectively. The state |ϕ〉 = A|0〉 exhibits an θ with a bad subspace, where

sin2(θ) = p. Each Q iteration increases the angle to 2θ. Hence, after k ≈ π

4θ , the angle is observed to be

approximately equal to π/2. Therefore, the state after k iterations is almost orthogonal to that of the

bad subspace. After measurement, it produces a good vector with high probability.

At Asiacrypt 2017, Leander and May [16] presented a quantum key-recovery attack on FX-construction,

which were introduced by Kilian and Rogaway [17] to strengthen DES, as shown in Figure 2: Enc(x) =

Ek0
(x⊕ k1)⊕ k2. They introduce the function f(k, x) = Enc(x)⊕Ek(x) = Ek0

(x⊕ k1)⊕ k2⊕Ek(x). For

the correct guess of the key k = k0, we have f(k, x) = f(k, x⊕ k1) for all x. However, for k 6= k0, f(k, ·)
is not periodic. They combined Simon’s and Grover’s algorithms to attack several FX-based ciphers

(PRINCE [18], PRIDE [19], DESX [17]) in the qCPA setting with a complexity of approximately 232.

3 Quantum key-recovery attacks on 5-round Feistel structures

The Feistel structure is a very commonly used structure to build block ciphers. Here, we present a 5-

round quantum key-recovery attack on Feistel structures. As depicted in Figure 3, Fi is the ith round

function that absorbs the independent round key ki. Suppose the state size is n, then the length of ki is

n/2. Dinur et al. [14] recovers the complete key (k1, k2, k3, k4, k5) of the 5-round Feistel cipher with 2n

classical queries on the cipher. In a quantum computer, we can use Grover’s search algorithm to observe

all the round keys with 21.25n quantum queries. Therefore, we have to construct a quantum algorithm

that exhibits less time complexity than both 2n and 21.25n. Inspired by Leander and May’s study [16],

we combine Grover’s and Simon’s algorithms to observe the round keys.

Kuwakado and Morii [13] introduced a quantum distinguish attack on 3-round Feistel schemes by using

Simon’s algorithm. As depicted in Figure 3, we place the 3-round distinguisher part in the dashed box.

The following functions are defined:

f(b, xR0
) = F2(k2, xR0

⊕ F1(k1, αb)) = αb ⊕ xR3
= αb ⊕ F4(k4, F5(k5, xR5

)⊕ xL5
)⊕ xR5

, (3)

where b ∈ F2, αb ∈ F
n/2
2 is an arbitrary constant and α0 6= α1, (xL5

‖xR5
) = Enc(αb‖xR0

). It is easy to

verify that f(b, xR0
) = f(b⊕1, xR0

⊕F1(k1, α0)⊕F1(k1, α1)). Therefore, using the accurate guess of the key

(k4, k5), f(b, xR0
) = αb ⊕F4(k4, F5(k5, xR5

)⊕ xL5
) has a nontrivial period s = 1‖F1(k1, α0)⊕F1(k1, α1).

However, if the guessed (k4, k5) is wrong, f(b, xR0
) will be a random function that is not periodic with

high probability.

Theorem 2. Let g: F
n/2
2 × F

n/2
2 × F

n/2+1
2 7→ F

n/2
2 with

(k4, k5, y) 7→ f(y) = f(b, xR0
) = αb ⊕ F4(k4, F5(k5, xR5

)⊕ xL5
)⊕ xR5

,
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Figure 3 Quantum key-recovery attack on 5-round Feistel structures.

where y = b‖xR0
, α0, α1 are two arbitrary constants, and (xL5

‖xR5
) = Enc(αb‖xR0

). Given quantum

oracles of g and Enc, (k4, k5) and F1(k1, α0) ⊕ F1(k1, α1) could be computed using n + (n + 1)(n + 2 +

2
√

n/2 + 1) qubits and approximately 2n/2 quantum queries.

Under the accurate guess of the key k4, k5, g(k4, k5, y) = g(k4, k5, y⊕s), let h: Fn
2 ×F

(n/2+1)l

2 7→ F
(n/2)l

2

with

(k4, k5, y1, . . . , yl) 7→ g(k4, k5, y1)‖ · · · ‖g(k4, k5, yl). (4)

Let Uh be a quantum oracle that maps

|k4, k5, y1, . . . , yl,0, . . . ,0〉 7→ |k4, k5, y1, . . . , yl, h(k4, k5, y1, . . . , yl)〉. (5)

We construct the following quantum algorithm A.

(1) Preparing the initial (n+ (n/2 + 1)l + nl/2)-qubit state |0〉.
(2) Apply Hadamard H⊗n+(n/2+1)l on the first n+ (n/2 + 1)l qubits resulting in

∑

k4,k5∈F
n/2
2

,y1,...,yl∈F
n/2+1

2

|k4, k5〉|y1〉 · · · |yl〉|0〉, (6)

where we omit the amplitudes 2−(n+(n/2+1)l)/2.

(3) Applying Uh to the above state, we get

∑

k4,k5∈F
n/2
2

,y1,...,yl∈F
n/2+1

2

|k4, k5〉|y1〉 · · · |yl〉|h(k4, k5, y1, . . . , yl)〉. (7)

(4) Apply Hadamard to the qubits |y1〉 · · · |yl〉 in the above state, we get

|ϕ〉 =
∑

k4,k5∈F
n/2
2

,u1,...,ul,y1,...,yl∈F
n/2+1

2

|k4, k5〉(−1)〈u1,y1〉|u1〉 · · · (−1)〈ul,yl〉|ul〉|h(k4, k5, y1, . . . , yl)〉. (8)

If the guessed k4, k5 is right, the period s is observed to be orthogonal to all the u1, . . . , ul after

measuring |ϕ〉. According to Lemma 4 of [16], choosing l = 2(n/2+ 1+
√

n/2 + 1) is enough to compute

a unique s.

Without measuring and considering the superposition |ϕ〉, we assume that we had a classifier B :

F
n+(n/2+1)l
2 7→ {0, 1}, that partitioned |ϕ〉 into a good subspace and a bad subspace as follows: |ϕ〉 =
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|ϕ1〉+ |ϕ0〉, where |ϕ1〉 and |ϕ0〉 denote the projection onto the good subspace and bad subspace, respec-

tively. In case of the good subspace |x〉, we have B(x) = 1.

Therefore, we define |ϕ1〉 as the sum of those basis states while accurately guessing the key k4, k5.

However, the accuracy of k4, k5 could not be directly verified. The classifier, B, could compute the

period, s, of g(k4, k5, ·) by k4, k5, u1, . . . , ul and verify whether g(k4, k5, y) = g(k4, k5, y⊕ s) for a given y.

Classifier B. Define B : F
n+(n/2+1)l
2 7→ {0, 1} that maps (k4, k5, u1, . . . , ul) 7→ {0, 1}.

(1) Let U = 〈u1, . . . , ul〉 be the linear span of all ui. If dim(U) 6= n/2, the output will be 0. Otherwise,

use Lemma 4 of [16] to compute the unique period s.

(2) Check g(k4, k5, y) = g(k4, k5, y⊕ s) for a randomly provided y. If the identity holds, output will be

equal to one; otherwise, output will be zero.

We classify a state |k4, k5〉|u1〉 · · · |ul〉 to be good if and only if B(k4, k5, u1, . . . , ul) = 1. If we measure

|ϕ〉, it produces a good state with probability p.

p = Pr[|k4, k5〉|u1〉 · · · |ul〉 is good]
= Pr |(k4, k5) is right] · Pr[B(k4, k5, u1, . . . , ul) = 1|(k4, k5) is right] ≈ 2−n.

(9)

Our classifier B defines a unitary operator SB that conditionally changes the sign of the quantum states

that can be given as follows:

|k4, k5〉|u1〉 · · · |ul〉 7→
{

−|k4, k5〉|u1〉 · · · |ul〉, if B(k4, k5, u1, . . . , ul) = 1,

|k4, k5〉|u1〉 · · · |ul〉, if B(k4, k5, u1, . . . , ul) = 0.
(10)

The complete amplification process can be realized by repeatedly applying the unitary operator, Q =

−AS0A−1SB, t times to the state |ϕ〉 = A|0〉, namely QtA|0〉.
Initially, the angle between |ϕ〉 = A|0〉 and the bad subspace |ϕ0〉 is θ, where sin2(θ) = p = 〈ϕ1|ϕ1〉.

When p is small enough, θ ≈ arcsin(
√
p) ≈ 2−

n
2 . According to Theorem 1, after k = ⌈ π

4θ ⌉ = ⌈ π

4×2−
n
2
⌉

Grover iterations Q, the angle between the resulting state and the bad subspace was observed to be

approximately π/2. The probability Pgood that is used by the measurement to yield a good state is

approximately sin2(π/2) = 1.

The whole attack requires (n+(n/2+1)l+nl/2) = n+(n+1)(n+2+2
√

n/2 + 1) qubits. Approximately

k = ⌈ π

4×2−
n
2
⌉ = 2n/2 quantum queries are required. Similarly, we can recover k1, k2 by placing the 3-

round quantum distinguisher in the last three rounds, which indicates that a decryption quantum oracle

of the 5-round Feistel structure is required.

The quantum key-recovery attacks on 7-/8-/15-/31-/32-round Feistel structures depict a similar mech-

anism to that of the 5-round attack. The results are summarized in Table 1.

4 Conclusion

In this study, we considered the first quantum key-recovery attack against Feistel structures. Inspired by

Leander and May’s work, we combined Grover’s and Simon’s algorithms to construct the attack. Our

attacks required 2nr/4−3n/4 quantum queries. When compared with the quantum brute-force search, the

time complexity is reduced by a factor of 20.75n. When compared with the best classical attacks, the time

complexity is reduced by a factor of 20.5n without incurring any memory cost.
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