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Abstract In this paper, we propose an output-feedback fault-tolerant controller (FTC) for a class of

uncertain multi-input single-output systems under float and lock-in-place actuator faults. Of particular

interest is to recover a fault-free tracking performance of a (pre-defined) nominal closed-loop system, during

the entire time period including the transients due to abrupt actuator faults. As a key component, a high-

gain disturbance observer (DOB) is employed to rapidly compensate the lumped disturbance, a compressed

expression of all the effect of actuator faults (as well as model uncertainty and disturbance) on the system.

To implement this high-gain approach, a fixed control allocation (CA) law is presented in order to keep an

extended system with a virtual scalar input to remain of minimum phase under any patterns of faults. It

is shown via the singular perturbation theory that the proposed FTC, consisting of the high-gain DOB and

the CA law, resolves the problem in an approximate but arbitrarily accurate sense. Simulations with the

linearized lateral model of Boeing 747 are performed to verify the validity of the proposed FTC scheme.
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1 Introduction

In response to the growing need for assessing high-level objectives, modern control systems usually have

complicated structures. Unfortunately, the increasing complexity often puts these systems into a danger-

ous situation resulting from abrupt faults and failures on the system components [1,2]. It is in this context

that a tremendous research effort has been devoted to develop fault-tolerant control (FTC) schemes in

the last two decades [3,4]. Two major approaches for the FTC designs have emerged in literature: passive

and active FTC approaches. The first strategy is to employ a fixed controller during system operation

without any detection and isolation of faults, while the other one is to reconfigure the controller structure

via estimated information on the faults. Over the active FTC, the passive FTC has advantages that the

design is simpler and faster response may be ensured, at the cost of requiring knowledge on the faults

in the design stage. On the other hand, the active FTC schemes are able to handle even unanticipated

faults outside an expected boundary by adjusting sudden changes of the system characteristics automati-

cally, yet at the same time additional delays may take place because of the use of fault detection/isolation
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algorithms. (See [3, 4] and the references therein.)

While numerous researches in both directions have been performed in literature, the problem of guar-

anteeing a transient tracking performance at the moment of actuator faults still has not been fully dealt

with yet. The management of the transient behavior may be of particular importance to critical control

systems such as power grids [5] and aircrafts, whose transient malfunctions possibly result in consider-

able loss of efficiency and discomfort of mankind. To the best of the authors’ knowledge, only a few

studies have addressed the problem [6, 7]. In [6], an active FTC scheme was proposed by combining an

adaptive sliding mode control with a backstepping control. While this approach preserves a satisfactory

post-fault transient response as much as desired, it inherently leads to high computational complexity

and requires the exact information on the high-frequency gain matrix of the plant, which restricts the

class of model uncertainty dealt with. On the other hand, the authors of [7] introduced an adaptive-

type FTC for the transient response control of spacecraft. Main drawbacks of this scheme are that full

state information is explicitly used in the controller design and the transient response cannot be shaped

arbitrarily.

In this paper, we present an output-feedback FTC scheme that recovers a fault-free nominal tracking

performance during the entire time period, for a class of multi-input single-output (MISO) systems under

actuator faults, parametric uncertainty, and external disturbances. Our central idea is to directly estimate

a lumped signal representing all the effect of actuator faults, model uncertainty, and external disturbance

at once and compensate it on-line, rather than try to detect the fault itself as in the traditional active

FTC approaches (which possibly introduce an additional delay). To implement the idea, in this work a

passive FTC is constructed by combining a high-gain disturbance observer (DOB) with a fixed control

allocation (CA) law. Since its invention by the authors of [8], the DOB has been broadly used as a

simple but powerful robust controller that attenuates the effect of model uncertainty and disturbance

on the plant [9–13]. More recently, the authors of [14, 15] proposed a refined DOB structure based

on the high-gain technique, which ensures the recovery of the nominal performance from transient to

steady-state. When it comes to our problem, however, the DOB designs in the previous studies are

not applicable directly, because (a) most of the studies dealt only with square systems, and (b) the

high-gain DOB in [14, 15] requires the minimum phaseness of the plant, which may be lost when an

actuator fault happens. This is why a fixed CA law comes into the picture in our FTC design [16]. In

particular, provided that the MISO plant is of minimum phase in an input-wise sense, we propose a

design guideline for the CA law with which the plant (with a virtual scalar input) remains of minimum

phase robustly against any patterns of actuator faults and parametric uncertainties. Finally, we prove via

the singular perturbation theory [17, 18] that the proposed DOB-based FTC, consisting of the high-gain

DOB and the CA law, resolves the problem of interest. A few additional remarks on the proposed FTC

are: (a) our result is semi-global so that any large (but bounded) parametric uncertainty and actuator

faults can be handled; and (b) without utilizing knowledge on the generating model of the disturbance, the

performance recovery of the DOB-based FTC is approximate; yet approximation error can be made small

arbitrarily.

The remainder of this paper is organized as follows. First, Section 2 is devoted to formulate the problem

of our interest. Then a DOB-based FTC is proposed in Section 3, while in Section 4 we prove that the

proposed FTC recovers the fault-free nominal performance. Finally, to verify the validity of the proposed

scheme, simulation results on the linearized lateral model of Boeing 747 are presented in Section 5.

Notation. For two sets A ⊂ R
n and B ⊂ R

n and a positive constant ǫ, we use A
ǫ
< B if A ⊂ B and

infa∈∂A,b∈∂B{‖a− b‖} > ǫ where ∂A and ∂B indicate the boundary of A and B, respectively, and A < B

if there exists ǫ > 0 such that A
ǫ
< B. For two real numbers a and b, let D(a, b) be the closed disk in the

complex plane whose diameter is the line segment connecting the points −(1/a) + j0 and −(1/b) + j0.

For a positive integer m, the power set of {1, . . . ,m} excluding the empty set is denoted by Pm. For a

square and symmetric matrix P , λ(P ) and λ(P ) indicate the minimum and maximum eigenvalues of P ,

respectively.
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2 Problem formulation

We consider an MISO linear plant

ẋ = Ax+ B(u + d), y = Cx, (1)

where x ∈ R
n is the state, y ∈ R is the output, d = (d1, . . . , dm) ∈ R

m is the disturbance, u =

(u1, . . . , um) ∈ R
m is the actuator input, and A ∈ R

n×n, B =: [B1, . . . ,Bm] ∈ R
n×m, and C ∈ R

1×n are

unknown matrices satisfying that (A,B) is controllable and (C,A) is observable. The disturbance d(t)

is continuously differentiable, and d(t) and its time derivative are bounded with known bounds. It is

assumed that the initial condition x(0) belongs to a bounded set.

Throughout this paper, we pay our attention to a particular class of MISO systems (1) that are of

minimum phase in an input-wise sense, stated as follows.

Assumption 1. Each single-input single-output (SISO) subsystem C(sI −A)−1
Bi, i = 1, . . . ,m, of (1)

satisfies the following conditions:

(a) The system has the relative degree ν > 1 uniformly on i = 1, . . . ,m; more precisely, CAj
Bi = 0 for

all j = 0, . . . , ν − 2, and CA
ν−1

Bi 6= 0 with known sign;

(b) The numerator of its transfer function, denoted by Ni(s), is included in the set of Hurwitz poly-

nomials

Ni :=
{

Ni(s) = Ni,n−νs
n−ν +Ni,n−ν−1s

n−ν−1 + · · ·+Ni,0 : Ni,j ∈ [N i,j , N i,j ]
}

, (2)

where N i,j and N i,j are known constants.

Without loss of generality, let CAν−1
Bi > 0 for all i = 1, . . . ,m.

The first item of Assumption 1 admits a coordinate change (x, ζ) := [Tx;Tζ ]x ∈ R
ν+(n−ν) for the state

x such that Tx := [C;CA; . . . ;CAν−1] ∈ R
ν×n and [Tx;Tζ ] ∈ R

n×n is nonsingular, by which the plant (1)

of our interest is newly represented as the form

ẋ = Aνx+Bν (Φx+Ψζ +G (u+ d)) , y = Cνx, (3a)

ζ̇ = Sζ +Mx+H (u+ d) . (3b)

Here, for an integer i > 1, the matrices Ai, Bi, and Ci are defined as

Ai :=

[

0i−1 Ii−1

0 0Ti−1

]

∈ R
i×i, Bi :=

[

0i−1

1

]

∈ R
i×1, Ci :=

[

1 0Ti−1

]

∈ R
1×i,

while the matrices Φ ∈ R
1×ν , Ψ ∈ R

1×(n−ν), G := [G1, . . . , Gm] ∈ R
1×m, S ∈ R

(n−ν)×(n−ν), M ∈

R
(n−ν)×ν , and H =: [H1, . . . , Hm] ∈ R

(n−ν)×m are uncertain by definition. It is easy to see that Gi =

CA
ν−1

Bi > 0, and 0 < Gi 6 Gi 6 Gi with positive constants Gi and Gi. Under the assumptions, one

can also see that x(0) ∈ X 0 and ζ(0) ∈ S0 for some compact sets X 0 ⊂ R
ν and S0 ⊂ R

n−ν . Keeping the

equivalence of (1) and (3) in mind, in what follows we mainly regard (3) as the plant to be controlled.

We suppose that in addition to the model uncertainty and the external disturbance, at most m − 1

actuator faults may take place during the operation. For its detailed description, let us define Ti > 0,

i = 1, . . . ,m, as the time instant when the i-th actuator is under fault. To prevent the controllability

of (3) from losing, it is natural to assume that there exists at least one i ∈ {1, . . . ,m} satisfying that

Ti = ∞. Then

σ(t) := {i : t < Ti} ∈ Pm (4)

stands for the set of indices, of which the actuators operate normally at the moment t. On the

other hand, for given σ ∈ Pm the indicator matrix Λσ ∈ R
m×m is defined as a diagonal matrix

Λσ = diag(Λσ,1, . . . ,Λσ,m) where Λσ,i = 1 if i ∈ σ and Λσ,i = 0 otherwise. With these symbols, the

following assumption on the actuator failure is made.
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Assumption 2. The actuator input u(t) of the plant (3) is of the form

u(t) = Λσ(t)ucon(t) +
(

I − Λσ(t)

)

u⋆flt, (5)

where σ(t) is defined as (4), ucon =:
(

ucon,1, . . . , ucon,m
)

∈ R
m is the input signal generated by a controller,

and u⋆flt =:
(

u⋆flt,1, . . . , u
⋆
flt,m

)

∈ R
m is an unknown constant vector contained in an (arbitrarily large but)

bounded set. Moreover, there exists a dwell time ∆ > 0 such that the failure moments Ti in (4) satisfy

mini,j∈{1,...,m}(|Ti − Tj|) > ∆.

Remark 1. The class of actuator faults considered in Assumption 2 includes the lock-in-place (or stuck)

fault (i.e., u⋆flt,i = ui(Ti)) and the floating fault (i.e., u⋆flt,i = u⋆i for an unknown u⋆i ).

Roughly speaking, the main purpose of this paper is to force the considered plant (3) to behave as a

fault-free nominal model, in view of the output trajectory. Since the worst scenario we may encounter (in

the sense of actuator failure) is that only one healthy actuator is left, it would be reasonable to consider

the following SISO system as a nominal model of (3):

ẋn = Aνxn +Bν (Φnxn +Ψnζn +Gnvn) , yn = Cνxn, (6a)

ζ̇n = Snζn +Mnxn +Hnvn, (6b)

where xn ∈ R
ν and ζn ∈ R

n−ν are the nominal states, vn ∈ R is the nominal (scalar) input, and yn ∈ R is

the nominal output. The matrices Φn, Ψn, Gn, Sn, Mn, and Hn are nominal components, and the initial

conditions xn(0) and ζn(0) are located in X 0 above and a compact subset S0
n of R(n−ν), respectively. (For

a technical reason, let S0
n be larger than a bounded set {(Hn/Gn)B

T
ν xn(0) : xn(0) ∈ X 0}.) It is supposed

that without any uncertain factor, a (static or dynamic) output-feedback controller

ċn = Ecn + F (r − yn), vn = Jcn +K(r − yn) (7)

is constructed a priori for the nominal model (6), in which cn ∈ R
l is the controller state initiated in

a compact set C0
n , r ∈ R is the reference signal for yn such that r(t) is continuously differentiable, and

r(t) and ṙ(t) are bounded, and E, F , J , and K are some matrices. We assume that the controller (7)

is designed such that the nominal closed-loop system (6) and (7) is stable and the nominal tracking

performance is satisfactory.

Now, we are ready to state the problem under consideration.

Problem of interest. Provided that Assumptions 1 and 2 hold and a threshold ǫ > 0 is given,

construct an output-feedback FTC

ψ̇ = fcon(ψ, y, r, t), ucon = hcon(ψ, y, r, t), (8)

such that

(a) The plant state (x, ζ) of the closed-loop system (3) and (8) is bounded;

(b) Its output y(t) satisfies

‖y(t)− yn(t)‖ < ǫ, for all t > 0, (9)

where yn(t) is an output trajectory of the nominal closed-loop system (6) and (7) with x(0) = xn(0) ∈ X 0

(or equivalently, (yn(0), . . . , y
(ν−1)
n (0)) = (y(0), . . . , y(ν−1)(0))) and some (ζn(0), cn(0)) ∈ S0

n × C0
n .

The second item in the problem statement, which is our primary concern, means that the FTC (8)

recovers a pre-defined fault-free tracking performance of the nominal closed-loop system (6) and (7) in

an approximate but arbitrarily accurate sense. More importantly, this recovery is desired to be achieved

for transient (as well steady-state) periods including the failure moments, t = Ti.

3 Design of DOB-based FTC

In this section, we propose an output-feedback FTC (8) that solves the problem of interest, based on

the DOB approach. It should be noted that the usual DOB designs in the literature are not directly
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applicable to our problem. This is because, the previous studies mostly took into account square systems

(i.e., systems having the same number of inputs and outputs) with the number of inputs known, whereas

the plant (3) and (5) considered here has an uncertain number of redundant inputs.

As a simple way to avoid this difficulty, we here adopt an auxiliary scalar input v ∈ R and allocate it

into the control input ucon(t) in (5) as

ucon(t) = κv(t), (10)

where κ = [κ1; . . . ;κm] ∈ R
m×1 is a constant vector. The underlying rationale behind the fixed CA law

(10) is that the plant (3) and (5) augmented with (10), computed by

ẋ = Aνx+Bν (Φx+Ψζ +GΛσκv +G(1 − Λσ)u
⋆
flt +Gd) , y = Cνx, (11a)

ζ̇ = Sζ +Mx+HΛσκv +H(1− Λσ)u
⋆
flt +Hd, (11b)

now can be viewed as an SISO system with respect to the auxiliary input v; more importantly, this

property is invariant on the pattern of the actuator faults. Another advantage of (10) is that the design

parameter κ explicitly appears in the new input matrix [GΛσκ;HΛσκ] of the SISO system (11), which

brings an opportunity to handle the system zeros of (11). This is of utter importance to us, since the

DOB design basically follows the philosophy of high-gain technique [14, 15] where the controlled plant

is necessarily of minimum phase. In Subsection 3.1, we will show that this requirement can always be

obtained (even in the presence of model uncertainty and actuator faults) by selecting κ appropriately.

3.1 Design of static gain κ

We start by introducing a natural definition of the minimum phaseness for the system (11).

Definition 1. The system (11) with the switching signal σ(t) in (4) is said to be of fault-invariant

minimum phase if it is of minimum phase for any constant σ ∈ Pm.

Lemma 1 then provides a simple necessary and sufficient condition for the fault-invariant minimum

phaseness.

Lemma 1. All the systems (3) satisfying Assumption 1 are of fault-invariant minimum phase if and

only if every polynomials in
⋃

σ∈Pm
Γσ where Γσ := {

∑

i∈σ κiNi(s) : Ni(s) ∈ Ni in (2)} are Hurwitz.

Proof. Lemma 1 can be easily proved by showing that for the transfer function of (3) with a constant

set σ ∈ Pm, its numerator is the same as
∑

i∈σ κiNi(s).

Motivated by the result of Lemma 1, the main goal of this subsection is to design the static gain κ

in (10) that makes every elements of
⋃

σ∈Pm
Γσ in Lemma 1 Hurwitz. In the following, such κ will be

selected in an iterative way. For this, let us consider the equality

⋃

σ∈Pk+1

Γσ = Γ{k+1} ∪

(

⋃

σ∈Pk

Γσ

)

∪

(

⋃

σ∈Pk

Γσ∪{k+1}

)

, (12)

for k = 0, . . . ,m− 1, which presents a recursive decomposition of
⋃

σ∈Pk+1
Γσ. We here note that the set

⋃

σ∈Pk
Γσ in the recursive relation (12) is well-defined only with partial components κ1, . . . , κk of κ. For

simplicity, we assume without loss of generality that for any polynomial Ni(s) ∈ Ni, its leading coefficient

Ni,n−ν is the same as the i-th component Gi > 0 of the high-frequency gain matrix G of (3).

Theorem 1 shows the existence of a CA law guaranteeing the desired property.

Theorem 1. Suppose that Assumption 1 is satisfied. Then there exists κ such that the SISO system (11)

is of fault-invariant minimum phase.

Proof. Theorem 1 is proved by the mathematical induction. First, it is obvious that once κ1 is selected

as any positive value, every polynomial in Γ{1} is Hurwitz by definition. Next, we claim that if κi > 0,

i = 1, . . . , k (with k 6 m − 1), are chosen such that the polynomials in
⋃

σ∈Pk
Γσ are all Hurwitz, then

there exists κk+1 > 0 with which the polynomials in
⋃

σ∈Pk+1
Γσ are also Hurwitz. Under the hypothesis

and item (b) of Assumption 1, the first two sets in the right hand-side of (12) naturally consist only of
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stable polynomials, regardless of the vaule of κk+1. On the other hand, for each σ ∈ Pk an element of

Γσ∪{k+1} is of the form

γσ∪{k+1}(s) := κk+1Nk+1(s) +
∑

i∈σ

κiNi(s). (13)

Notice that because κiNi,n−ν > 0 for all i = 1, . . . , k and the latter polynomial
∑

i∈σ κiNi(s) in (13) is

Hurwitz by definition, all the coefficients of γσ∪{k+1}(s) above must be positive as long as κk+1 > 0. It is

then obtained from the Kharitonov’s theorem [19] that for given σ ∈ Pk and κk+1 > 0, all the uncertain

polynomials γσ∪{k+1}(s) in Γσ∪{k+1} are Hurwitz if and only if the following four extreme polynomials

are Hurwitz:

γ⋆σ∪{k+1},k(s) := κk+1N
⋆
k+1,k(s) +

∑

i∈σ
κiN

⋆
i,k(s), ∀ k = a, b, c, d, (14)

where for i = 1, . . . ,m,

N⋆
i,a(s) := N i,n−νs

n−ν +N i,n−ν−1s
n−ν−1 +N i,n−ν−2s

n−ν−2 +N i,n−ν−3s
n−ν−3 + · · · , (15a)

N⋆
i,b(s) := N i,n−νs

n−ν +N i,n−ν−1s
n−ν−1 +N i,n−ν−2s

n−ν−2 +N i,n−ν−3s
n−ν−3 + · · · , (15b)

N⋆
i,c(s) := N i,n−νs

n−ν +N i,n−ν−1s
n−ν−1 +N i,n−ν−2s

n−ν−2 +N i,n−ν−3s
n−ν−3 + · · · , (15c)

N⋆
i,d(s) := N i,n−νs

n−ν +N i,n−ν−1s
n−ν−1 +N i,n−ν−2s

n−ν−2 +N i,n−ν−3s
n−ν−3 + · · · . (15d)

We emphasize that N⋆
i,k(s) in (15) are the very extreme polynomials of Ni(s) of the set Ni in (2), all of

which are thus Hurwitz by the Kharitonov’s theorem and item (b) of Assumption 2. It then follows from

the root locus technique that for each k ∈ {a, . . . , d}, there exists sufficiently large κσ∪{k+1},k > 0 such

that γ⋆σ∪{k+1},k(s) in (14) is Hurwitz for all κk+1 > κσ∪{k+1},k > 0. At last, take κk+1 sufficiently large

to satisfy

κk+1 > max
σ∈Pk

{

max
k={a,b,c,d}

{

κσ∪{k+1},k

}

}

, (16)

so that all the uncertain polynomials of
⋃

σ∈Pk
Γσ∪{k+1} (and thus those of

⋃

σ∈Pk+1
Γσ in the left hand-

side of (12)) are Hurwitz. This concludes the proof of Theorem 1.

At last, we summarize the proof of the theorem as a design guideline for the gain κ of the CA law.

Design guideline for κ:

Step 0. Take κ1 > 0 arbitrarily so that all the polynomials consisting of
⋃

σ∈P1
Γσ (= Γ{1}) are

Hurwitz.

Step k (k = 1, . . . ,m − 1). For each σ ∈ Pk+1 and each k ∈ {a, . . . , d}, select κσ∪{k+1},k > 0 such

that with κi derived by the previous steps, the extreme polynomials γ⋆σ∪{k+1},k(s) in (14) are Hurwitz

κk+1 > κσ∪{k+1},k > 0. Choose κk+1 to satisfy (16).

Step m. With κi selected above, take κ = [κ1; . . . ;κm].

3.2 Representation to Byrnes-Isidori normal form

As a prerequisite for the DOB design, in this subsection we represent the augmented system (11) and the

nominal model (6) into a Byrnes-Isidori normal form [20, Chapter 11].

For the former dynamics, we first introduce a variable

zσ := ζ −
1

GΛσκ
HΛσκB

T
ν x = ζ −

1

GΛσκ
HΛσκxν ∈ R

n−ν . (17)

It is noted that with κi > 0,

0 < min
i∈{1,...,m}

{Giκi} 6 GΛσκ =
∑

i∈σ

Giκi 6
m
∑

i=1

Giκi (18)

directly holds for all constant sets σ ∈ Pm. This implies that (17) is well-defined for any σ(t) in (4).

Lemma 2 then says that for a time interval within which no additional fault occurs, the composite variable

(x, zσ) can serve as a new coordinate that represents (11) into a Byrnes-Isidori normal form.
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Lemma 2. Let T and T be positive constants such that σ(t) in (4) is fixed for T 6 t < T . Then during

that period, the SISO system (11) is represented in the coordinate change (x, zσ) with (17) as

ẋ = Aνx+Bν

(

Φ̂σx+ Ψ̂σzσ + Ĝσv + dx,σ

)

, y = Cνx, (19a)

żσ = Ŝσzσ + M̂σx+ dz,σ, (19b)

where the matrices are defined as Φ̂σ := Φ + (HΛσκ/GΛσκ)ΨB
T
ν , Ψ̂σ := Ψ, Ĝσ := GΛσκ, Ŝσ :=

S − (HΛσκ/GΛσκ)Ψ, M̂σ := M − (HΛσκ/GΛσκ)Φ + (S − (HΛσκ/GΛσκ)Ψ)(HΛσκ/GΛσκ)B
T
ν , Ĥσ :=

HΛσκ, dx,σ := G(1 − Λσ)u
⋆
flt + Gd, and dz,σ := (H(1 − Λσ) − (HΛσκ/GΛσκ)G(1 − Λσ))u

⋆
flt + (H −

(HΛσκ/GΛσκ)G)d.

Proof. Lemma 2 is easily proved by differentiating zσ(t)(t) = zσ(t) along with the (x, ζ)-dynamics (11),

and we skip the details due to page limit.

Note that all the matrices and the external signals in the (x, zσ)-dynamics are uncertain but bounded

with known bounds, as those in the original dynamics (11) do. From this fact, one can find out some

bounds for the uncertain parameters, uniformly on σ ∈ Pm; in particular, let Dx ⊂ R and Dz ⊂ R be

compact sets such that dx,σ(t)(t) ∈ Dx, and dz,σ(t)(t) ∈ Dz for all t > 0 and all admissible σ(t) in (4). On

the other hand, we also observe that the set of the initial conditions zσ(0)(0) = z{1,...,m}(0) is bounded by

{zσ(0)(0) = ζ(0) − (Hκ/Gκ)BT
ν x(0) : ζ(0) ∈ S0, x(0) ∈ X 0} ⊂ Z0 for a σ-independent compact subset

Z0 of Rn−ν .

A similar result can be derived for the nominal model (6). Indeed, in considering a coordinate (xn, zn)

where

zn := ζn −
1

Gn

HnB
T
ν xn = ζn −

1

Gn

Hnxn,ν , (20)

one can readily express the nominal model (6) as the form

ẋn = Aνxn +Bν

(

Φ̂nxn + Ψ̂nzn + Ĝnvn

)

, yn = Cνxn, (21a)

żn = Ŝnzn + M̂nxn, (21b)

where Φ̂n := Φn + (Hn/Gn)ΨnB
T
ν , Ψ̂n := Ψn, Ĝn := Gn, Ŝn := Sn − (Hn/Gn)Ψn, and M̂n := Mn −

(Hn/Gn)Φn+(S− (Hn/Gn)Ψn)(Hn/Gn)B
T
ν . Similar to Z0, we denote the set of possible initial conditions

zn(0) for all ζn(0) ∈ S0
n and xn(0) ∈ X 0 as Z0

n .

We note in advance that the bounds for the plant (19) and the nominal model (21) will be utilized for

the DOB design in Subsection 3.3.

3.3 Design of DOB-based controller

In this subsection, we complete the design of the FTC (8) by constructing a DOB-based controller for

the augmented SISO system (11). As in other relevant studies, the DOB-based controller to be proposed

here consists of two parts; baseline controller and DOB. Among them, the former part is designed by

duplicating the existing structure (7) with yn replaced by y as

ċ = Ec+ F (r − y), vBL = Jc+K(r − y), (22)

where c ∈ R
l is the state of (22) initiated in C0

n . Hence, the remainder of this subsection is devoted to

construct the DOB.

The first task for the DOB design is to choose ai, i = 0, . . . , ν − 1, such that the transfer function

sν + aν−1s
ν−1 + · · ·+ a1s+ (G⋆/Ĝn)a0

sν + aν−1sν−1 + · · ·+ a1s+ (G⋆/Ĝn)a0
(23)

is strictly positive real [20, Chapter 6] whereG⋆ := min{Ĝn,mini∈{1,...,m}{Giκi}} > 0 andG⋆ := max{Ĝn,
∑m

i=1Giκi}. For this, we recall that the transfer function in (23) is strictly positive real if and only if
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(a) the denominator of (23) (i.e., sν + aν−1s
ν−1 + · · · + a1s + (G⋆/Ĝn)a0) is Hurwitz, and (b) the

Nyquist plot of a0/(s
ν +aν−1s

ν−1+ · · ·+a1s) does not encounter the disk D(G⋆/Ĝn, G⋆/Ĝn). Using this

equivalence, a design guideline for ai is presented as follows (for more detailed explanation, the readers

are referred to [14]):

Design guideline for ai.

Step 0. Choose ai, i = 1, . . . , ν − 1, such that the polynomial sν−1 + aν−1s
ν−2 + · · ·+ a1 is Hurwitz.

Step 1. Take µ1 > 0 sufficiently small such that for all µ ∈ (0, µ1), the polynomial sν + aν−1 + · · ·+

a1s+ µ1 is Hurwitz. (The existence of such µ1 is guaranteed by the root locus technique.)

Step 2. Select µ2 > 0 satisfying that for all µ ∈ (0, µ2), the Nyquist plot of µ/(s
ν+aν−1s

ν−1+· · ·+a1s)

does not encounter the disk D(G⋆/Ĝn, G⋆/Ĝn).

Step 3. Take a0 < min{(Ĝn/G
⋆)µ1, µ2}.

Next, based on the normal form expressions (19) and (21), we compute some compact sets in which

the nominal state (xn(t), zn(t), cn(t)) and the partial actual state zσ(t)(t) are expected to remain during

system operation. For the former variable, it is noted in advance that the nominal closed-loop system (7)

and (21) will play a role as a (stable and time-invariant) reference model for the switched system (8)

and (19), which experiences at most m− 1 switches in the dynamics. To take into account the effect of

switching dynamics, bounded sets for the nominal states x(t), zn(t), and cn(t) are derived in a recursive

way as follows (for initialization, let X 0
〈0〉 := X 0, Z0

n,〈0〉 := Z0
n , and C0

〈0〉 := C0
n ):

Design procedure for bounds of (xn, zn, cn).

Step j (j = 0, . . . ,m−1). Select bounded sets X〈j〉 ⊂ R
ν , Zn,〈j〉 ⊂ R

n−ν , and Cn,〈j〉 ⊂ R
l such that the

solution (xn(t), zn(t), cn(t)) of (7) and (21) initiated in X 0
〈j〉×Z0

n,〈j〉×C0
n,〈j〉 belongs to X〈j〉×Zn,〈j〉×Cn,〈j〉

for all admissible reference signal r. Then take large compact sets X 〈j〉, Zn,〈j〉, and Cn,〈j〉 to satisfy

X〈j〉 ×Zn,〈j〉 × Cn,〈j〉
ǫ/m
< X 〈j〉 ×Zn,〈j〉 × Cn,〈j〉, (24)

where ǫ is given in problem of interest. Set X 0
〈j+1〉 := X 〈j〉, Z

0
n,〈j+1〉 := Zn,〈j〉, and C0

n,〈j+1〉 := Cn,〈j〉.

Step m. Take X := X〈m−1〉, X := X 〈m−1〉, Zn := Zn,〈m−1〉, Zn := Zn,〈m−1〉, Cn := Cn,〈m−1〉, and

Cn := Cn,〈m−1〉.

It will be seen in the next subsection that the nominal trajectory (xn(t), zn(t), cn(t)) of interest belongs

to X × Zn × Cn, while a slightly larger set X × Zn × Cn will be used for the actual counterparts of the

nominal state.

From now on, let us derive a bound for the partial state zσ of the actual plant (19). The way of

computing its bound is basically similar to that for the nominal state above, whereas the main difference

comes from the fact that zσ may jump at every failure moments. To take a look at the jumping behavior,

we remark that the vector field of the (x, ζ)-dynamics (3) is piecewise continuous on t, by which the

solution (x(t), ζ(t)) is continuous on time [20, Chapter 3]. From the continuity of ζ(t), it follows that at

each switching time t = T ∈ {T1, . . . , Tm}, zσ(t)(t) jumps from limt↑T zσ(t)(t) to

zσ(T )(T ) = ζ(T )−
HΛσ(T )κ

GΛσ(T )κ
BT

ν x(T ) = lim
t↑T

zσ(t)(t) + lim
t↑T

HΛσ(t)κ

GΛσ(t)κ
BT

ν x(t)−
HΛσ(T )κ

GΛσ(T )κ
BT

ν x(T ).

On the other hand, by the property of the Byrnes-Isidori normal form, the system (11) is of fault-

invariant minimum phase if and only if the matrix Ŝσ in (19) is Hurwitz for all σ ∈ Pm. Therefore with κ

obtained by the proposed guideline and the external inputs x and dx,σ being bounded, the solution zσ of

(19b) must belong to a bounded region during the time period between two sequential failure moments.

Summing up these findings, we compute a bound of zσ as follows (let Z0
〈0〉 = Z0 for initialization).

Design procedure for bound of zσ.

Step j (j = 0, . . . ,m− 1). Take a compact set Z〈j〉 ⊂ R
n−ν such that

Z〈j〉 ⊃
{

zσ(t) of (19b) initiated in Z0
〈j〉 : x ∈ X , dz,σ ∈ Dz, σ ∈ Pm

}

, (25)



Park G, et al. Sci China Inf Sci July 2018 Vol. 61 070224:9

and choose a bounded set Z0
〈j+1〉 ⊂ R

n−ν satisfying that

Z0
〈j+1〉 ⊃

{

z +
1

Ĝσ

ĤσB
T
ν x−

1

Ĝµ

ĤµB
T
ν x : z ∈ Z〈j〉, x ∈ X , σ, µ ∈ Pm

}

.

Step m. Take Z := Z〈m−1〉.

To proceed, let us define a compact subset W = W of R where

W :=

{

1

Ĝσ

(

Φ̂σx+ Ψ̂σzσ + Ĝσ (Jc+K(r − Cνx)) + dx,σ − Φ̂nx− Ψ̂nzn − Ĝn (Jc+K(r − Cνx))
)

:

x ∈ X , zσ ∈ Z, c ∈ Cn, dx,σ ∈ Dx, zn ∈ Zn, σ ∈ Pm

}

. (26)

Using the compact sets W and X , we now design two saturation functions sw : R → R and sx : R
ν → R

ν

that are continuously differentiable, bounded, and satisfy

sw(w) = w ∀w ∈ W , 0 6
dsw
dw

6 1 ∀w ∈ R, and sx(q) = q ∀q ∈ X , 0 6
dsx
dq

6 1 ∀q ∈ R
ν . (27)

Remark 2. Once the subset W =: [w,w] ⊂ R is determined, a simple candidate for sw(·) is

sw(w) =



































p(w + δ), if w + δ 6 w,

p(w), if w 6 w 6 w + δ,

w, if w 6 w 6 w,

p(w), if w − δ 6 w 6 w,

p(w − δ), otherwise,

where δ > 0 can be any bounded value, and p(w) and p(w) are polynomials of w such that p′(w) = 1,

p′(w + δ) = 0, p′(w) = 1, and p′(w − δ) = 0.

With the components presented above, we finally propose a DOB as

ṗ =
(

Aν −Υ−1(τ)αCν

)

p+
a0
τν
Bνv, (28a)

q̇ =
(

Aν −Bνα
TΥ(τ)−1

)

q +
a0
τν
Bνy, żq = Ŝnzq + M̂ns̄x

(

q
)

, (28b)

vDOB = sw

(

−Cνp+
1

Ĝn

(

−αTΥ(τ)−1q +
a0
τν
y − Φ̂nq − Ψ̂nzq

)

)

, (28c)

where τ > 0 is a sufficiently small design parameter that will be taken in Theorem 2, α := [a0; . . . ; aν−1] ∈

R
ν , α := [aν−1; . . . ; a0] ∈ R

ν , Υ(τ) := diag(τ, τ2, . . . , τν) ∈ R
ν×ν , and Υ(τ) := diag(τν , τν−1, . . . , τ) ∈

R
ν×ν . The initial conditions p(0) and q(0) are taken arbitrarily to be contained in a compact set F0. On

the other hand, for zq(0) we take a restricted version Z0
n ⊂ Z0

n of Z0
n as a nonempty and bounded set

such that zq(0)− (Hn/Gn)B
T
ν xn(0) ∈ S0

n for all zq(0) ∈ Z0
n and xn(0) ∈ X 0. (Such nonempty Z0

n always

exists by the definition of S0
n .) With the set, choose zq(0) ∈ Z0

n.

Remark 3. It can be readily seen that with sw and sx being inactive, the proposed DOB (28) becomes

simplified into the conventional structure presented in literature, whose Q-filter has the form of a low-pass

filter Q(s) = a0/((τs)
ν + aν−1(τs)

ν−1 + · · ·+ a1(τs) + a0).

Summarizing the discussions so far, we construct the FTC (8) as the combination of the fixed CA

law (10), the baseline controller (22), the DOB (28), and

v(t) = vBL(t)− vDOB(t). (29)

The configuration of the overall system controlled by the proposed FTC is given in Figure 1.
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Figure 1 (Color online) Overall configuration of proposed DOB-based FTC consisting of input allocation law (10), baseline

controller (22), and DOB (28).

4 Analysis of DOB-based FTC

This section aims to show that the proposed DOB-based FTC (10), (22), (28), and (29) with small τ

solves the problem of interest, especially in the sense of Theorem 2.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then for given ǫ > 0, there exists τ > 0 such

that for all τ ∈ (0, τ ), the solution (x(t), ζ(t), zq(t), c(t), p(t), q(t)) of the closed-loop system (3), (5), (10),

(22), and (28), initiated in X 0 × S0 ×Z0
n × C0 ×F0, satisfies the following statements:

(a) (x(t), ζ(t)) ∈ X × Sn for all t > 0,

(b) ‖(x(t), zq(t), c(t)) − (x⋆n(t), z
⋆
n (t), c

⋆
n(t))‖ < ǫ, ∀ t > 0, (30)

where (x⋆n(t), z
⋆
n (t), c

⋆
n(t)) stands for the nominal state trajectory (xn(t), zn(t), cn(t)) of (6) and (7) initiated

at (xn(0), zn(0), cn(0)) = (x(0), zq(0), c(0)) ∈ X 0 ×Z0
n × C0

n .

We point out that in the coordinate (x, ζq, c) with ζq := zq + (Hn/Gn)B
T
ν xn(0), the inequality (30) in

Theorem 2 is rewritten by ‖(x(t), ζq(t), c(t)) − (x⋆n(t), ζ
⋆
n (t), c

⋆
n(t))‖ < ǫ where ζ⋆n (t) := z⋆n(t)+

(Hn/Gn)B
T
ν x

⋆
n(t) initiated at ζ⋆n (0) = z⋆n(0) + (Hn/Gn)B

T
ν x

⋆
n(0) = zq(0) + (Hn/Gn)B

T
ν x(0) ∈ S0

n .

Theorem 2 will be proved in the following steps. First, with a coordinate transformation for p and q,

we represent the overall system (together with the Byrnes-Isidori normal form (19) and (21)) into the

standard singular perturbation form (Lemma 3). In particular, it will be seen that on the boundary

layer in view of the singular perturbation theory, the (x, zq, c)-dynamics, a part of the slow subsystem,

behaves as the nominal closed-loop system (i.e., the (xn, zn, cn)-dynamics (7) and (21)) for any patterns

of actuator failure. Since the discontinuity on zσ makes the singular perturbation theory inapplicable for

the entire time period, we alternatively apply the Tickonov’s theorem [17] to each subinterval of time

between two sequential moments of failure (Lemma 4). By doing so, we will see that the actual state

(x(t), zq(t), c(t)) could remain close to a nominal trajectory (xn(t), zn(t), cn(t)) at least for a while, even

though the latter is not necessarily the same as (x⋆n(t), z
⋆
n (t), c

⋆
n(t)). Nonetheless, the difference between

these nominal trajectories is negligible due to stability of the nominal closed-loop system, which concludes

Theorem 2.

We begin the proof by representing the overall system into a singular perturbation form [18, 20].

Lemma 3. Let T > 0 and T > 0 be such that σ(t) in (4) is constant for T 6 t < T . Then with the

coordinate changes (17) and

ξ := Υ(τ)−1
(

Π(τ)q − x
)

and η :=
1

τ
Υ(τ)p +

a0

Ĝn

Υ(τ)−1
(

Π(τ)q − x
)

=
1

τ
Υ(τ)p +

a0

Ĝn

ξ, (31)
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where

Π(τ) :=
1

a0

















a0 a1τ · · · aν−1τ
ν−1

0 a0
. . .

...
...

. . . a1τ

0 · · · a0

















∈ R
ν×ν , (32)

the closed-loop system (3), (5), (10), (22), (28), and (29) is transformed into a standard singular pertur-

bation form for T 6 t < T , with respect to the perturbation parameter τ :

• Slow subsystems. The augmented plant (19), the baseline controller (22), and

żq = Ŝnzq + M̂ns̄x
(

Π(τ)−1(x+Υ(τ)ξ)
)

. (33)

• Fast subsystems.

τ ξ̇ = (Aν − αCν)ξ −Bν(Φ̂σx+ Ψ̂σzσ + Ĝσv + dx,σ), (34a)

τ η̇ = (Aν − αCν)η + a0Bν

((

1−
Ĝσ

Ĝn

)

v −
1

Ĝn

(

Φ̂σx+ Ψ̂σzσ + dx,σ

)

)

, (34b)

where v = Jc+K(r − Cνx)− sw(−Cνη − (1/Ĝn)(Φ̂nΠ(τ)
−1(x +Υ(τ)ξ) + Ψ̂nzq)).

Proof. Lemma 3 can be derived by straightforward computation.

To figure out the quasi-steady-state behavior of the singularly perturbed system (19), (22), (33), and

(34), it is for now assumed that the slow variables σ, x, zq, c, zσ, dx,σ, and dz,σ are frozen as σ ∈ Pm,

(x, zq, c) ∈ X × Zn × Cn, zσ ∈ Z, dx,σ ∈ Dx, and dz,σ ∈ Dz. Under the hypothesis, we are interested in

computing a (possibly σ-dependent) solution ξ = ξ⋆σ =: (ξ⋆σ,1, . . . , ξ
⋆
σ,m) and η = η⋆σ =: (η⋆σ,1, . . . , η

⋆
σ,m) of

the following degenerating equation (which is obtained by putting τ = 0 into the fast dynamics (34)):

0 = −aν−iξ
⋆
σ,1 + ξ⋆σ,i+1, ∀ i = 1, . . . , ν − 1, (35a)

0 = −a0ξ
⋆
σ,1 −

[

Φ̂σx+ Ψ̂σzσ + Ĝσ

(

Jc+K(r − Cνx)
)

+ dx,σ − Ĝσsw

(

−η⋆σ,1 −
1

Ĝn

(Φ̂nx+ Ψ̂nzq)

)]

,

and

0 =− aν−iη
⋆
σ,1 + η⋆σ,i+1, ∀ i = 1, . . . , ν − 1, (35b)

0 =− a0η
⋆
σ,1 + a0

[

(

1−
Ĝσ

Ĝn

)

(

Jc+K(r − Cνx)
)

−

(

1−
Ĝσ

Ĝn

)

sw

(

−η⋆σ,1 −
1

Ĝn

(Φ̂nx+ Ψ̂nzq)

)

−
1

Ĝn

(Φ̂σx+ Ψ̂σzσ + dx,σ)

]

,

(where Π(0) = I and Υ(0) = 0 are used). It can be readily seen that the degenerating equation (35)

admits a solution

ξ⋆σ,1 = −
1

a0

(

Φ̂nx+ Ψ̂nzq + Ĝn

(

Jc+K(r − Cνx)
)

)

, (36a)

η⋆σ,1 =

(

Ĝn

Ĝσ

− 1

)

(Jc+K(r − Cνx)) +

(

Ĝn

Ĝσ

− 1

)

1

Ĝn

(Φ̂nx+ Ψ̂nzq)−
1

Ĝσ

(Φ̂σx+ Ψ̂σzσ + dx,σ),

ξ⋆σ,i = 0 and η⋆σ,i = 0, ∀i = 2, . . . , ν. (36b)

It should be emphasized that (36) is in fact the unique solution of (35), because the right hand-side of

the last row of (35b) is a strictly decreasing function of η⋆σ,1 by the property of sw. In the computation

of the solution, one may verify that with the slow variables frozen, the input of sw,

wσ :=− η⋆σ,1 −
1

Ĝn

(Φ̂nx+ Ψ̂nzq)
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=
1

Ĝσ

(

Φ̂σx+ Ψ̂σzσ + Ĝσ (Jc+K(r − Cνx)) + dx,σ − Φ̂nx− Ψ̂nzq − Ĝn (Jc+K(r − Cνx))
)

(37)

belongs to W in (26) so that the saturation function is inactive.

It readily follows that on the boundary layer (ξ, η) = (ξ⋆σ, η
⋆
σ) and with τ = 0, the singularly perturbed

system (33) and (34) becomes reduced into the zσ-dynamics (19b) and

ẋ = Aνx+Bν(Φ̂nx+ Ψ̂nzq + Ĝn(Jc+K(r − Cνx))), (38a)

żq = Ŝnzq + M̂nx, (38b)

ċ = Ec+ F (r − Cνx). (38c)

It should be emphasize that (38a)–(38c) is decoupled from the remaining zσ-dynamics, having exactly

the same dynamics as the (σ-independent) stable nominal closed-loop system (7) and (21). Thus in the

singular perturbation theoretic point of view, one may expect that the two trajectories (x(t), zq(t), c(t))

and (xn(t), zn(t), cn(t)) might be close to each other with small perturbation parameter τ . This is indeed

the case for the subintervals of time between two sequential moments of failure, as in Lemma 4.

Lemma 4. Suppose that Assumptions 1 and 2 hold. Let P = PT > 0 be the solution of the Lyapunov

equation PΘn + ΘT
n P = −I where Θn is the system matrix of the nominal closed-loop system (7) and

(21). Then for given constant set σ′ ∈ Pm and ǫ > 0, there exists τσ′ > 0 such that if

• σ(t) = σ′ for a time period T 6 t < T satisfying T − T > ∆;

• (x(T ), zq(T ), c(T )) ∈ X 0
〈j〉 ×Z0

n,〈j〉 × C0
n,〈j〉, and zσ′(T ) ∈ Z0

〈j〉 for some j = 0, . . . ,m− 1;

• (p(T ), q(T )) ∈ F where F ⊂ R
2ν is a bounded set independent of τ ;

the state trajectory of the closed-loop system (3), (5), (10), (22), (28), and (29) satisfies the following

statements for all τ ∈ (0, τσ′):

(a) The partial state (x(t), zq(t), c(t)) belongs to X 〈j〉 ×Zn,〈j〉 × Cn,〈j〉 for all T 6 t < T , and satisfies

∥

∥

(

x(t), zq(t), c(t)
)

−
(

xn(t), zn(t), cn(t)
)
∥

∥ <
ǫ

m

√

λ(P )

λ(P )
, ∀ T 6 t < T , (39)

where (xn(t), zn(t), cn(t)) denotes the solution of the nominal closed-loop system (7) and (21) initiated at

(xn(T ), zn(T ), cn(T )) = (x(T ), zq(T ), c(T ));

(b) zσ′(t) remains in Z〈j〉 for all T 6 t < T ;

(c) There exists a τ -independent bounded set F such that (p(T ), q(T )) ∈ F .

Proof. Because of page limit, we here briefly sketch the proof (especially for item (a)), while the detailed

proof is similar to the studies in [14]. Roughly speaking, the lemma will be proved by applying the

Tichonov’s theorem [17] to the singularly perturbed form (19), (22), (33), and (34). It is clear that the

reduced subsystem (38) is stable, because the internal dynamics (19) of the actual plant is stable by the

selection of κ. We now investigate the stability of the fast subsystem (34), which is a requirement of the

Tichonov’s theorem [17]. To this end, by differentiating the error variables ξ̃σ′ := ξ−ξσ′ and η̃σ′ := η−ησ′

with respect to a scaled time ρ := t/τ (along with (34)) and by putting τ = 0 to the resulting equations

(so that the slow variables are frozen in the time scale ρ), we obtain the boundary-layer system [20]

dξ̃σ′

dρ
= (Aν − αCν)ξ̃σ′ +BνĜσ′ (sw (yη + wσ′ )− wσ′) , (40a)

dη̃σ′

dρ
= (Aν − αCν)η̃σ′ − a0Bνuη, yη := −Cν η̃σ′ , uη = −

(

Ĝσ′

Ĝn

− 1

)

(sw(yη + wσ′)− wσ′ ) , (40b)

where wσ is defined in (37) and the origin is an equilibrium point of (40). We now claim that the origin

of the boundary-layer system (40) is globally exponentially stable. Indeed, the transfer function of the

linear subsystem (from uη to yη) in (40b) is given by L(s) := a0/(s
ν + aν−1s

ν−1 + · · · + a0), while

the nonlinearity (Ĝσ′/Ĝn − 1)(sw(yη + wσ′ ) − wσ′ ) in uη belongs to the sector [G⋆/Ĝn − 1, G⋆/Ĝn − 1].
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Therefore, from the the circle criterion [20, Theorem 7.1] and the fact that

1 + (G⋆/Ĝn − 1)L(s)

1 + (G⋆/Ĝn − 1)L(s)
=
sν + aν−1s

ν−1 + · · ·+ a1s+ (G⋆/Ĝn)a0

sν + aν−1sν−1 + · · ·+ a1s+ (G⋆/Ĝn)a0
(41)

is strictly positive real, it is derived that the origin of the η̃σ′ -dynamics (40b) is globally exponentially

stable. On the other hand, with the coefficients ai of the strictly positive real transfer function (41)

where G⋆/Ĝn 6 1 6 G⋆/Ĝn, it is clear that the polynomial sν + aν−1s
ν−1 + · · ·+ a1s+ a0 is Hurwitz (or

equivalently, Aν − αCν is Hurwitz). This concludes the claim.

Here it should be pointed out that by definition, the initial value (ξ(T ), η(T )) of the fast variables

may diverges as τ goes to zero (this is the so-called peaking phenomenon [12]), by which the Tickonov’s

theorem cannot be directly applied to the time period T 6 t < T . To avoid this difficulty, with the

help of the saturation functions sw and sx in (33), we take a small 0 < δ < ∆/2 such that the two

trajectories (x(t), zq(t), c(t)) and (xn(t), zn(t), cn(t)) in item (a) remain close enough to each other for the

transient period T 6 t 6 T + δ, no matter how τ is selected. By analyzing the trajectory (ξ(t), η(t)) with

τ < 1 for the transient period, it readily follows that ‖(ξ(T + δ), η(T + δ))− (ξ⋆σ′ (T + δ), η⋆σ′ (T + δ))‖ 6

(k1/τ
ν)e−k2(δ/τ) with τ -independent constants k1 and k2. It is remarkable that the right hand-side of

the inequality does not diverge but converges to zero as τ → 0. Thus, it is now possible to apply the

Tickonov’s theorem [17] to the truncated time period T+δ 6 t < T , which brings item (a). Once item (a)

is guaranteed, the proof of the remaining items is straightforward and therefore, it is omitted here.

To proceed, take τ as τ < minσ′∈Pm
{τσ′}. In addition, denote the number of the actuator faults that

occurs during system operation as mflt 6 m− 1. Then the moments Ti of actuator faults, i = 1, . . . ,m,

can be rearranged in chronological order by T〈j〉 ∈ {T1, . . . , Tm}, j = 1, . . . ,m, to satisfy T〈0〉 := 0 <

T〈1〉 < T〈2〉 < · · · < T〈mflt〉 < T〈mflt+1〉 = · · · = T〈m−1〉 = T〈m〉 = ∞.

As the last step, we show that with τ < τ , the distance between (x(t), zq(t), c(t)) and
(

x⋆n(t), z
⋆
n (t), c

⋆
n(t)

)

is smaller than ǫ for each period T〈j〉 6 t < T〈j+1〉. For this, by repeating Lemma 4 iteratively during

T〈j〉 6 t < T〈j+1〉, j = 0, . . . ,mflt, we obtain

∥

∥

(

x(t), zq(t), c(t)
)

−
(

xn,〈j〉(t), zn,〈j〉(t), cn,〈j〉(t)
)∥

∥ <
ǫ

m

√

λ(P )

λ(P )
6

ǫ

m
, ∀ T〈j〉 6 t < T〈j+1〉, (42)

where (xn,〈j〉(t), zn,〈j〉(t), cn,〈j〉(t)) stands for the nominal trajectory (xn(t), zn(t), cn(t)) of (7) and (21) with

the initial condition (xn,〈j〉(T〈j〉), zn,〈j〉(T〈j〉), cn,〈j〉(T〈j〉)) = (x(T〈j〉), zq(T〈j〉), c(T〈j〉)). (So the solution is

defined for the truncated time period T〈j〉 6 t < ∞.) With a bundle of the nominal trajectories, we

define error variables x̃n,〈j〉 := xn,〈j〉 − xn,〈j−1〉, z̃n,〈j〉 := zn,〈j〉 − zn,〈j−1〉, and c̃n,〈j〉 := cn,〈j〉 − cn,〈j−1〉 for

j = 1, . . . ,mflt, whose dynamics is given by a stable and autonomous system
(

˙̃xn,〈j〉, ˙̃zn,〈j〉, ˙̃cn,〈j〉
)

= Θn

(

x̃n,〈j〉, z̃n,〈j〉, c̃n,〈j〉
)

, ∀ T〈j〉 6 t < T〈j+1〉. (43)

It is noted that since (xn,〈j〉(T〈j〉), zn,〈j〉(T〈j〉), cn,〈j〉(T〈j〉)) = (x(T〈j〉), zq(T〈j〉), c(T〈j〉)), the magnitude

‖(x̃n,〈j〉(T〈j〉), z̃n,〈j〉(T〈j〉), c̃n,〈j〉(T〈j〉))‖ of the initial condition of (43) is equal to

∥

∥

(

x(T〈j〉), zq(T〈j〉), c(T〈j〉)
)

−
(

xn,〈j〉(T〈j〉), zn,〈j〉(T〈j〉), cn,〈j〉(T〈j〉)
)
∥

∥ <
ǫ

m

√

λ(P )

λ(P )
.

Now, we differentiate the Lyapunov function candidate Vn,〈j〉 := (x̃n,〈j〉, z̃n,〈j〉, c̃n,〈j〉)
TP (x̃n,〈j〉, z̃n,〈j〉,

c̃n,〈j〉) along with the j-th error dynamics (43), by which it is obtained that V̇n,〈j〉=−‖(x̃n,〈j〉, z̃n,〈j〉, c̃n,〈j〉)‖
2

6 −(1/λ(P ))Vn,〈j〉. Thus, the comparison lemma [20, Lemma 3.4] implies that

∥

∥

(

x̃n,〈j〉(t), z̃n,〈j〉(t), c̃n,〈j〉(t)
)∥

∥ 6

√

λ(P )

λ(P )
e−t/(2λ(P ))

∥

∥

(

x̃n,〈j〉(T〈j−1〉), z̃n,〈j〉(T〈j−1〉), c̃n,〈j〉(T〈j−1〉)
)∥

∥ <
ǫ

m
,

for T〈j〉 6 t < T〈j+1〉 and j = 1, . . . ,mflt. It results from (xn,〈0〉(t), zn,〈0〉(t), cn,〈0〉(t)) = (x⋆n(t), z
⋆
n (t), c

⋆
n(t)),

Young’s inequality, and (42) that
∥

∥

(

x(t), zq(t), c(t)
)

−
(

x⋆n(t), z
⋆
n (t), c

⋆
n(t)

)∥

∥
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6
∥

∥

(

x(t), zq(t), c(t)
)

−
(

xn,〈j〉(t), zn,〈j〉(t), cn,〈j〉(t)
)
∥

∥+

j
∑

k=1

∥

∥

(

x̃n,〈k〉(t), z̃n,〈k〉(t), c̃n,〈k〉(t)
)
∥

∥ < ǫ,

for T〈j〉 6 t < T〈j+1〉 (j = 0, . . . ,mflt), which completes the proof of the theorem.

5 Simulation results: lateral control of Boeing 747

As an example, we take into account the 4-th order linearized lateral model of the Boeing 747 presented

in [21, 22]. In particular, with unknown factors Wx,i ∈ [0.7, 1.3] and Wu,i ∈ [0.97, 1.03] that represents

parametric uncertainty on the dimensional derivative of rolling moment, the system considered here is

represented as (3) where y = x ∈ R is the yaw rate (rad/s), ζ1 is the side-slip angle (rad), ζ2 is the roll rate

(rad/s), ζ3 is the roll angle (rad), u = (u1, u2, u3) ∈ R
3 is the the control input (rad) that expresses the

three rudder servos, and the matrices are defined as Φ = −0.115Wx,1, Ψ = [0.598Wx,2,−0.0318Wx,3, 0],

G = [0.4715Wu,1, 0.5Wu,2, 0.3Wu,3], and S, M , and H are known matrices with suitable dimensions.

(Without loss of generality, we here multiply −1 into the original input matrix in [21] so that Gi > 0

holds.) We assume that x(0) ∈ [−0.04, 0.04], ζ(0) ∈ [−0.004, 0.004] × [−0.02, 0.02] × [−0.015, 0.015],

∆ > 10 s, ‖di(t)‖ 6 0.005, ‖ḋi(t)‖ 6 0.025, and ‖u⋆flt,i‖ 6 0.1. The problem under consideration is to

ensure the output y(t) to track the reference signal r(t) = 0.02 sin(0.2t) rad/s in the presence of both

model uncertainty and actuator failures.

To address the problem, the proposed DOB-based FTC is constructed as follows. First, we take a

nominal model (6) as the system with Sn = S, Mn = M , Nn = N3, Gn = G3, Φn = Φ, and Ψn = Ψ

where the uncertain parameters are set as Wx = Wu = 0. To achieve a satisfactory nominal tracking

performance, the nominal controller (7) is designed as a proportional-integral (PI) controller with E = 0,

F = 1, J = Kint := 17, K = Kprop := 3.4, and cn(0) = 0. Next, by the proposed design algorithm in

Subsection 3.1, we set the gain κ of the input allocation law (10) as κ = [1/3; 1/3; 1/3]. After that, the

DOB-based controller (22) and (28) is built up with a0 = 1, τ = 0.04, c(0) = 0, p(0) = q(0) = 0, zq(0) =

(0, 0, 0) and the saturation functions sw and sx obtained by W = [−0.51, 0.51] and X = [−0.041, 0.041].

For comparison, we perform the simulations with three types of controllers. The first two are the

proposed DOB-based FTC and the PI controller with the input allocation law (10) (i.e., the proposed

FTC without the DOB part). On the other hand, the last one is the adaptive FTC presented in [21], whose

main purpose is to adjust the unknown parameters resulting from model uncertainty and actuator faults.

In the following simulations, a measurement noise under uniform distribution enters the system whose

maximum magnitude is 10−4 rad/s, while the input disturbances are set as d1(t) = 0.0035 sin(1.05t),

d2(t) = 0.004 sin(2.1t), and d3(t) = 0.025 sin(4.5t). For the simulation, the uncertain parameters Wx,i

and Wu,i are taken as 0.7 and 0.97, respectively.

Figures 2 and 3 show simulation results for the proposed FTC and the PI controller with different

fault patterns. In particular, the simulation in Figure 2 is performed for the scenario when two lock-in-

place actuator faults take place as: u⋆flt,3 = u3(T3) for T3 := 50 s and u⋆flt,2 = u2(T2) for T2 := 100 s.

It is shown that unlike the PI control-based FTC, the proposed DOB-based FTC almost recovers the

fault-free tracking performance for entire time period, in the presence of actuator faults as well as model

uncertainty and external disturbance. A similar consequence can be found in Figure 3, in which the

actuator faults have the floating form of u⋆flt,3 = 0.06 for T3 := 50 s and of u⋆flt,2 = 0.06 for T2 := 100 s,

and additional output disturbance dy(t) = 0.002 sin(4t) rad/s affects the system.

To compare the proposed FTC with the the adaptive FTC in [21], the simulation with the floating

actuator faults is repeated in Figure 4. In the figure, one can observe that the adaptive FTC provides

worse tracking performance than the proposed DOB-based FTC, in both transient and steady-state

periods. This is mainly because the adaptive controller was constructed by taking the actuator faults

into account only, and thus the persistent disturbance (of the sinusoidal form) may hinder the controller

to adjust the uncertain parameters of the plant and the sudden actuator faults accurately. On the other

hand, since the underlying principle of the proposed FTC is to compensate all the effect of the undesired
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Figure 2 (Color online) Simulation results when two lock-in-place faults take place. (a) Output (rad/s): actual output

y(t) with (black dash-dotted) and without DOB (red solid), and nominal output yn(t) (green dashed); (b) tracking error

(rad/s): actual error r(t)−y(t) with (black dash-dotted) and without DOB (red solid), and nominal error r(t)−yn(t) (green

dashed); (c) control input (rad) with the proposed FTC: u1(t) (darkest), u3(t) (intermediate), u2(t) (brightest); (d) partial

state ζ with the proposed FTC: ζ1(t) (rad/s) (yellow solid), ζ2(t) (rad) (blue dash-dotted), ζ3(t) (rad/s) (brown dashed).
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Figure 3 (Color online) Simulation results when two floating faults sequentially occur. (a) Output (rad/s): actual output

y(t) with (black dash-dotted) and without DOB (red solid), and nominal output yn(t) (green dashed); (b) tracking error

(rad/s): actual error r(t)−y(t) with (black dash-dotted) and without DOB (red solid), and nominal error r(t)−yn(t) (green

dashed); (c) control input (rad): u1(t) (darkest), u3(t) (intermediate), u2(t) (brightest); (d) partial state ζ: ζ1(t) (rad/s)

(yellow solid), ζ2(t) (rad) (blue dash-dotted), ζ3(t) (rad/s) (brown dashed).

factors on the output y(t) at once without explicit estimation of the fault, additional disturbance is not

that problematic to the control performance, as seen in the simulation result.

6 Conclusion

In this paper we have proposed an output-feedback FTC for uncertain MISO plants with input redun-

dancy, which are of minimum phase in an input-wise sense and that possibly suffers from actuator faults.

In this paper we have employed a high-gain DOB-based controller as an FTC together with a CA law.

By the proposed FTC, the actuator faults as well as model uncertainty and external disturbance are

captured as a lumped form and then compensated quickly, by which fault-free tracking performance is
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Figure 4 (Color online) Simulation results when two lock-in-place faults take place for comparison of the proposed FTC

and the adaptive FTC in [21]. (a) Output (rad/s): actual output y(t) with the proposed FTC (black dash-dotted) and

the adaptive FTC in [21] (cyan solid); (b) tracking error (rad/s): actual error r(t) − y(t) with the proposed FTC (black

dash-dotted) and the adaptive FTC in [21] (cyan solid); (c) control input (rad) with the adaptive FTC in [21]: u1(t)

(darkest), u3(t) (intermediate), u2(t) (brightest); (d) partial state ζ the adaptive FTC in [21]: ζ1(t) (rad/s) (yellow solid),

ζ2(t) (rad) (blue dash-dotted), ζ3(t) (rad/s) (brown dashed).

almost guaranteed during the entire operation. The performance of the proposed FTC has been proved

from the perspective of the singular perturbation theory. Simulations for control of Boeing 747 have been

presented to verify the validity of the proposed controller.
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