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Abstract This paper deals with the tracking control problem of quadrotor unmanned aerial vehicles

(QUAVs) with external disturbances. First, because the QUAV model contains two non-integrity constraints,

the dynamic model of the QUAV is decomposed into two subsystems which are independently controlled, so

as to reduce controller design complexity. Secondly, the nonlinear disturbance observer (DOB) technique is

integrated into a backstepping control method to design the controller for the first subsystem, in which a

DOB is applied to estimate the lumped uncertainty. Based on the double power reaching law and the DOB,

a multivariable sliding mode control (MSMC) scheme is developed for the second subsystem. Thirdly, based

on Lyapunov theory, the closed-loop system is proved to be asymptotically stable. Finally, our compara-

tive simulation results demonstrate that the presented control scheme behaves better in terms of tracking

performance than the adaptive backstepping control (ABC) approach.
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1 Introduction

Quadrotor unmanned aerial vehicles (QUAVs) have many advantages over traditional helicopters because

of their vertical flying, hovering, and smaller diameter characteristics. They qualify for mapping, surveil-

lance, inspection, and rescue missions [1–3]. They have recently been receiving increasing attention.

Controller design for QUAVs is very challenging because of their heavy couplings and parameter un-

certainties. Many literatures [4–8] focus on the modeling and controlling of UAV, and researchers have

achieved good QUAV performances. The linear control techniques have been successfully applied for UAV

control system design [9–12], such as PID control, PD control, and the H∞ control method. However, in

the absence of nominal operating conditions, linear controllers cannot provide good flight performance.

To solve this problem, nonlinear control techniques, such as the backstepping control method and the

sliding mode control method, have been proposed for UAV controller design in [13–17]. In [16], a back-

stepping control scheme was developed to achieve stable tracking for the desired position and yaw angle

of an unmanned aerial vehicle (UAV). Additionally, a linear tracking differentiator was integrated with a
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command-filtered backstepping technique to design a trajectory-tracking controller for a UAV in [17]. A

robust nonlinear controller design approach was shown to achieve trajectory tracking for a QUAV in [18].

In order to solve the multi-UAV formation reconfiguration problem, a hybrid particle swarm optimization

and genetic algorithm was proposed in [19]. Though the desired tracking performance for the UAVs was

achieved, parametric uncertainties and aerodynamic effects were not taken into account in [13–17]. Then,

in [20], an adaptive control strategy based on Lyapunov theory was proposed for UAVs, while taking

parameter uncertainties into consideration. Moreover, in [21], an adaptive backstepping control scheme

was designed for UAVs under sensor and actuator failure effects. However, it should be pointed out that

external disturbances were not considered in [20, 21] at the control design level.

For UAVs, when parameter uncertainties and external disturbances are considered, the designed con-

trol system must behave robustly to handle them. The sliding mode control (SMC) technique was one of

the most robust and effective methods used to deal with uncertainty in [22–24]. Because of its insensi-

tivity to parametric uncertainties, model errors, and other uncertainties, the first adaptive multivariable

finite-time control algorithm based on SMC was developed in [25] for attitude control of a UAV, where an

excellent tracking performance was achieved using the developed algorithm. Subsequently, multivariable

finite-time control algorithms were proposed in [26,27] for tracking control of UAVs. In addition, a multi-

variable super-twisting algorithm-based SMC method and a novel sliding mode controller were designed

respectively for small unmanned helicopters and small-scale unmanned helicopters with mismatched un-

certainty in [28,29]. The compounded disturbances were estimated by the sliding mode observer. In [28],

a disturbance-observer-based (DOB-based) controller was designed based on multivariable super twisting

and backstepping control to obtain robust trajectory tracking performance. In [29], a novel SMC strategy

was proposed, in which an enhanced DOB was used to deal with the tracking control problem of UAVs

with mismatched uncertainty. An adaptive SMC control scheme was proposed for UAV systems with

parametric uncertainties in [30]. Moreover, an SMC system was used for the stabilization problem of

UAVs in [31]; however, the chattering problem of traditional SMCs was not solved. Additional work

about the application of SMCs for flight control can be found in [32, 33]. Although the backstepping

technique is one of the most efficient techniques proposed for nonlinear systems and has been employed

in engineering fields in [34–36], it cannot guarantee asymptotic convergence in the presence of external

disturbances. Thus, it is often combined with other technologies to achieve a better control performance.

A flight control law based on a sensor-based backstepping technique for UAVs was proposed in [37]. An

adaptive backstepping control scheme was designed for mixed QUAVs in [38], and, based on an adap-

tive SMC control method, a backstepping control scheme was derived for UAV attitude control in [39].

A radial basis function neural network (RBFNN) was combined with an adaptive backstepping control

method to design a controller for a model-scale helicopter in [40]. The DOB technique has been applied

as a compensator to effectively suppress unknown uncertainties and external disturbances. It does not

rely on the system’s mathematical model, and it can be used to estimate the external disturbances of

the controlled object in real time and actively compensate for a limited period of time, as demonstrated

in [41]. Thus, it has been used in the tracking control problem of UAVs in [42, 43]. A linear dual DOB

control scheme was proposed to improve the trajectory tracking precision of a QUAV with external distur-

bances in [42]. Considering the external disturbances and input delays, a DOB based on the backstepping

control scheme was designed in [43]. In these control strategies, the DOB was used as a compensator to

effectively suppress external disturbances.

Motivated by aforementioned studies, in this paper, the disturbance observer and SMC methods are

integrated with a backstepping control scheme to design a controller for a QUAV. The contributions of

this paper can be summarized as follows. First, because the QUAV model contains two non-integrity

constraints, the model of our QUAV is divided into two subsystems to reduce controller design complexity.

Secondly, a DOB-based backstepping controller is designed for the first subsystem, while a double power

reaching law SMC based on a DOB is developed for the second subsystem. At the control design level, the

DOB is employed to handle the lumped uncertainty, and the estimated error of the disturbance observer

is used to achieve stability. A first-order filter is used to eliminate the problem of “explosion of terms”

at the control design level of the first subsystem. Finally, comparative simulations between the designed
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control method and the adaptive backstepping control (ABC) approach are carried out to show that the

designed control scheme achieves a better control performance than the ABC strategy.

The remaining parts of this paper are organized as follows. In Section 2, a QUAV model and a

description of the problem are presented. The controller design is shown in Section 3, and a stability

analysis is presented in Section 4. Then, our simulation results are shown in Section 5. Finally, our

conclusion is provided in Section 6.

2 QUAV model and problem description

The four rotors of a QUAV are symmetrically distributed in four directions emerging from its body,

and the movement of a QUAV is obtained by changing the lift generated by appropriately adjusting the

rotational speeds of the four rotors [44].

The dynamic model of a QUAV is described by the following equations [31, 45]:

ẍ =
1

m
(cosφ sin θ cosψ + sinφ sinψ)u1 −

G1ẋ

m
,

ÿ =
1

m
(cosφ sin θ sinψ − sinφ cosψ)u1 −

G2ẏ

m
,

z̈ =
1

m
(cosφ cos θ)u1 − g −

G3ż

m
,

φ̈ =
a

Jxx
u2 −

G4a

Jxx
φ̇,

θ̈ =
a

Jyy
u3 −

G5a

Jyy
θ̇,

ψ̈ =
a

Jzz
u4 −

G6a

Jzz
ψ̇,

(1)

where x, y, z denote the position of the QUAV, and φ, θ, ψ denote the attitude of the QUAV. m, a are

the quality of the quadrotor and the length of the wings, respectively. Jxx, Jyy, Jzz represent the inertia

of the aircraft on the x, y, z axes, respectively. Gi (i = 1, . . . , 6) are the drag coefficients of the system.

u1, u2, u3, u4 are the four control variables to be designed in the next section, and the relationship between

them and the lift of the QUAV is

u1 = F1 + F2 + F3 + F4,

u2 = a(−F2 + F4),

u3 = a(−F1 + F3),

u4 = A(−F1 + F2 − F3 + F4),

(2)

where A represents the scale factor between lift and yaw torque, and F1, F2, F3, F4 are the lifts of the

four rotors.

It can be seen from the QUAV dynamic model presented in (1) that the number of degrees of freedom

is higher than the independent control inputs, and that the system is underactuated and heavily coupled.

Additionally, because the system states are relatively independent, the system can be decomposed into

two subsystems which can be controlled independently. In order to facilitate controller design, Eq. (1)

can be expressed as follows:

Σ1 :























ẋ1 = x2,

ẋ2 = R2x2+S2x3+D1,

ẋ3 = S3x4,

ẋ4 = R4x4+S4U1+D2,

(3)
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Figure 1 Architecture of the proposed control scheme.

Σ2 :

{

ẋ5 = x6,

ẋ6 = R6x6+S6U2+F6+D3,
(4)

where (3) is the underactuated subsystem Σ1, and Eq. (4) is the fully actuated subsystem Σ2. D1,D2

denote the external disturbances of Σ1. D3 denotes the perturbation in subsystem Σ2. The state variables

and coefficient matrixes in Σ1 and Σ2 can be expressed as follows:

x1 =

[

x

y

]

, x2 =

[

ẋ

ẏ

]

, x3 =

[

sin θ

sinφ

]

, x4 =

[

θ̇

φ̇

]

, x5 =

[

z

ψ

]

, x6 =

[

ż

ψ̇

]

, F6 =

[

− g

0

]

,

S2 =
u1
m

[

cosφ cosψ sinψ

cosφ sinψ − cosψ

]

, S3 =

[

cos θ 0

0 cosφ

]

, S4 =

[

a
Jyy

0

0 a
Jxx

]

, S6 =

[

cosφ cos θ
m

0

0 a
Jzz

]

,

D1 =

[

∆x

∆y

]

,D2 =

[

∆θ

∆φ

]

,D3 =

[

∆fz

∆fψ

]

, R2 = −

[

G1

m
0

0 G2

m

]

, R4 =

[

−G5a
Jyy

0

0 −G4a
Jxx

]

, R6=

[

−G3

m
0

0 −G6a
m

]

.

The control objective of this paper is to design a controller for the system described by (1) to make x, y, z

track their reference commands xd, yd, zd with external disturbances D1,D2,D3. Thus, the system is

transformed into the following control objective: for subsystems Σ1 and Σ2, the designed control strategy

makes x1,x5 track their reference commands x1d,x5d.

3 DOB-based control system design

In this section, a controller is developed for the QUAV to track the reference commands in the presence

of external disturbances D1,D2,D3. The control architecture is shown in Figure 1.

As shown in Figure 1, the control inputs are designed for subsystems Σ1 and Σ2. For subsystem Σ1,

position x, y is controlled by the actual control input U1, which is designed by integrating the DOB with

a backstepping control method. More precisely, x1 is controlled via the virtual control input α1, x2 is

controlled via the virtual control input α2, x3 is controlled via the virtual control input α3, and x3 is

controlled via the actual control input U1. At the control design level, the DOB is used to estimate the

lumped uncertainties D1,D2. Furthermore, for subsystem Σ2, controllerU2 is designed by combining the

DOB and the sliding mode control method, in which the DOB is used to estimate the lumped uncertainty

D3.

Before designing the controller, the following assumptions are made for disturbances Di (i = 1, 2, 3),

which are used during controller design and our stability analysis.
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Assumption 1. The reference commands x1d,x5d are continuous and differentiable.

Assumption 2. The disturbances change slowly, i.e., Ḋi ≈ [0 0]T.

An estimation of Di is made by the DOB, and is defined as D̂i. The estimate error is

D̃i = Di − D̂i. (5)

Based on these assumptions and subsystem Σ1, a backstepping control scheme is designed based on the

DOB for subsystem Σ1.

3.1 Subsystem Σ1 controller design

In this subsection, the controller design for subsystem Σ1 is explained. Because Σ1 behaves in a strict

feedback form with mismatched uncertainty, the backstepping control approach is applicable, and the

DOB is employed to estimate the lumped uncertainty. The controller design for subsystem Σ1 includes

four steps; virtual control inputs are developed during the first three steps, and the actual control input

is designed in the last step. The time derivatives of the virtual control inputs in the backstepping design

procedure are estimated by the filter, so as to eliminate the problem of explosion of terms.

Step 1. Design of virtual control input α1.

The tracking error of x1 is defined as

z1 = x1 − x1d, (6)

where vector x1d is the reference command.

We chose the following Lyapunov function:

V1 =
1

2
z
T
1 z1. (7)

From (3) and (6), the time derivative of V1 is

V̇1 = z
T
1 (z2 + α1 − ẋ1d). (8)

The error signal of x2 is defined as

z2 = x2 − α1, (9)

where α1 is the reference signal of x2.

From (8), virtual control input α1 is designed as

α1 = ẋ1d − k1z1, (10)

and after substituting (10) into (8), we obtain

V̇1 = −k1z
T
1 z1 + z

T
1 z2. (11)

Step 2. Design of virtual control input α2.

We chose the following Lyapunov function:

V2 =
1

2
z
T
2 z2 + V1. (12)

From (3), (10)–(12), the time derivative of V2 becomes

V̇2 = z
T
2 R2x2 + z

T
2 S2(x3 − α2d) + z

T
2 S2α2d + z

T
2 D1 − z

T
2 α̇1 − k1z

T
1 z1 + z

T
1 z2, (13)

where variable α2d is obtained by the filter. Then, the error signal of x3 is defined as

z3 = x3 − α2, (14)

where α2 is the reference signal of x3.
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For disturbance D1, the following DOB is employed to estimate it [46]:

{

D̂1 = T1 +Q(x2),

Ṫ1 = L(x2){−R2x2 − S2x3 − [T1 +Q(x2)]},
(15)

where

Q(x2) =

[

µ1(ẋ
ε1 + ẋε1/ε1)

µ2(ẏ
ε2 + ẏε2/ε2)

]

, L(x2) =
∂Q(x2)

∂x2
=

[

µ1(1 + ẋε1−1) 0

0 µ2(1 + ẏε2−1)

]

, µi > 0,

and εj (i = 1, 2; j = 1, 2) is a positive odd constant.

Based on (13) and (15), virtual control input α2 is designed as

α2 = S
−1
2 (α̇1 − z1 − k2z2 −R2x2 − D̂1). (16)

The following filter is designed to estimate α2,

α̇2d =
−(α2d − α2)

τ1
, (17)

where τ1 is a positive constant, and the filter estimate error is defined as

e2d = α2d − α2. (18)

From (14), (16) and (18), Eq. (13) yields

V̇2 = −k1z
T
1 z1 − k2z

T
2 z2 + z

T
2 S2z3 − z

T
2 S2e2d + z

T
2 D̃1. (19)

Step 3. Design of virtual control input α3.

We chose the following Lyapunov function:

V3 =
1

2
z
T
3 z3 + V2. (20)

Based on (14) and (19), the time derivative of V3 satisfies

V̇3 = −k1z
T
1 z1 − k2z

T
2 z2 + z

T
2 S2z3 − z

T
2 S2e2d + z

T
2 D̃1

+z
T
3 S3(x4 − α3d) + z

T
3 (α̇2 − k3z3 − z

T
2 S2)− z

T
3 α̇2.

(21)

The new variable α3d is obtained by the filter. Then, the error signal of x4 is defined as

z4 = x4 − α3, (22)

where α3 is the reference signal of x4.

Virtual control input α3 is designed as

α3 = S
−1
3 (α̇2d − k3z3 − z

T
2 S2). (23)

The following filter is applied to estimate α3:

α̇3d =
−(α3d − α3)

τ2
, (24)

where τ2 is a positive constant, and the filter estimate error is defined as

e3d = α3d − α3. (25)

From (22), (23), and (25), Eq. (21) becomes

V̇3 = −k1z
T
1 z1 − k2z

T
2 z2 − k3z

T
3 z3 + z

T
2 D̃1 + z

T
3 S3z4 − z

T
2 S2e2d − z

T
3 S3e3d. (26)
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Step 4. Design of actual control input U1.

We chose the following Lyapunov function:

V4 =
1

2
z
T
4 z4 + V3. (27)

From (22) and (26), the time derivative of V4 is

V̇4 = −k1z
T
1 z1 − k2z

T
2 z2 − k3z

T
3 z3 + z

T
2 D̃1 + z

T
3 S3z4

−z
T
2 S2e2d − z

T
3 S3e3d + z

T
4 (R4x4 + S4U1 +D2 − α̇3).

(28)

The following DOB is used to estimate disturbance D2 [46],

{

D̂2 = T2 +Q(x4),

Ṫ2 = L(x4){−R4x4 − S4U1 − [T2 +Q(x4)]},
(29)

where

Q(x4) =

[

µ3(θ̇
ε3 + θ̇ε3/ε3)

µ4(φ̇
ε4 + ẏε4/ε4)

]

, L(x4) =
∂Q(x4)

∂x4
=

[

µ3(1 + θ̇ε3−1) 0

0 µ4(1 + φ̇ε4−1)

]

, µi > 0,

and εj (i = 3, 4; j = 3, 4) is a positive odd constant.

Based on (28) and (29), the actual control input U1 is designed as

U1 = S
−1
4 (−R4x4 − k4z4 + α̇3 − z

T
3 S3 − D̂2). (30)

Substituting (30) into (28), we obtain

V̇4 = −k1z
T
1 z1 − k2z

T
2 z2 − k3z

T
3 z3 − k4z

T
4 z4 + z

T
2 D̃1 + z

T
4 D̃2 − z

T
2 S2e2d − z

T
3 S3e3d. (31)

Remark 1. Both the adaptive technique and the DOB can tackle the uncertainty of the nonlinear

system. The adaptive method is used to estimate the bounds of the uncertainty, while the DOB estimates

the uncertainty itself. Compared with the adaptive technique, the DOB makes the controller design

more convenient and flexible. The DOB is applied as a compensator to effectively suppress unknown

uncertainties and external disturbances. It does not rely on the system’s mathematical model, and it

can estimate the external disturbances of the controlled object in real time and actively compensate

them for a limited period of time [39]. In view of the aforementioned good performance of the DOB,

the DOB-based backstepping method is used to design the controller for subsystem Σ1. Additionally, we

can verify from our comparative simulation results between the adaptive backstepping control method

and the designed DOB-based control scheme that the designed DOB-based control scheme yields a better

performance than the adaptive backstepping control method.

3.2 Subsystem Σ2 controller design

In this subsection, a control scheme is designed for the fully actuated subsystem Σ2 with disturbance D3

based on the combination of the SMC and DOB methods.

For nonlinear systems, a linear sliding mode surface is used to design a controller in many sliding mode

control schemes. In order to alleviate the chattering problem and improve the convergence speed of the

sliding mode surface, the nonlinear sliding mode surface for Σ2 is designed as

s = ė+

∫ σ

0

l0sgn(e)‖e‖
ω0 + l1sgn(ė)‖ė‖

ω1dσ, (32)

where l0 > 0, l1 > 0, ω0, ω1 ∈ (0, 1), e = [e1 e2]
T, ‖e‖

ω0 = [|e1|
ω0 |e2|

ω0 ]T, ė = [ė1 ė2]
T, ‖ė‖

ω1 =

[|ė1|
ω1 |ė2|

ω1 ]T,

sgn(e) =

[

sgn(e1) 0

0 sgn(e2)

]

, sgn(ė) =

[

sgn(ė1) 0

0 sgn(ė2)

]

,
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and the tracking error of x5 is defined as

e = x5 − x5d. (33)

From (32) and (33) and Σ2, the time derivative of s is

ṡ = R6x6 + S6U2 + F6 +D3 − ẍ5d + l0sgn(e)‖e‖
ω0 + l1sgn(ė)‖ė‖

ω1 , (34)

where 0 < ω1 < 1, ω0 =
ω1

2−ω1
.

The following DOB is employed to estimate disturbance D3 [46],

{

D̂3 = T3 +Q(x6),

Ṫ3 = L(x6){−R6x6 − S6U2 − F6 − [T3 +Q(x6)]},
(35)

where

Q(x6) =

[

µ5(ż
ε5 + żε5/ε5)

µ6(ψ̇
ε6 + ψ̇ε6/ε6)

]

, L(x6) =
∂Q(x6)

∂x6
=

[

µ5(1 + żε5−1) 0

0 µ6(1 + ψ̇ε6−1)

]

, µi > 0,

and εj (i = 5, 6; j = 5, 6) is a positive odd constant.

Compared with the fast signal power reaching law, the double power reaching law has better global

fast convergence performance. Thus, we design the double power reaching law as follows:

ṡ = −h1sgn(s)‖s‖
α
− h2sgn(s)‖s‖

β
− h3s, (36)

where α > 1, 0 < β < 1, h1, h2, h3 > 0, s = [s1 s2]
T, and

‖s‖
Λ
=

[

|s1|
Λ
|s2|

Λ
]T

, (Λ = α, β), sgn(s) =

[

sgn(s1) 0

0 sgn(s2)

]

.

From (34)–(36), the control input is designed as

U2 = −S6
−1[R6x6 + F6 + D̂3 − ẍ5d + l0sgn(e)‖e‖

ω0

+l1sgn(ė)‖ė‖
ω1 + h1sgn(s)‖s‖

α
+ h2sgn(s)‖s‖

β
+ h3s].

(37)

By substituting (35) and (37) into (34), Eq. (34) becomes

ṡ = −h1sgn(s)‖s‖
α
− h2sgn(s)‖s‖

β
− h3s+ D̃3. (38)

Remark 2. Compared with the traditional reaching law, the double power reaching law has the features

of solving the chattering problem, shorter convergence time, and faster convergence speed. In this paper,

the multivariable double power reaching law is applied for the designing sliding mode controller, which

can ensure that the system state reaches the sliding surface in a finite amount of time.

The advantages of the designed sliding mode surface shown in (32) can be summarized as follows.

Remark 3. Generally, the sign function in traditional sliding mode control causes the chattering prob-

lem. Compared with the conventional linear sliding surface, the adopted sliding mode surface uses an

integral term and the sliding mode surface is continuous. Although Eq. (32) includes sign functions, the

terms sgn(e)‖e‖ω0 and sgn(ė)‖ė‖ω1 are continuous functions. Based on the above characteristics, the

adopted sliding mode surface shown in (32) can suppress the chattering problem effectively, accelerate

the convergence rate, and enhance the anti-disturbance capability of the system.

4 Stability analysis

In this section, the stability of the system is analyzed based on Lyapunov theory. This section contains

three parts. The first part contains a stability analysis of DOB, the second part contains a stability

analysis of subsystem Σ1, and the last part contains a stability analysis of subsystem Σ2.
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4.1 Stability analysis of DOB

According to Assumption 1, we have

Ḋ1 ≈ [0 0]T, ˙̃D1 = Ḋ1 − ˙̂D1. (39)

Then, from (15), the following equation holds:

˙̃D1 = −L(x2){−R2x2 − S2x3 − [T1 +Q(x2)]} −
∂Q(x2)

∂x2
ẋ2

= −L(x2){−R2x2 − S2x3 − [T1 +Q(x2)]} − L(x2){R2x2 + S2x3 +D1}

= L(x2)(D̂1 −D1) = −L(x2)D̃1.

(40)

Similarly, we can obtain
˙̃D2 = −L(x4)D̃2, ˙̃D3 = −L(x6)D̃3. (41)

The following Lyapunov functions are chosen:

V5 =
1

2
D̃

T
1 D̃1, V6 =

1

2
D̃

T
2 D̃2, V7 =

1

2
D̃

T
3 D̃3. (42)

Based on (39), (40), and (42), the time derivatives of V5, V6, V7 are

V̇5 = − D̃
T
1 L(x2)D̃1 < 0, V̇6 = −D̃

T
2 L(x4)D̃2 < 0, V̇7 = −D̃

T
3 L(x6)D̃3 < 0. (43)

It can be seen that the estimate errors D̃1, D̃2, D̃3 satisfy the Lyapunov stability criteria and will

converge to a small neighborhood around zero. According to (40), we can get

D̃1(t) = e−L(x2)(t−t0)D̃1(0), D̃2(t) = e−L(x4)(t−t0)D̃2(0), D̃3(t) = e−L(x6)(t−t0)D̃3(0), (44)

where D̃j(0) is the initial value of D̃j (j = 1, 2, 3). The estimate error initially reaches its maximum

value and then exponentially converges to zero by selecting appropriate values for parameters µi, εi, i =

1, 2, 3, 4, 5, 6.

4.2 Stability analysis of subsystem Σ1

In the presence of external disturbances, Lyapunov theory proves that the system is asymptotically stable

with the designed controller and DOB.

From (17), (18), (24), and (25), we have

α̇2d =
−e2d

τ1
, α̇3d =

−e3d

τ2
. (45)

The filter estimate error dynamics are

ė2d =
−e2d

τ1
− α̇2, ė3d =

−e3d

τ2
− α̇3. (46)

We chose the following Lyapunov function:

V8 = V4 + V5 + V6 +
1

2
e
T
2de2d +

1

2
e
T
3de3d, (47)

and based on (31) and (43), the time derivative of V8 is

V̇8 = −k1z
T
1 z1 − k2z

T
2 z2 − k3z

T
3 z3 − k4z

T
4 z4 + z

T
2 D̃1 + z

T
4 D̃2 − D̃

T
1 L(x2)D̃1 − D̃

T
2 L(x4)D̃2

−z
T
2 S2e2d − z

T
3 S3e3d + e

T
2dė2d + e

T
3dė3d

6 −k1z
T
1 z1 − k2z

T
2 z2 − k3z

T
3 z3 − k4z

T
4 z4 +

1

2
z
T
2 z2 +

1

2
D̃

T
1 D̃1 +

1

2
z
T
4 z4 +

1

2
D̃

T
2 D̃2

−D̃
T
1 L(x2)D̃1 − D̃

T
2 L(x4)D̃2 − z

T
2 S2e2d − z

T
3 S3e3d + e

T
2dė2d + e

T
3dė3d

= −k1z
T
1 z1 −

(

k2 −
1

2

)

z
T
2 z2 − k3z

T
3 z3 −

(

k4 −
1

2

)

z
T
4 z4 − D̃

T
1

[

L(x2)−
1

2
E

]

D̃1

−D̃
T
2

[

L(x4)−
1

2
E

]

D̃2 − z
T
2 S2e2d − z

T
3 S3e3d + e

T
2dė2d + e

T
3dė3d.

(48)



Zhang Z, et al. Sci China Inf Sci November 2018 Vol. 61 112207:10

Following the results found in [47,48], assume that Eqs. (16) and (23) satisfy ‖α̇2d‖ 6 r2d and ‖α̇3d‖ 6 r3d,

respectively. Then, based on (45) and (46), the last four terms of (48) satisfy

−(zT
2 S2e2d + z

T
3 S3e3d) + e

T
2dė2d + e

T
3dė3d

6
1

2a24
‖S2‖

2∥
∥z

T
2

∥

∥

2
+
a24‖e2d‖

2

2
+

1

2a25
‖S3‖

2∥
∥z

T
3

∥

∥

2
+
a25‖e3d‖

2

2

+e
T
2d

(

−e2d

τ1
− α̇2

)

+ e
T
3d

(

−e3d

τ2
− α̇3

)

6
1

2a24
‖S2‖

2∥
∥z

T
2

∥

∥

2
+
a24‖e2d‖

2

2
+

1

2a25
‖S3‖

2∥
∥z

T
3

∥

∥

2
+
a25‖e3d‖

2

2
−

‖e2d‖
2

τ1
−

‖e3d‖
2

τ2

+
a22
2
‖e2d‖

2
r2d +

1

2a22
+
a23
2
‖e3d‖

2
r3d +

1

2a23
.

(49)

After replacing (49) into (48), the latter one yields

V̇8 6 −k1z
T
1 z1 −

(

k2 −
1

2
−

1

2a24
‖S2‖

2

)

z
T
2 z2 −

(

k3 −
1

2a25
‖S3‖

2

)

z
T
3 z3 −

(

k4 −
1

2

)

z
T
4 z4

−D̃
T
1

[

L(x2)−
1

2
E

]

D̃1 − D̃
T
2

[

L(x4)−
1

2
E

]

D̃2 −

(

1

τ1
−
a24
2

−
a22
2
r2d

)

‖e2d‖
2

−

(

1

τ2
−
a25
2

−
a23
2
r3d

)

‖e3d‖
2 +

1

2a22
+

1

2a23

6 − 2κV8 + C,

(50)

where a2, a3, a4, a5 > 0, k2 >
1
2 + 1

2a2
4

‖S2‖
2
, k3 >

1
2a2

5

‖S3‖
2
, k4 >

1
2 , 0 < τ1 <

2
a2
4
+a2

2
r2d
, 0 < τ2 <

2
a2
5
+a2

3
r3d
,

C = 1
2a2

2

+ 1
2a2

3

, κ = min{k1, k2 −
1
2 − 1

2a2
4

‖S2‖
2
, k3 −

1
2a2

5

‖S3‖
2
, k4 −

1
2 ,

1
τ1

−
a2
4

2 −
a2
2

2 r2d,
1
τ2

−
a2
5

2 −
a2
3

2 r3d},

L(x2), L(x4) >
1
2E (the elements of L(x2), L(x4) are larger than those of 1

2E,E is a diagonal matrix).

From (50), it can be seen that when V8 = ς, V̇8 6 −2κς + C; if κ > 2cς, c > 0, then V̇8 6 0 on V8 = ς ,

and so V8 6 ς is an invariant set, i.e., if V8(0) 6 ς , then V8(t) 6 ς for all t > 0. Therefore, Eq. (50) holds

for all V8(t) 6 ς and t > 0.

Standard arguments can now be applied to solve (50) as follows:

0 6 V8(t) 6
C

2κ
+

(

V8(0)−
C

2κ

)

exp(−2κt), ∀t > 0. (51)

It is clear that V8(t) is bounded by C
2κ , i.e., for t > 0, 0 6 V8(t) 6

C
2κ .

From (51), the tracking error of x1 yields

‖z1‖ 6

√

C

κ
+

(

2V8(0)−
C

κ

)

exp(−2κt). (52)

Thus, we can obtain the following inequality: ‖z1‖ 6

√

C
κ
.

Then, the convergence region of z1 can be expressed as

R =

{

z1

∣

∣

∣

∣

∣

‖z1‖ 6

√

C

κ

}

. (53)

From (53), the tracking error can be made to converge to an arbitrarily small region around zero by

making κ sufficiently large, which can be achieved by properly selecting the design parameters in (54).
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4.3 Stability analysis of subsystem Σ2

For subsystem Σ2, to analyze the reachability of the sliding states, the following Lyapunov function is

chosen:

V9 =
1

2
s
T
s+

1

2
D̃

T
3 D̃3. (54)

Its time derivative satisfies

V̇9 = −h1‖s‖
α+1

− h2‖s‖
β+1

− h3‖s‖
2
+ s

T
D̃3 − D̃

T
3 L(x6)D̃3

6 −h1‖s‖
α+1

− h2‖s‖
β+1

− (h3 −
1
2 )‖s‖

2
− D̃

T
3 (L(x6)−

1
2E)D̃3.

(55)

As long as h3 >
1
2 , L(x6) >

1
2E (as long as the elements of L(x6) are larger than those of 1

2E,E is

a diagonal matrix), V̇9 6 0. From (55), we can determine that the sliding states can reach the sliding

surface exponentially, i.e., s = 0. Based on the reachability of the sliding surface, the stability analysis

of the tracking error is done as follows.

The following Lyapunov function is chosen:

V10 =
1

2
e
T
e. (56)

From (56) and because e = [e1 e2]
T, ė = [ė1 ė2]

T, the time derivative of V10 is

V̇10 = e
T
ė = e1ė1 + e2ė2. (57)

Based on s = 0 and (32), ė = −
∫ σ

0
l0sgn(e)‖e‖

ω0 + l1sgn(ė)‖ė‖
ω1dσ, i.e.,

ė1 = −

∫ σ

0

l0sgn(e1)|e1|
ω0 + l1sgn(ė1)|ė1|

ω1dσ, ė2 = −

∫ σ

0

l0sgn(e2)|e2|
ω0 + l1sgn(ė2)|ė2|

ω1dσ. (58)

To proceed, we prove that e1, ė1 have different signals, i.e., e1ė1 < 0. Here, we only prove that e1ė1 < 0,

and e2ė2 < 0 can be obtained using the same method. We carry out a proof by contradiction. (a) Assume

that e1, ė1 > 0. From (32), ė1 = −
∫ σ

0 l0|e1|
ω0 + l1|ė1|

ω1dσ < 0, which contradicts ė1 > 0. (b) Assume

that e1, ė1 < 0. From (32) ė1 =
∫ σ

0
l0|e1|

ω0 + l1|ė1|
ω1dσ > 0, which contradicts ė1 < 0.

Based on the above analysis, we can obtain that e1ė1 < 0, and, by the same token, e2ė2 < 0. Thus,

we can determine that V̇10 < 0, that is to say, the tracking error is asymptotically stable. In conclusion,

the tracking error is asymptotically stable, and the actual position of the QUAV (x, y, z) can reach the

desired position, xd, yd, zd.

5 Simulation and analysis

In this section, the effectiveness of the proposed control scheme is validated, and our simulations carried

out using Matlab R2010a/Simulink are presented. Moreover, a comparative simulation between the

designed control approach and the ABC approach is presented.

The reference commands are chosen as xd(t) = sin(2π50 t), yd(t) = cos(2π50 t), zd(t) = 1
6 t, and the ini-

tial flight conditions of the QUAV are x(0) = 0.07, y(0) = 1, z(0) = 0, φ(0) = 0, θ(0) = 0, ψ(0) = 0.

Additionally, the external disturbances are D1 = [2sin(t) 2sin(t)]T,D2 = [0.2sin(2π25 t) 0.2sin(2π25 t)]
T,

D3 = [0.2sin(2π25 t) 0.2sin(2π25 t)]
T. The parameters of the QUAV model are given in Table 1, and the

controller parameters are listed in Table 2. The efficiency of the designed control scheme (DOBC) in

Section 3 is verified by comparing it with the ABC approach.

The control inputs U1,U2 under the ABC approach are designed as

U1 = −S
−1
4

(

R4x4 + k4z4 + z
T
3 S3 +

p̂4b4z4
‖z4‖+ ξ4

)

,

U2 = −S6
−1

(

R6x6 + F6 + z5 + k6z6 +
p̂6b6z6

‖z6‖+ ξ6

) (59)
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Table 1 Quadrotor model parameters

Variable Value Unit Variable Value Unit

m 2 kg Jyy 1.25 kg ·m2

g 9.81 m/s2 Jzz 2.5 kg ·m2

a 0.2 m K1 ∼ K3 0.01 kg/s

Jxx 1.25 kg ·m2 K4 ∼ K6 0.012 kg/s

Table 2 Controller parameters under DOBC

Variable Value Variable Value Variable Value Variable Value

k1 3.6 β 0.9 ω0 2/3 ε1 40

k2 1 l0 ∼ l1 0.5 ω1 0.8 ε2 5

k3 50 h1 0.01 τ1 0.999 ε3 50

k4 1 h2 0.015 τ2 0.02 ε4 0.00001

α 2 h3 1 µ1 ∼ µ6 1 ε5 ∼ ε6 0.0000005

Table 3 Controller parameters under the ABC approach

Variable Value Variable Value Variable Value Variable Value

k1 0.5 k5, k6 0.005 b1 2 ξ2 5

k2 0.5 v1 0.5 b2 500 ξ3 5

k3 80 v2 0.5 b3 50 τ1 0.999

k4 0.000005 v3 0.5 ξ1 5 τ2 0.008
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Figure 2 Time responses of position tracking under DOBC and ABC.

with the following adaptive law:

˙̂pj =

{

vjbj‖zj‖
2/(‖zj‖+ ξj), ‖zj‖ > ξj/(bj − 1),

0, ‖zj‖ 6 ξj/(bj − 1),
(60)

where vj , bj, ξj (j= 2, 4, 6), k6 are positive constants and ξj > 1. From (60), it can be seen that after the

errors z2, z4, z6 become stable, the estimate rate stays at zero, which means that p̂ does not change, thus

avoiding the problem of overestimation.

The controller parameters under the ABC approach are listed in Table 3. The comparative simulation

results for DOBC and ABC are shown in Figure 2 through 6. The local time response is also given to
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Figure 3 Time responses of the tracking errors under DOBC and ABC.
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Figure 4 Time responses of the control inputs under DOBC and ABC.

better show the dynamic processes.

Figures 2 and 3 present the tracking performance of the QUAV under the two control methods. As can

be seen from Figure 2, stable tracking of the position in the x, y, z directions of their respective reference

commands was achieved after a short time. Figure 3 describes the trajectory tracking error curve of the

system under the two control methods. We can observe that the two methods have different tracking

performances. In detail, the tracking errors ex, ey become stable under the DOBC approach within 4 s,

the tracking error ex ranges from 0 to 0.08 m, and ey ranges from −0.003 to 0 m. Besides, the tracking

error ez reaches stability within 10 s under the DOBC approach, and ranges from −0.06 to 0.04 m. In

contrast, the tracking errors ex, ey under the ABC approach cannot achieve stability within 50 s. The

tracking error ey ranges from −0.01 to 0.01 m, which is larger than that of DOBC approach. Although

the tracking error ez under the ABC approach tends to be stable at approximately 15 s, its range of

variation is large.

The time response of the control inputs under the two control schemes are provided in Figure 4; it can

be seen that the control inputs of the DOBC approach are smooth. The time responses of φ, θ, ψ under

the two control schemes are shown in Figure 5. We can see in Figure 5 that they are all stable. It can be

seen from Figure 6 that the designed control scheme can make the sliding states reach the sliding surface



Zhang Z, et al. Sci China Inf Sci November 2018 Vol. 61 112207:14

0 10 20 30 40 50 60
−2

0

2

4

6

8
×10−3

×10−3

×10−4

t (s)

t (s) t (s)

ϕ
 (

ra
d
)

θ
 (

ra
d
)

ψ
 (

ra
d
)

 

 

0 5
0

0.005

0.01

 

 
ϕ:DOBC

ϕ:ABC

0 10 20 30 40 50 60
−15

−10

−5

0

5

 

 

ψ:DOBC

ψ:ABC

0 10 20 30 40 50 60
−5

0

5

10

15

20

 

 

θ:DOBC

θ:ABC

0 5
−0.02

0

0.02

 

 

Figure 5 Time responses of φ, θ, ψ.
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in less than five seconds.

With respect to the ABC approach, the simulation results given in Figure 2 through 6 under the

proposed control scheme show better performances, higher precision tracking, faster convergence, and

robustness.

6 Conclusion

In this paper, a DOB-based backstepping sliding mode controller was proposed to solve the trajectory

tracking problem of QUAVs. First, the dynamic model of a QUAV was decomposed into two subsystems.

Then, the DOB was proposed to estimate the external disturbances, and the DOB-based backstepping

controller was designed for the first subsystem. To proceed, the SMC method based on DOB was

employed to design the controller for the second subsystem. Then, the tracking error was proved to be

asymptotically stable. Finally, by comparing the simulation results of a system under the designed control

scheme and the ABC method, we found that the proposed control scheme achieved better and more stable

tracking of the QUAV’s position. Our future work will focus on position and attitude tracking controller

design for QUAVs, while taking into consideration external disturbance, parametric uncertainties, and

input constraints.
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