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Abstract This paper presents a disturbance rejection method that is based on the equivalent-input-

disturbance approach for uncertain fractional-order (FO) systems. An FO observer is used to reconstruct

the plant states and estimate the disturbances. A disturbance estimator is incorporated in the construction

of the FO control system to actively compensate for the entire disturbance. A robust stability condition

for the control system and the parameters of the controller are derived using an indirect Lyapunov method.

The presented method effectively rejects disturbances and handles modeling uncertainties without requir-

ing prior knowledge of the disturbance. Comparison simulations on both numerical and practical examples

demonstrate the effectiveness of the proposed method.
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1 Introduction

During the past two decades, fractional-order (FO) calculus has attracted increasing interest in many

fields, such as physics, chemistry, and engineering. Compared with integer-order (IO) calculus, FO

calculus has several advantages in the study of control systems. First, FO derivatives have finite- and

infinite-dimensional characteristics, which help solve the description problem of distributed parameter

systems [1]. Thus, FO models describe the dynamic process and properties of the real system more

accurately. Second, FO controllers, such as CRONE, TID, and FO PID controllers, which have been

applied in practical engineering applications, constantly exhibit good control performance in the FO

system (FOS) because they have considerable degrees of freedom [2–4].

In 1996, Matignon [5] presented the bounded-input-bounded-output stability condition for the FOS,

which offers a theoretical basis for the stability analysis and controller design of the FOS. Subsequently,

researchers have proposed numerous linear-matrix-inequality (LMI) stability and stabilization conditions
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to ensure the robust stability of several classes of FOSs [6,7]. A Lyapunov method was introduced in [8]

for analyzing the stability of nonlinear systems. However, this method constructs a Lyapunov functional

using pseudo-state, thus limiting the control design of the FOS. To overcome this problem, Trigeassou [9]

presented an indirect Lyapunov method for the stability of fractional differential equations. The real

states in the equivalent model are used to construct the energy function [10]. And this method does not

need to calculate the fractional derivative of the Lyapunov function.

Researchers have developed several advanced techniques for the control design of the FOS on the basis

of its stability theories. These techniques include the sliding mode control (SMC) for uncertain and

nonlinear FOSs [11,12], active disturbance rejection control (ADRC) for nonlinear FOSs and FO chaotic

systems [13, 14], and adaptive control for FOSs [15].

As an important objective in the design of a control system, disturbance rejection problem also attracts

attention. Several disturbance rejection problems have recently been reported in the literature. ADRC

was first used for the FOS in [16]. The closed-loop system is considered a second-order system, and

FO is regarded as a part of the total disturbance, which is compensated by an external state observer

(ESO). Li et al. [17] developed a fractional ADRC method using the fractional ESO, which estimates the

total disturbance and dynamic states of the FO. Periodic disturbance for the FOS is considered on the

basis of an adaptive orthogonal signal generator [18]. An SMC scheme based on a disturbance observer

is introduced for a class of nonlinear FOSs with mismatched disturbances, where the derivative of the

external disturbance is assumed to converge to zero [19].

However, many problems are still found in the disturbance rejection of the FOS. The disturbance

rejection effect is constantly unsatisfactory. Moreover, several methods are suitable for only part of the

FOS or certain types of disturbances. The disturbance rejection problem becomes increasingly difficult

when modeling uncertainty is considered. The equivalent-input-disturbance (EID) approach overcomes

these difficulties in IO systems [20]. This approach is effective in working with external disturbances and

modeling uncertainties without prior information of the disturbances [21].

Motivated by prior work, the current study presents a robust disturbance rejection method for uncertain

FOSs that is based on the EID approach. The configuration of the FO control system contains an FO

state observer and a disturbance estimator. A robust stability condition of the control system and the

design of the parameters are derived by applying an indirect Lyapunov method. The proposed method is

effective in handling uncertainties and rejecting any type of unknown disturbance for an FOS. Moreover,

the measurement noise is also well processed due to the FO filter. Comparison simulations on both

numerical and practical examples demonstrate the validity of the method.

Throughout this paper, Rn and R
m×n stand for an n-dimensional Euclidean space and the set of all

m× n real matrices, respectively. We denote by XT the transpose of X . I and 0 stand for the identity

matrix and the null matrix of appropriate dimensions. The notation A > 0 (A < 0) with A being a

symmetric matrix means that the matrix A is positive (negative) definite. And
[

X Y

∗ Z

]

stands for
[

X Y

Y
T

Z

]

.

2 Preliminaries and problem formulation

In this section, some definitions and lemmas are introduced for the control design of the FOS.

Definition 1 ([3]). The Caputo fractional derivative of the function f(t) with starting point t0 = 0 is

defined by

0D
α
t f(t) =

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ , (1)

where Γ(·) is the Gamma function, Γ(z) =
∫∞

0 e−ztz−1dt, and m is an integer satisfying m− 1 < α 6 m.

Definition 2 ([9]). Let h(t) be the impulse response of a linear system. The diffusive representation

(or frequency weighting function) of h(t) is called µ(ω) with the following relation

h(t) =

∫ ∞

0

µ(ω)e−ωtdω, (2)
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where µ(ω) = sin(απ)
π

ω−α.

Lemma 1 ([9]). The fractional-order differential equation

0D
α
t x(t) = Ax(t)

due to the continuous frequency distributed model of the fractional integrator, can be expressed as







∂z(ω, t)

∂t
= −ωz(ω, t) +Ax(t),

x(t) =
∫∞

0 µ(ω)z(ω, t)dω,
(3)

where z(ω, t) is the continuous distributed state variable, and µ(ω) is the frequency weighting function

of the state variable z(ω, t), which is defined in Definition 2.

Lemma 2 ([22]). Given matrices Y,D and E of appropriate dimensions, Y +DFE+ETFTDT < 0 holds

for all F satisfying FFT < I, if and only if there exists an ε > 0 such that Y + εDDT + ε−1ETE < 0.

Lemma 3 ([23]). For a given matrix Π ∈ R
p×n with rank(Π) = p, there exists a matrix X̄ ∈ R

p×p such

that ΠX = X̄Π holds for any X ∈ R
n×n, if and only if X can be decomposed as

X =Wdiag{X̄11, X̄22}W
T, (4)

where W ∈ R
n×n is an orthogonal matrix, X̄11 ∈ R

p×p, and X̄22 ∈ R
(n−p)×(n−p).

Lemma 4 (Schur complement [24]). For a given symmetric matrix

Σ =

[

Σ11 Σ12

∗ Σ22

]

, (5)

the following statements are equivalent:

(1) Σ < 0;

(2) Σ11 < 0 and Σ22 − ΣT
12Σ

−1
11 Σ12 < 0;

(3) Σ22 < 0 and Σ11 − Σ12Σ
−1
22 Σ

T
12 < 0.

To explain the concept of the EID, we suppose that the linear time-invariant plant with disturbance is

{

ẋo(t) = Axo(t) +Bu(t) +Bdd(t),

yo(t) = Cxo(t),
(6)

where xo(t) is the state of the plant; u(t) is the control input; yo(t) is the output; d(t) is a disturbance;

and A,B,Bd, and C are constant matrices. If we assume that a disturbance is imposed only on the

control input channel, the plant is written as

{

ẋ(t) = Ax(t) +B[u(t) + de(t)],

y(t) = Cx(t).
(7)

Definition 3 ([20]). Let the input u(t) be zero. The disturbance de(t) is called an EID of the disturbance

d(t) if they produce the same effect on the output, that is y(t) ≡ yo(t) for all t > 0.

Lemma 5 ([20]). Let Ψ = pi(t) sin(ωit+ ψi), i = 0, . . . , n, n <∞, where ωi > 0 and ψi are constants,

and pi(t) denotes any polynomials in time t (i = 0, . . . , n). If the trajectory of the output caused by

the disturbance d(t) is yo(t) ∈ Ψ, then there exists an EID de(t) ∈ Ψ on the control input channel that

produces the same trajectory.

In this paper, we consider the following FO uncertain plant with disturbance

{

0D
α
t x(t) = [A+∆A(t)]x(t) + [B +∆B(t)][u(t) + d(t)],

y(t) = Cx(t),
(8)
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where 0 < α < 1 is the fractional order, x(t) ∈ R
n is the state of the plant, u(t) ∈ R

p and y(t) ∈ R
q are

the control input and output, respectively, and d(t) ∈ R
nd is the disturbance. A,B and C are constant

matrices of appropriate dimensions. ∆A(t) and ∆B(t) are time-variant uncertainties with the structure

[

∆A(t) ∆B(t)
]

=ME(t)
[

N0 N1

]

, (9)

where M,N0 and N1 are known real matrices which characterize the structure of the uncertainty. E(t) ∈

R
n×n is bounded as follows:

ET(t)E(t) 6 I, ∀t > 0, (10)

where the elements of E(t) are Lebesgue measurable.

Remark 1. Note that the disturbance in plant (8) is in the input channel. If a disturbance is imposed

on other channel except for the input one, we can also change the expression into the form in (8). In fact,

as stated in [20], if the plant is controllable and observable, an EID that belongs to Ψ always exists in

the control input channel of the plant. So, without loss of generality, we write FO plant with disturbance

as (8).

To deal with uncertainties, we write plant (8) as

{

0D
α
t x(t) = Ax(t) +Bu(t) + [∆A(t)x(t) + ∆B(t)u(t) +Bd(t) + ∆B(t)d(t)],

y(t) = Cx(t).
(11)

The uncertainties caused by the model mismatch between the identified model and the real process

can be considered as an additional disturbance introduced into the system [21]. So, we treat both the

uncertainties and the disturbances in the bracket in plant (11) as a whole disturbance, and compensate

for the whole disturbance in the next section.

3 Main results

First, we construct the configuration of the FO control system. We use the following FO Luenberger-type

state observer of the same order as the plant

{

0D
α
t x̂(t) = Âx̂(t) +Buf (t) + L[y(t)− ŷ(t)],

ŷ(t) = Cx̂(t),
(12)

where x̂(t) is the observer state, and gains L and Â are to be determined. So the state feedback control

law is

uf (t) = Kx̂(t), (13)

where K is the state feedback gain to be determined.

Remark 2. The FO observer which is with the same order as the plant is used to accurately reproduce

the plant states and to estimate the disturbances. Compared with conventional observers, observer (12)

contains two unknown system matrices, thus providing an opportunity to adjust the dynamical properties

of the FO control system.

Let the error between the plant and the observer state be

∆x(t) = x(t) − x̂(t). (14)

As discussed in [20], the disturbance estimate is given by

d̂(t) = B+LC [x(t)− x̂(t)] + uf(t)− u(t), (15)

where B+ = (BTB)−1BT is the Moore-Penrose generalized inverse of B.
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Figure 1 The configuration of the FO control system.

Since the output y(t) contains measurement noise, an FO low-pass filter F (s) is applied to filter the

noise of the estimate. We choose an FO filter with the same order as the plant to easily formulate FO

model for the control system. The filter satisfies

|F (jω)| ≈ 1, ∀ω ∈ [0, ωh], (16)

where ωh is the highest angular frequency for the disturbance estimation. The state-space form of the

filter F (s) is given by
{

0D
α
t xF (t) = AFxF (t) +BF d̂(t),

d̃(t) = CFxF (t),
(17)

where xF (t) is the filter state, d̂(t) and d̃(t) denote by the estimates before and after filtering, respectively.

Thus, the configuration of the FO control system for disturbance rejection is shown in Figure 1.

Incorporating the EID estimate actively compensates for the whole disturbance and achieves better

control performance for an FOS. Correspondingly, the control input is

u(t) = uf (t)− d̃(t). (18)

To analyze the stability of the control system in Figure 1, we first let the external disturbance d(t) be

zero.

Substituting (14) into (12) yields

0D
α
t x̂(t) = Âx̂(t) + LC∆x(t) +Buf (t). (19)

Combining (8), (12), (14) and (18) yields

0D
α
t ∆x(t) = [A+∆A(t)− Â]x̂(t) + [A+∆A(t)− LC]∆x(t) − [B+∆B(t)]CFxF +∆B(t)uf (t). (20)

From (15), (17) and (18), we obtain the expression of the filter state

0D
α
t xF (t) = BFB

+LC∆x(t) + (AF +BFCF )xF (t). (21)

Define

ϕ(t) =
[

x̂T(t) ∆xT(t) xTF (t)
]T

. (22)

Combining (13), (19)–(21) yields the model of the FO control system

0D
α
t ϕ (t) = Āϕ (t) , (23)
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where

Ā =









Â+BK LC 0

A+∆A(t) − Â+∆B(t)K A+∆A(t)− LC −BCF −∆B(t)CF

0 BFB
+LC AF +BFCF









.

Assume that the singular value decomposition (SVD) of matrix C with full-row rank is

C = U [S 0]V T, (24)

where U and V are orthogonal matrices, and S is a semi-positive definite matrix. Then partition matrix

V as V = [ V1 V2 ].

Theorem 1. FOS (23), 0 < α < 1, is asymptotically stable, if there exist symmetric positive definite

matrices X1, X11, X22 and X3, and appropriate matrices W1, W2, W3, together with a positive scalar ε,

such that the following LMI is feasible:

Φ =













Φ11 Φ12 0 Φ14

∗ Φ22 Φ23 Φ24

∗ ∗ Φ33 Φ34

∗ ∗ ∗ −εI













< 0, (25)

where

Φ11 = W3 +WT
3 +BW1 +W1

TBT,

Φ12 = W2C +X1A
T −WT

3 ,

Φ14 = X1N
T
0 +WT

1 N
T
1 ,

Φ22 = AX2 +X2A
T −W2C − CTW2

T + εMMT,

Φ23 = −BCFX3 + CTWT
2 B

+TBT
F ,

Φ24 = X2N
T
0 ,

Φ33 = (AF +BFCF )X3 +X3(AF +BFCF )
T,

Φ34 = −X3C
T
FN

T
1 ,

and X2 = V1X11V
T
1 + V2X22V

T
2 .

Moreover, the gains of the state feedback and that of the FO observer are given by

K =W1X1
−1, L =W2USX

−1
11 S

−1UT, Â =W3X
−1
1 . (26)

Proof. In terms of Lemma 1, the equivalent model of (23) is







∂Z(ω, t)

∂t
= −ωZ(ω, t) + Āϕ(t),

ϕ(t) =
∫∞

0 µ(ω)Z(ω, t)dω.
(27)

Define a Lyapunov functional candidate as

V (t) =

∫ ∞

0

µ(ω)ZT(ω, t)PZ(ω, t)dω, (28)

where P = diag{P1, P2, P3}. P1, P2 and P3 are positive definite matrices to be determined.

Taking along the solution trajectories of (27), the time derivative of V (t) is

V̇1(t) =

∫ ∞

0

µ(ω)[−ωZT(ω, t) + ϕT(t)ĀT]PZ(ω, t)dω

+

∫ ∞

0

µ(ω)ZT(ω, t)P [−ωZ(ω, t) + Āϕ(t)]dω
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= −2

∫ ∞

0

ωµ(ω)ZT(ω, t)PZ(ω, t)dω + ϕT(t)ĀTPϕ(t) + ϕT(t)PĀϕ(t). (29)

Thus, V̇1(t) < 0, which implies that system (27) is asymptotically stable, if

ĀTP+PĀ< 0. (30)

By separating certain and uncertain parts of the system matrices in (30), we obtain








H11 H12 0

∗ H22 H23

∗ ∗ H33









+ [ΩĒ(t)Ψ + ΨTĒ(t)TΩT] < 0, (31)

where

H11 = P1Â+ P1BK + ÂTP1 +KTBTP1,

H12 = P1LC +ATP2 − ÂTP2,

H22 = P2A− P2LC +ATP2 − C
T

LTP2,

H23 = −P2BCF + CTLTB+T
BT

FP3,

H33 = P3(AF +BFCF ) + (AF +BFCF )
TP3,

Ω =









0 0 0

0 P2M 0

0 0 0









, Ē(t) =









E(t) 0 0

0 E(t) 0

0 0 E(t)









,

Ψ =









0 0 0

N0+N1K N0 −N1CF

0 0 0









.

Since Ē(t)TĒ(t) 6 I holds for all t, from Lemma 2, Eq. (31) can be expressed as








H11 H12 0

∗ H22 H23

∗ ∗ H33









+ εΩΩT + ε−1ΨTΨ < 0, (32)

where ε > 0.

From Lemma 4, Eq. (32) is equivalent to












H11 H12 0 NT
0 +KTNT

1

∗ H22 + εP2MMTP2 H23 NT
0

∗ ∗ H33 −CT
FN

T
1

∗ ∗ ∗ −εI













< 0. (33)

To turn (33) into an LMI, first, pre- and post-multiply (33) by

diag{P1
−1, P2

−1, P3
−1, I} = diag{X1, X2, X3, I}. (34)

Then, we decompose X2 as

X2 = V diag{X11, X22}V
T. (35)

Assume that CX2 = X̄2C. Combining Lemma 3 and Eq. (24) yields

X̄2 = USX11S
−1U−1. (36)

Let

KX1 =W1, LX̄2 =W2, ÂX1 =W3. (37)

Therefore, by combining (33)–(37), we obtain LMI (25) and Gains (26).



Liu R J, et al. Sci China Inf Sci July 2018 Vol. 61 070222:8

Remark 3. The use of the pending matrix Â in the FO observer provides more freedom for LMI (25),

which makes it easier to find a feasible solution of LMI (25).

Remark 4. In the proof of Theorem 1, the Lyapunov functional candidate is constructed using real

states of the equivalent continuous frequency model. So, compared with FO Lyapunov method, it is less

conservative. On the other hand, the design procedure is simple. We only need to solve an LMI (25) to

obtain the controller gains, and LMI (25) is not large. Therefore, this method avoids calculation problems

caused by a large partitioned matrix.

4 Simulation verification

In this section, a numerical example and a practical example are given to demonstrate the validity of the

presented method for FOSs. Meanwhile, comparison simulations over the observer-based method and the

IO controllers are presented to show the superiority of our method.

4.1 A numerical example

Consider the FO uncertain plant (8) with the parameters

A =

[

−9 2

−4 −16

]

, B =

[

1.2

0.6

]

, C =
[

1 0
]

, α = 0.9, (38)

and the uncertainties














M =

[

1 0

0 1

]

, N0 =

[

1 0.2

0.1 4

]

, N1 =

[

0.1

0.1

]

,

E(t) = diag{sin(2πt), sin(2πt)}.

(39)

Plant (38) is controllable and observable.

Let a step disturbance impose on the plant at t = 2 s,

d1(t) = 1(t− 2). (40)

The FO filter is selected as

F (s) =
100

sα + 101
(41)

to meet condition (16). So the parameters of the state space expression (17) are

AF = −101, BF = 100, CF = 1. (42)

Calculate the SVD of the matrix C. In terms of Theorem 1, the controller gains are derived by solving

LMI (25) using MATLAB Toolbox.

K1 =
[

−1.7609 −28.3317
]

, L1 =

[

5.1709

−10.0729

]

, Â1 =

[

2.3542 23.6367

5.2410 8.9842

]

. (43)

The output response and control input for Disturbance (40) are shown in Figures 2 and 3, respectively.

The presented method achieves good disturbance rejection performance for an FOS with uncertainties.

The largest tracking error of the output response is less than 0.1, and converges to the starting point at

approximately 11 s.

To further verify the superiority of the proposed method, we added the following disturbance with

different frequencies to the plant

d2(t) = 0.3(sin 0.5πt+ sin 0.8πt)− 0.2. (44)
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Figure 2 Output response for plant (38) with disturbance

(40).

Figure 3 Control input for plant (38) with disturbance

(40).
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Figure 4 Disturbance (44). Figure 5 Outputs comparison between our method (the

real line) and the observer-based method (the dotted line).

Table 1 Comparison of disturbance rejection results

Output y Peak-to-peak value Math. expectation Standard deviation

Disturbance (44) 1.200 −0.184 0.298

Observer-based method 0.174 −0.026 0.043

EID-based method 0.141 −0.002 0.034

We used our method and the observer-based method [25] for comparison. The difference between these

two methods lies in the disturbance estimator, which actively compensates for the whole disturbance.

Figure 4 shows disturbance (44). The comparison results are shown in Figure 5. The corresponding data

of the comparative results are listed in Table 1. Our method clearly achieves better control performance

than the observer-based method. The average tracking error decreased by 92%.

Remark 5. External disturbances and modeling uncertainties are also treated as “total disturbance” in

the ADRC method, and they are estimated using ESO. This is different from the disturbance estimator

in this paper. The gains of the ESO are chosen large enough to achieve good disturbance rejection

performance of the system. But measurement noise will be enhanced due to large gains, which influences

the control performance. On contrast, our method achieves satisfactory control performance without

requiring large gains for the FO observer.

4.2 A practical example

Heating process constantly occurs in an FO, especially when heat conduction occurs between the operating

and measured physical variables. In [26], a temperature control system for a titanium billet furnace was

identified as a well-controlled FO model. In this part, we consider one of the heating areas in a titanium
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Figure 6 Control input for plant (46) affected by distur-

bance (48) and a white noise.

Figure 7 Output response for plant (46) affected by dis-

turbance (48) and a white noise.

billet furnace with delay set to zero. The process was identified as

G(s) =
1

27.593s0.879 + 1
. (45)

So the parameters for state-space model (8) are

A = −
1

27.593
, B =

1

27.593
, C = 1, α = 0.879. (46)

The uncertainties were assumed to be

M = 1, N0 = −0.031, N1 = 0.003, E(t) = sin(0.5πt). (47)

And this heating area was influenced by the following external disturbance at t = 5 min:

d3(t) = 100(t− 5). (48)

Then, we consider the temperature control for this heating area. The parameters of the filter are also

chosen as (42). Solving LMI (25) yields the following control parameters:

K2 = −9.6707, L2 = 0.0652, Â2 = −0.5208. (49)

Since the output of the system contains measurement noise, we consider that plant (46) is affected by

both disturbance (48) and a white noise (assumed power: 10−4). Figure 6 shows the control input. The

control temperature is between −56◦C and 100◦C. The output response is shown in Figure 7. It is clear

that the EID-based FO control system handles large uncertainties and rejects disturbances very well.

The maximal temperature fluctuation is less than 1.4◦C, and the output reaches the balance temperature

within 7 min. Moreover, the FO filter plays an important part in filtering high frequency noise. So the

noise in the control system is also well processed, and the peak value of the output is only 0.05◦C (the

original peak value of the white noise is 0.4).

In order to illustrate the advantage of the proposed FO controller over the IO controller, we carry out

two more simulations for comparison. First, since the control system in [21] has the same configuration

as it does in this paper, we use the method in [21] to obtain the IO control parameters. The obtained

parameters areK3 = −11.9059, L3 = 0.0103 and Â3 = A = −0.0362. The dotted curve in Figure 8 shows

the output response. It is obvious that the disturbance rejection performance is much better using our

method (the real curve). Second, we use the same parameters as (49) and simulate applying IO observer

and filter in the control system. Compared with our FO controller, the IO controller (conventional EID)

shows larger overshoot and longer settling time in rejecting the disturbance. Therefore, the FO observer

with the same order as the plant reproduces states of the plant and estimates disturbances of the system

more accurately.
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Figure 8 (Color online) Output responses for plant (46) with disturbance (48) for the method in [21], our method, and

the conventional EID method.

5 Conclusion

A disturbance rejection method based on the EID approach is presented for the FOS. A robust stability

condition and the parameters of the controller are derived using an indirect Lyapunov method. External

disturbances and modeling uncertainties are compensated well under the construction of the EID-based

FO control system. The advantages of our method are as follows:

(1) Our method not only rejects unknown disturbances effectively, but also processes noise well for an

uncertain FO system.

(2) The proposed technique effectively rejects any disturbance without requiring prior information

about the latter.

(3) The design procedure is simple and avoids using large observer gains to achieve satisfactory distur-

bance rejection performance.

Comparison simulations demonstrate that the presented method is feasible and efficient.
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