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Abstract This paper addresses the learning control problem for a group of robot manipulators with ho-

mogeneous nonlinear uncertain dynamics, where all the robots have an identical system structure but the

reference signals to be tracked differ. The control objective is twofold: to track on reference trajectories

and to learn/identify uncertain dynamics. For this purpose, deterministic learning theory is combined with

consensus theory to find a common neural network (NN) approximation of the nonlinear uncertain dynamics

for a multi-robot system. Specifically, we first present a control scheme called cooperative deterministic

learning using adaptive NNs to enable the robotic agents to track their respective reference trajectories on

one hand and to exchange their estimated NN weights online through networked communication on the

other. As a result, a consensus about one common NN approximation for the nonlinear uncertain dynamics

is achieved for all the agents. Thus, the trained distributed NNs have a better generalization capability than

those obtained by existing techniques. By virtue of the convergence of partial NN weights to their ideal

values under the proposed scheme, the cooperatively learned knowledge can be stored/represented by NNs

with constant/converged weights, so that it can be used to improve the tracking control performance without

re-adaptation. Numerical simulations of a team of two-degree-of-freedom robot manipulators were conducted

to demonstrate the effectiveness of the proposed approach.
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1 Introduction

Over the past decades, applications of robots have been dramatically expanding and the complexity of

their tasks has increased with more stringent performance requirements. This has inspired researchers

to focus on using multiple general-purpose robots operating in a collaborative fashion to execute the

assigned tasks rather than a single complex customized robot. The main goal of employing multiple

robots is to divide complex tasks into smaller and simpler ones in order to save the time, energy, and

cost expended, while increasing the accuracy and efficiency of their performance. An additional merit
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of multi-robot systems is that they provide redundancy to resolve cases of failure [1, 2]. These merits

have drawn the attention of many researchers and motivated them to develop various cooperative control

approaches for multi-robot coordination; see [3–5].

Considerable effort has been devoted to addressing the problem of multi-robot tracking control [3–9].

In particular, in the studies described in [6–8], barrier Lyapunov functions were incorporated in an adap-

tive algorithm to control state constrained nonlinear systems. The authors of [9] employed critic neural

networks (CNNs) and action neural networks (ANNs) to reinforce learning-based adaptive tracking con-

trol for multiple-input multiple-output nonlinear discrete-time systems. Despite the rich literature, many

challenges remain. One of these challenges is how to address the nonlinear modeling uncertainties that can

exert strong adverse effects on nonlinear distributed control systems [10]. Although some studies [2,11,12]

considered these nonlinear model uncertainties in the robot manipulator control problem, their authors

used a single robot manipulator and did not employ multiple robots. The leader-follower approach dis-

cussed in [3] assumed full knowledge about the system model and did not consider the nonlinear model

uncertainties in it. Although the studies presented in [1, 5, 13, 14] considered the nonlinear uncertain

dynamics for multi-robot manipulator systems, decentralized learning to only locally approximate the

nonlinearities for each individual robot was employed. In the study in [15], a primal-dual neural net-

work (PDNN) was combined with neural-dynamic optimization-based nonlinear model predictive control

(NMPC) techniques for leader-follower mobile robot formation control. A control scheme for a tele-

operated single robotic manipulator with dual masters that is constrained by an unknown geometrical

environment was developed in [16], where radial basis function neural networks (RBF NNs) were used to

deal with system uncertainties. In [17], a decentralized adaptive fuzzy control for two cooperating robotic

manipulators moving an object with impedance interaction was presented. These approaches assume full

communication between the follower and the leader/masters or between all the robots involved in the

network. This was not our assumption in this study; however, a consensus between all the robots could

still be obtained. In the research presented in [13], the graph theory was employed to control a team of

robot manipulators in the presence of uncertainties and disturbances using velocity observers. However,

the use of a high-gain observer in the derived controller to estimate the manipulators’ velocity may ex-

cite unmodeled high-frequency dynamics and amplify measurement noise. This could negatively affect

the transient performance and generate high frequency control torques that would damage the system

actuators.

The deterministic learning theory using RBF NNs has been discussed in multiple papers, such as

[1, 18–23]. However, in these studies the deterministic learning theory was used for each single agent

independently; i.e., the agents did not share the NN learning knowledge with each other. In particular, our

previous study reported in [14] considered multi-robot manipulator systems with heterogeneous nonlinear

uncertain dynamics. Each robot in the team was considered a nonlinear uncertain system that was not

necessarily identical to the other agents (e.g., the masses, lengths, and materials of the links differed). The

NN learning/identification was performed in a fully distributed manner. One of the main challenges in this

approach is that the convergent NN is different for each single agent according to the reference trajectory

applied to it. This results in a convergent NN approximated for this specific reference trajectory, limiting

the generality of the NNs. To explore more advanced learning capabilities of NNs, motivated by [24], in

the study described in this paper we leveraged the deterministic learning theory to allow all the agents

to share their adaptive NN weights with their neighbors in the network. This unifies the convergent NN

weights of the agents to obtain a common approximation among all the robots and to broaden the scope

of the unknown functions that each agent can approximate.

Specifically, we aimed to address the problem of trajectory tracking control and uncertain dynam-

ics learning/identification for multi-robot manipulator systems with homogeneous nonlinear uncertain

dynamics. We combine the deterministic learning theory from [18] with the consensus control theory

from [25, 26]. More specifically, all the robots in the team are considered identical nonlinear uncertain

systems and various reference trajectories are assigned to them. The proposed scheme, called cooperative

deterministic learning (CDL), utilizes RBF NNs to approximate the robots’ nonlinear uncertain dynam-

ics. The robots communicate with each other over an undirected topology to exchange their estimated
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NN weights. The weights of the RBF NNs obtained by our scheme are optimal over a domain covered by

the union of all system orbits. This implies that the learned RBF NN models have a better generalization

capability than those obtained by conventional deterministic learning mechanisms [1, 14]. Moreover, the

accurate identification of the uncertainties introduced by our approach leads to the important property

that the learned experience can be stored/represented using constant/converged NNs. These constant

NNs can then be re-utilized to improve the system’s performance without re-adapting the NN weights

and learning knowledge exchange among the robotic agents. Extensive simulation studies were conducted

to demonstrate the effectiveness of the proposed results.

Our contributions in this paper are in the following aspects. (i) Generalization capabilities are intro-

duced into the learning scheme of a multi-robot system to approximate/identify the nonlinearities. The

NN weights learned by the proposed scheme are optimal in a larger approximation domain consisting of

the union of the state orbits of all robots. This scheme is more advanced than traditional decentralized

learning methods, where the weights are optimal only in local approximation domains along each agent’s

own state orbits. (ii) In the proposed scheme, cooperative identification of the robots’ nonlinear uncertain

dynamics and tracking control performance can be achieved simultaneously. (iii) The proposed scheme

affords a learning control law with distinctive capabilities of knowledge representation/storing and expe-

rience re-utilization. The results presented in this paper can be used to effectively improve multi-robot

manipulators learning control design.

The rest of the paper is organized as follows. Some preliminary reviews on graph theory, RBF NNs,

and the problem statement are given in Section 2. The main results of this study, including the CDL

control design and the learning control scheme that uses experience, are presented in Sections 3 and 4,

respectively. Our simulation results are provided in Section 5. Finally, in Section 6 the conclusion of the

study is presented.

2 Preliminaries and problem statement

2.1 Notation and graph theory

The following notations are used in the paper. R denotes the set of real numbers. R+ represents

the set of positive real numbers, Rm×n the set of real m × n matrices, and R
n the set of real n × 1

vectors. S
n, Sn+, and S

n
− denote the sets of real symmetric n× n matrices and the positive definite and

negative definite matrices, respectively. The identity matrix of an arbitrary dimension is denoted by

I. 1n denotes an n-dimensional column vector, where all elements are 1. A block diagonal matrix with

matricesX1, X2, . . . , Xp on its main diagonal is denoted by diag{X1, X2, . . . , Xp}. For a matrixA, Ā is the

vectorization of A, obtained by stacking the columns of A. For a series of column vectors x1, x2, . . . , xn,

col{x1, x2, . . . , xn} represents a column vector obtained by stacking them. For two integers k1 < k2, we

denote I [k1, k2] = {k1, k1+1, . . . , k2}. For a matrix M , MT denotes its transpose. For x ∈ R
n, the norm

is defined as ‖x‖ :=
(

xTx
)1/2

. For a square matrix A, λi(A) denotes its ith eigenvalue with λmax(A) and

λmin(A) representing its maximum and minimum eigenvalues, respectively, and Re(λi(A)) represents the

real part of the ith eigenvalue of A. The notation A⊗B represents the Kronecker product of matrices A

and B. We denote by Br the open ball of radius r > 0 such that Br := {x ∈ R
n : ‖x‖ < r}.

In the context of multi-robot manipulator systems with interconnected communication graphs, an

undirected graph G = (V , E) consists of a finite set of nodes V = {1, 2, . . . , N} and an edge set E ⊆ V ×V .

An edge of E , whether from node i to node j or vice versa, is denoted by (i, j), where node i is called a

neighbor of node j; i.e., (i, j) = E(j, i) ∈ E . Note that an undirected graph is said to be connected if

there is an undirected path between every pair of distinct nodes. The weighted adjacency matrix of the

undirected graph G is a non-negative matrix A = [aij ] ∈ R
N×N , where aii = 0 and aij > 0 ⇒ (j, i) ∈ E .

The Laplacian of the graph G is denoted by L = [lij ] ∈ R
N×N , where lii =

∑N
j=1 aij and lij = −aij

if i 6= j. Therefore, given a matrix A = [aij ] ∈ R
N×N satisfying aii = 0, i ∈ I [1, N ] and aij > 0,

i, j ∈ I [1, N ], we can always define an undirected graph G such that A is the weighted adjacency matrix

of the graph G; we call G a graph of A. It is known that at least one eigenvalue of L is at the origin and
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all nonzero eigenvalues of L have positive real parts [25, 26]. Moreover, according to [24, Lemma 1], L

has one eigenvalue at the origin and all other (N − 1) eigenvalues have positive real parts if and only if

the undirected graph G is connected.

2.2 Radial basis function neural networks

A standard RBF NN can be described as

H(X) =

N
∑

i=1

wisi(X) = WTS(X), (1)

where W ∈ R
N is the weight vector, X ∈ ΩX ⊂ R

p is the input vector, N is the number of neurons

(nodes) in the NN, S(X) ∈ R
N is the regressor vector of radial basis functions, and si is defined by the

following common Gaussian function [27]:

si (‖X − µi‖) = e
[
(−(X−µi)

T(X−µi))

ς2
i

]
, (2)

where µi is the mean value of the function si and ςi is its width (standard deviation). The Gauss function

belongs to the class of localized RBF type, where si (‖X − µi‖) → 0 as X → ∞ [27]. As shown in [27], for

any continuous function f(X) : ΩX → R and for an NN function approximator with a sufficient number

of neurons N , there exists an optimum constant weight vector W ∗ such that

H(X) = W ∗TS(X) + ǫ(X), ∀X ∈ ΩX , (3)

where |ǫ(X)| < ǫ∗ is the approximation error and ǫ∗ is the upper bound of this error. In this study,

we used an important class of RBF NNs called the localized RBF NN, where each basis function can

only locally affect the network output [27]. This type of approximation is called spatially localized

approximation [18, 27].

For any bounded trajectory Xl(t) ⊂ ΩX , the function H(X) can be approximated using a limited

number of neurons located in a local region along the trajectory,

H(X) = W ∗T
l Sl(X) + ǫl(X), (4)

where Sl(X) = [sj1(X), sj2(X), . . . , sjl(X)]
T
∈ R

Nl with Nl < N and |sjl| > ι, where ι > 0 is a small

positive constant. The weight vectorW ∗
l = [w∗

j1, . . . , w
∗
jl]

T ∈ R
Nl and ǫl is the approximation error, where

the difference |ǫl(X)|−|ǫ(X)| is small [27]. Based on the previous results on the persistent excitation (PE)

property of RBF networks [18,27], it is shown that for a localized RBF network defined by WTS(X), the

centers of which are placed on a regular lattice, almost any recurrent trajectory1) X(t) can lead to the

satisfaction of the PE condition of the regressor sub-vector Sl(X) [27]. The following important lemma

regarding the PE condition of the RBF NNs is recalled from [18].

Lemma 1. Consider any continuous recurrent trajectory X(t) : [0,∞) → R
q. X(t) remains in a

bounded compact set ΩX ⊂ R
q. Then, for the RBF NN defined by WTS(X) with centers placed on a

regular lattice (sufficiently large to cover the compact set ΩX), the regressor sub-vector Sl(X) consisting

of the RBFs with centers located in a small neighborhood of X(t) is persistently exciting.

The following definitions and lemmas, which are important for the subsequent developments, are

recalled from [24].

Consider the system

ẋ = f(t, x), x(t0) = x0, t > t0, (5)

where f : [t0,∞)× R
n → R

n is piecewise continuous in t and locally Lipschitz in x on [t0,∞) × R
n and

f (t, 0) = 0. The solution of this system is simply denoted by x(t).

1) A recurrent trajectory represents a large set of periodic and periodic-like trajectories generated from linear/nonlinear

dynamical systems [28]. A detailed characterization of recurrent trajectories can be found in [18].
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Definition 1 ([29]). The origin x = 0 of (5) is said to be uniformly locally exponential stable (ULES)

if there exist constants γ1, γ2, and r > 0 such that, for all t > t0 and (t0, x0) ∈ R+ × Br, the solution

satisfies

‖x(t, t0, x0)‖ 6 γ1 ‖x0‖ e
−γ2(t−t0), ∀t > t0. (6)

Given all the above, let us consider the system [24]

[

ẋ1

ẋ2

]

=

[

A(t, x) B(t, x)T

−C(t, x) −D(t, x)

][

x1

x2

]

, (7)

where the states x1 ∈ R
n and x2 ∈ R

m, x =
[

xT
1 , x

T
2

]T
, and ∀t > 0, A ∈ R

n×m, B ∈ R
m×n, C ∈ R

m×n,

and D ∈ R
m×m are the system matrices. Matrix D is assumed to be positive semi-definite. Let us assume

the following [24].

Assumption 1. There exist r > 0 and φM such that max{‖B(t, x)‖ , ‖D(t, x)‖ , ‖dB(t,x(t))
dt ‖} 6 φM for

all t > t0 and (t0, x0) ∈ R+ ×Br.

Assumption 2. There exist r > 0 and symmetric matrices P (t, x) andQ(t, x) such that for all t > t0 and

(t0, x0) ∈ R+ ×Br, A(t, x)
TP (t, x) + P (t, x)A(t, x) + Ṗ (t, x) = −Q(t, x), and P (t, x)B(t, x)T = C(t, x)T.

Furthermore, there exist pm, qm, pM , and qM such that pmIn 6 P (t, x) 6 PMIn and qmIn 6 Q(t, x) 6

qMIn.

Under the above two assumptions, we have the following lemma [24].

Lemma 2. Considering Assumptions 1 and 2, the system (7) is ULES where r is any fixed constant, if

there exist two positive constants T0 and α such that for all (t0, x0) ∈ R+ ×Br,

∫ t+T0

t

[

B(τ, x(τ, t0, x0))B(τ, x(τ, t0, x0))
T +D(τ, x(τ, t0, x0))

]

dτ > αIm, ∀t > t0. (8)

2.3 Problem statement

In this study, we aimed to address the problem of tracking control for a group of homogeneous robot

manipulator systems in the presence of nonlinear uncertain dynamics. To be more specific, each robot

is assigned to a different reference trajectory whereas all the robots have an identical system structure

and hence the same nonlinear uncertain dynamics. These uncertain nonlinearities are approximated by

utilizing the learning capability of neural networks (NNs) and the consensus theory, where the estimated

weights of RBF NNs for each robot are shared over the communication topology so that a consensus about

the optimum weight estimation can be reached among all agents; i.e., Ŵi → W for all i ∈ I[1, N ], where

Ŵi is the estimated weight vector for the ith agent and W is the commonly convergent weight vector. The

communication topology considered in our problem is an undirected connected graph. Motivated by [24],

we developed a cooperative deterministic learning scheme in which the agents exchange their estimated

NN weights so that all the estimated weights of the NNs can converge to small neighborhoods around their

optimal values over a domain consisting of the union of all state orbits. Thus, the generalization capability

of the learned controllers for accurate function approximation/identification via inter-agent collaboration

[1, 25, 26] is better than those obtained by regular decentralized learning methods [1, 5, 11, 14, 30].

To this end, we consider a multi-robot manipulator system consisting of N robotic manipulators with

homogeneous nonlinear uncertain dynamics, each of which can be modeled as [31]

M(qi)q̈i + C(qi, q̇i)q̇i + F (q̇i) +G(qi) = τi, i ∈ I [1, N ] , (9)

where the subscript i denotes the ith robotic agent in the group. For each i ∈ I[1, N ],

qi = [ qi1 qi2 · · · qin ]T ∈ R
n represents the angular position of the joints, and q̇i and q̈i ∈ R

n repre-

sent the velocity and acceleration vectors of the joints, respectively. τi ∈ R
n is the input torque. For any

qi, the inertia matrix M(qi) is positive definite (i.e., M(qi) ∈ S
n×n
+ ), F (q̇i) ∈ R

n is the friction coefficient,

and G(qi) ∈ R
n represents the gravitational force. The centripetal torque matrix C(qi, q̇i) ∈ R

n×n is
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assumed to be unknown but is upper bounded by a constant matrix Y . This assumption is reason-

able and made without losing any generality, and was typically adopted in many previous studies. This

upper bound is local information, which is assumed to be available for the corresponding local robot.

Equivalently, the above system dynamics can be rewritten as

ẋi,1 = xi,2,

ẋi,2 = M−1(xi,1)[τi − C(χi)xi,2 −G(xi,1)− F (xi,2)], ∀i ∈ I [1, N ] ,
(10)

where χi = col{xi,1, xi,2} with xi,1, xi,2 ∈ R
n, xi,1 = qi, and xi,2 = q̇i. The dynamics terms C(χi) +

G(xi,1) + F (xi,2) are assumed to be uncertain.

Let us consider the following reference dynamics for each robot i to generate the position tracking

reference signals:

ẋdi,1 = xdi,2,

ẋdi,2 = fdi (χdi, t) , ∀i ∈ I [1, N ] ,
(11)

where χdi = col{xdi,1, xdi,2}, where xdi,1 and xdi,2 ∈ R
n represent the desired position and velocity,

respectively, and fdi (χdi, t) is a known continuous nonlinear function.

Remark 1. The diversity in reference trajectories assigned to each robotic agent is useful, because this

may excite different unmodeled uncertain dynamics and thus broaden the search space for the optimum

RBF NNs weights.

Given the multiple robotic system consisting of N number of robot manipulators in (10) and the

reference trajectory in (11), we can find a non-negative matrix called the adjacency matrixA = [aij ] , i, j ∈

I [1, N ] , such that all the elements of A representing the interconnection between the agents are arbitrary

non-negative numbers satisfying aii = 0, ∀i ∈ I [1, N ]. Let G = (V , E) be an undirected graph with

respect to A. Then, V = {1, . . . , N} corresponds to all the nodes representing the N robotic agents, and

(i, j) ∈ E if and only if aij > 0. We consider the following assumptions regarding the reference trajectory

(11) and the communication graph G.

Assumption 3. All the states of the reference model (11) remain uniformly bounded; i.e., ∀i ∈

I [1, N ] , χdi = col{xdi,1, xdi,2} ∈ Ωi, ∀t > 0, where Ωi ⊂ R
2n is a compact set. Moreover, the asso-

ciated reference trajectory denoted by φ(χdi(0)), starting from the initial condition χdi(0), is a periodic

signal.

Assumption 4. The undirected graph G is connected.

The above assumptions are made without losing any generality. Assumption 3 helps us prove the partial

PE condition, the system stability, and estimated parameter convergence in the proposed distributed

adaptive control system. However, with Assumption 4, we can prove the generalization capability of the

NNs, as shown in the following.

The multi-robot manipulator control problem considered in this paper can be described as follows.

Problem 1. Given a system composed of a team of N identical robot manipulators (10) operating

in an undirected connected and weighted network topology G, our objective is to design a cooperative

deterministic learning scheme such that

(1) All N robots collaboratively estimate the nonlinear uncertain dynamics (C(χi)+G(xi,1)+F (xi,2)),

as well as accurately tracking their respective reference trajectories;

(2) The learned knowledge can be re-utilized to achieve a better control performance for all the agents

without re-adapting to the nonlinear uncertain dynamics.

3 Cooperative deterministic learning using radial basis function neural net-

works

In this study, we assumed that each individual robotic agent can exchange its estimated knowledge with

its neighboring robots. This motivated us to design a CDL scheme to enable each robotic agent to
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estimate the nonlinear uncertainties and exchange estimated/learned information with the other robots.

To this end, let us consider the ith robotic agent and let a filtered output signal ri be defined as

ri = ėi + λiei, ∀i ∈ I [1, N ] , (12)

where λi is a positive constant and ei ∈ R
n is the tracking error defined by

ei = xi1 − xdi,1, ∀i ∈ I [1, N ] . (13)

From (10), (12), and (13), the derivative ṙi is equal to

ṙi = ëi + λiėi

= M−1(xi,1)(τi − C(xi,1, xi,2)xi,2 − F (xi,2)−G(xi,1))− ẍdi,1 + λiėi, ∀i ∈ I [1, N ] .
(14)

Let the function H(χi) = [ h1(χi) h2(χi) · · · hn(χi) ]
T include all the unknown parts of the model, so

that

H(χi) = C(χi)xi,2 +G(xi,1) + F (xi,2), ∀i ∈ I [1, N ] , (15)

where χi = col{xi,1, xi,2} ∈ Ωi ⊂ R
2n. We then employ the following RBF NNs to approximate this

unknown nonlinear function:

H(χi) = WTSi(χi) + ǫi(χi), ∀i ∈ I [1, N ] , (16)

where W denotes the ideal constant weight vector and |ǫi(χi)| 6 ǫ∗i is the approximation errors with an

arbitrarily small constant ǫ∗i > 0. Let Ŵi be the estimate of W for individual robotic agent i; then, the

feedback control law is constructed as

τi = ŴT
i Si(χi) +M(xi,1)(ẍdi,1 − λiėi)−Kiri, ∀i ∈ I [1, N ] , (17)

where Ki ∈ S
n
+, Ŵ

T
i Si(χi) = [ ŴT

i,1Si,1(χi) ŴT
i,2Si,2(χi) · · · ŴT

i,nSi,n(χi) ]
T is used to approximate the

unknown nonlinear function vector H(χi) in (15) along the trajectory χi within the compact set Ωi. A

robust self-adaptation law for online updating Ŵi is constructed using the σ-modification technique [27]

and the consensus theory [24, 25, 29, 32, 33] through a communication topology among the agents:

˙̂
Wi =

˙̃Wi = −Γi

[

Si(χi)ri + σiŴi

]

− β

N
∑

j=1

aij

(

Ŵi − Ŵj

)

, ∀i ∈ I [1, N ] , (18)

where W̃i = Ŵi −W and Γi > 0 is the adaptation gain, σi is a modification scalar constant, and β > 0

is a design parameter. Substituting (15)–(17) into (14) yields

ṙi = M−1
i (xi,1)(τi −Hi)− ẍdi,1 + λiėi,

= M−1
i (xi,1)(Ŵ

T
i Si(χi) +Mi(xi,1)ẍdi,1 −Mi(xi,1)λiėi −Kiri −WTSi(χi)− ǫi)− ẍdi,1 + λiėi,

= M−1
i (xi,1)(W̃

T
i Si(χi)− ǫi −Kiri), ∀i ∈ I [1, N ] . (19)

On the basis of the closed-loop dynamics (18) and (19), we first summarize the results of the overall

system stability and tracking control performance in the following theorem.

Theorem 1. Given the closed-loop system consisting of the agents system (10), the reference trajectories

(11), the control law (17), and the NN weight update law (18) under Assumptions 1–4, suppose the

communication topology is undirected and connected. If recurrent orbits φi for the states χi exist in a

sufficiently large compact set Ωi such that χi ∈ Ωi for all i ∈ I [1, N ], then, starting from any initial

conditions χi(0) and Ŵi(0), we have that (i) all the signals in the closed-loop system remain uniformly

bounded; (ii) the output tracking error xi,1 − xdi,1 converges exponentially to a small neighborhood

around the origin, by appropriately choosing the design parameters Ki and σi for all i ∈ I [1, N ]; and

(iii) the estimation of the NN weights Ŵi partially converges to a small neighborhood of their common
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optimal value along a trajectory φl(χi(t)) |t>Ti
, and cooperative approximation of the nonlinear uncertain

dynamics H(χi) defined in (15) can be obtained by ŴT
i Si(χi), as well as W̄

T
i Si(χi), where

W̄T
i = meant∈[tia,tib]Ŵi(t), ∀i ∈ I [1, N ] , (20)

where [tia, tib] (tib > tia > Ti) represents a time segment after a transient period.

Proof. To prove the first point in the theorem, i.e., the boundedness of all the signals in the closed-loop

system, we use the Lyapunov stability method.

(i) Let a Lyapunov function candidate for the closed-loop system (18) and (19) be

V =
M(xi,1)

2

N
∑

i=1

rTi ri +
1

2Γi

N
∑

i=1

W̃T
i W̃i. (21)

Then, its derivative along the trajectory of (18) and (19) is

V̇ =
Ṁ(xi,1)

2

N
∑

i=1

rTi ri +M(xi,1)
N
∑

i=1

rTi ṙi +
1

Γi

N
∑

i=1

W̃T
i

˙̃Wi. (22)

Given an appropriate definition of C(χi), the matrix 1
2Ṁ(xi1) − C(χi) is a skew-symmetric matrix;

i.e., 1
2Ṁ(xi1)− C(χi) = 0. This implies 1

2Ṁ(xi1) = C(χi). Therefore, from (18) and (19),

V̇ 6 Y

N
∑

i=1

rTi ri +M(xi,1)

N
∑

i=1

rTi

[

M−1
i (xi,1)(W̃

T
i Si(χi)− ǫi −Kiri)

]

+
1

Γi

N
∑

i=1

W̃T
i



−Γi

[

Si(χi)ri + σiŴi

]

− β
N
∑

j=1

aij

(

Ŵi − Ŵj

)





6 Y

N
∑

i=1

rTi ri +

N
∑

i=1

rTi (W̃
T
i Si(χi)− ǫi −Kiri)

+
1

Γi

N
∑

i=1

W̃T
i



−Γi

[

Si(χi)ri + σiŴi

]

− β

N
∑

j=1

aij

(

Ŵi − Ŵj

)



 , (23)

where Y is the upper bound of the matrix C(χi). Our objective is to select the constantKi = Ki1+Ki2+Y

such that Ki1 and Ki2 are positive definite, yielding

V̇ 6 Y

N
∑

i=1

rTi ri −

N
∑

i=1

rTi ǫi −

N
∑

i=1

rTi Ki1ri −

N
∑

i=1

rTi Ki2ri − Y

N
∑

i=1

rTi ri

−

N
∑

i=1

W̃T
i σiŴi −

β

Γi

N
∑

i=1

W̃T
i





N
∑

j=1

aij

(

Ŵi − Ŵj

)





6 −
N
∑

i=1

(

rTi ǫi + rTi Ki1ri + rTi Ki2ri
)

−
N
∑

i=1

W̃T
i σiŴi

−
β

Γi

N
∑

i=1

W̃T
i





N
∑

j=1

aij

(

Ŵi − Ŵj

)



 . (24)

However, the term β
Γi

∑N
i=1 W̃

T
i [

∑N
j=1 aij(Ŵi − Ŵj)] =

β
Γi

∑N
i=1 W̃

T
i [

∑N
j=1 aij(Ŵi − Ŵj + W − W )].

This implies

V̇ 6 −
N
∑

i=1

(

riǫi + rTi Ki1ri + rTi Ki2ri
)

−
N
∑

i=1

W̃T
i σiŴi −

β

Γi
W̃T (L ⊗ I) W̃ , (25)
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where W̃ = [ W̃T
1 W̃T

2 · · · W̃T
N ]T and L is the Laplacian matrix associated with the communication graph

G, of which all nonzero eigenvalues have positive real parts [25,26]. Because β and Γi are designed to be

greater than zero,

V̇ 6 −

N
∑

i=1

(

riǫi + rTi Ki1ri + rTi Ki2ri
)

−

N
∑

i=1

W̃T
i σiŴi. (26)

From the completion of squares, we can show that

−
N
∑

i=1

W̃T
i σiŴi 6 −

σ

2
W̃TW̃ +

N
∑

i=1

σi

2
WTW, (27)

where σ = min {σ1, . . . , σN}. Following the same methodology, we can show that

−
rTi Ki2ri

2
− riǫi 6

‖ǫ∗‖
2

2λmax (Ki2)
. (28)

Substituting (27) and (28) into (30) yields

V̇ 6 −

N
∑

i=1

rTi Ki2ri
2

+

N
∑

i=1

‖ǫ∗‖
2

2λmax (Ki2)
−

N
∑

i=1

rTi Ki1ri −
σ

2
W̃TW̃ +

N
∑

i=1

σi

2
WTW

6 −
1

2

N
∑

i=1

rTi (2Ki1 +Ki2) ri −
1

2
σW̃TW̃ +

1

2

N
∑

i=1

σiW
TW +

N
∑

i=1

‖ǫ∗‖
2

2λmax (Ki2)

6 −
1

2
ρ

N
∑

i=1

(

rTi ri +
1

Γi
W̃i

T
W̃i

)

+
1

2

N
∑

i=1

σiW
TW +

N
∑

i=1

‖ǫ∗‖
2

2λmax (Ki2)

6 −ρV + δ, (29)

where ρ = min {2Ki1,Ki2, σΓ} and δ = 1
2

∑N
i=1 σiW

TW +
∑N

i=1
‖ǫ∗‖2

2λmax(Ki2)
. Then, Eq. (21) satisfies

0 6 V (t) 6
δ

ρ
+ V (0)e−ρt, (30)

which implies the boundedness of V (t). Thus, ri and W̃i are uniformly bounded. In addition, from

(12) and (13) we obtain the boundedness of xi,1 and xi,2. This implies the boundedness of the control

command τi from (17). Therefore, all the signals from the closed-loop system are bounded. This proves

the first part.

(ii) According to (21) and (30), we have

0 6

N
∑

i=1

(

rTi ri
)

6 2V (t) 6
2δ

ρ
+ V (0)e−ρt, (31)

which implies that there exists a finite time Ti > 0 determined by δ and ρ such that ∀t > Ti, ri converges

exponentially to a small vicinity close to zero. Hence, the tracking errors ei converge to a neighborhood

close to zero according to (12). This neighborhood can be made arbitrarily small, since δ/ρ can be made

arbitrarily small by appropriately selecting the design parameters Ki1 and Ki2 with sufficiently large

λmax(Ki1) > 0 and λmax(Ki2) > 0 and small σi. This proves the second part.

(iii) From the definition of the localized NN Subsection 2.2 and (4), the system dynamics (14) can be

written as

ṙi = M−1(xi,1)(τi −H(χi)− ẍdi,1 + λiėi)

= M−1(xi,1)(Ŵ
T
il Sil(χi)−Kiri + ŴT

il̄ Sil̄(χi)−WlSil(χi)− ǫil)

= M−1(xi,1)(W̃
T
il Sil(χi)−Kiri − ǫ′il), ∀i ∈ I [1, N ] , (32)
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where along the union of the tracking orbits φl = φl1 ∪ · · · ∪ φlN after time Ti; the subscript l represents

parts related to regions close to the tracking orbits φ, φ1, φ2, . . . , φN . Ŵil and W̃il are the local estimated

neural weights and the local neural weights estimation error of each agent, respectively, the subscript l̄

represents parts related to regions far from the tracking orbits, and ǫ′il = ǫil − ŴT
il̄
Sil̄(χi) = O(ǫil) is the

NN approximation error along the tracking orbit trajectory [18], ǫil = [ ǫil,1 ǫil,2 · · · ǫil,n ]T and

WT
l Sil(χi) =

[

WT
l,1Sil,1(χi) WT

l,2Sil,2(χi) · · · WT
l,nSil,n(χi)

]T

, ∀i ∈ I [1, N ] .

In addition, the NN weight update law (18) can be rewritten as

˙̂
Wi =

˙̃Wi = −Γi

[

Sil(χi)ri + σiŴil

]

− β

N
∑

j=1

aij

(

W̃il − W̃jl

)

, ∀i ∈ I [1, N ] . (33)

Since










β
∑N

j=1 a1j

(

W̃1l − W̃jl

)

...

β
∑N

j=1 aNj

(

W̃Nl − W̃jl

)











= β (L ⊗ I) W̃l,

where W̃l = [W̃T
1l , . . . , W̃

T
Nl]

T, the overall closed-loop adaptive learning system can be described by

[

ṙ
˙̃Wl

]

=

[

−M̄K̄ M̄ΦT(ri)

−ΓΦ(ri) −β (L⊗ I)

][

r

W̃l

]

+

[

−M̄ǫ′l

−ΓΛŴl

]

, (34)

where M̄ = I ⊗ M−1(xi,1), K̄ = diag {K1,K2, . . . ,KN}, Φ(ri) = diag {S1l(χ1), . . . , SNl(χN )}, Λ =

diag {−σ1I, . . . ,−σNI}, ǫ′l = [ǫ′1l, · · · , ǫ
′
Nl]

T
and Ŵl = [ŴT

1l , . . . , Ŵ
T
Nl]

T. Since ǫ and σi can be made

arbitrarily small, and given the boundedness of Ŵil, we conclude that −M−1(xi,1)ǫ
′
l and ΓiΛŴl are also

arbitrarily small. Based on [34, Lemma 9.2], if the nominal part of (34), that is,

[

ṙ
˙̃Wl

]

=

[

−M̄K̄ M̄ΦT(ri)

−ΓiΦ(ri) −β (L⊗ I)

][

r

W̃l

]

(35)

is ULES, we conclude that (ri, W̃l) converges to a neighborhood of the origin. Subsequently, Assumption 1

is verified based on the boundedness of V and Assumption 2 can also be verified by taking P = ΓiI and

Q = Γi(M̄K̄+ K̄TM̄T). Then, according to Lemma 2, to prove (35) is ULES, we need only to prove that

∫ t+T0

t

[

Φ(r(τ))Φ(r(τ))T + β (L ⊗ I)
]

dτ > ηIN , ∀t > t0, (36)

where η ∈ R+. From the proof of the boundedness of ri, we have shown that, for all i ∈ I [1, N ], there

exists a finite time Ti > 0 such that ∀t > Ti, the tracking error ei tends to a neighborhood close to zero.

Moreover, since xdi,1 is a periodic signal according to Assumption 3, xi,1 is also a periodic signal after a

finite time Ti. Further, we can show from (12) that xi,2 converges to the periodic signal ẋdi,1 and thus xi,2

is periodic. Consequently, since the RBF NN input χi = col{xi,1, xi,2} constitutes a periodic signal for all

t > Ti, by referring to Lemma 1, we conclude that Φ(r(t)) is PE, i.e.,
∫ t+T0

t

[

Φ(r(τ))Φ(r(τ))T
]

dτ > ηIN
∀t > t0, from the definition of PE [19]. Thus, the condition of (36) is satisfied since β > 0 is a design

parameter and L has all the nonzero eigenvalues with positive real parts [25, 26]. This means that the

estimation error of the NN weight W̃il converges to a neighborhood close to zero. The definition of the

weight estimation error, i.e., W̃il = Ŵil−Wl, implies that all the agents converge to a neighborhood close

to the common optimal weight Wl and a consensus between all the agents is achieved. The convergence

of Ŵl → Wl implies that, along the periodic trajectory φl(χi(t)) |t>Ti
, we have

H(χi) = WT
l Sl(χi) + ǫl = ŴT

l Sl(χi)− W̃T
l Sl(χi) + ǫl
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= ŴT
l Sl(χi) + ǫl,1 = W̄T

l Sl(χi) + ǫl,2, ∀i ∈ I [1, N ] , (37)

where ǫl,1 = ǫl − W̃T
l Sl(χi) = O(‖ǫl‖) because of the convergence of W̃T

l → 0. The last equality is

obtained according to (20), where W̄l is the corresponding sub-vector of W̄ along the periodic trajectory

φl(χi(t)) |t>Ti
and ǫl,2 is an approximation error using W̄T

l Sl(χi). This apparently leads to ǫl,2 = O(ǫl,1)

after a transient time.

However, from the definition of the localization of the Gaussian RBF NNs, after time Ti along the

tracking orbit φil(χi)|t>Ti
, we have

ŴTS(χi) = ŴT
l Sl(χi) + ŴT

l̄ Sl̄(χi), ∀i ∈ I [1, N ] , (38)

for the remaining neurons with centers far away from the trajectory φl(χi(t)) |t>Ti
; ‖Sl̄(χi)‖ becomes very

small because of the localization property of the Gaussian RBF NNs. From the adaptation law in (18)

with Ŵ (0) = 0, it can be seen that the small values of Sl̄(χi) activate the adaptation of the associated

neural weights ŴT
l̄

only slightly. Thus, both ŴT
l̄

and ŴT
l̄
Sl̄(χi), as well as W̄

T
l̄

and W̄T
l̄
Sl̄(χi), remain

very small along the periodic trajectory φl(χi(t)) |t>Ti
. This means that the entire RBF NN ŴTS(χi)

and W̄TS(χi) can be used to cooperatively approximate the unknown function H(χi) accurately along

the periodic trajectory φl(χi(t)) |t>Ti
; i.e.,

H(χi) = ŴT
l Sl(χi) + ǫl,1 = ŴTS(χi) + ǫ1

= W̄T
l Sl(χi) + ǫl,2 = W̄TS(χi) + ǫ2, ∀i ∈ I [1, N ] ,

with the approximation accuracy level of ǫ1 = ǫl,1 − ŴT
l̄
Sl̄(χi) = O(ǫl,1) = O(ǫ) and ǫ2 = ǫl,2 −

W̄T
l̄
Sl̄(χi) = O(ǫl,2) = O(ǫ), . . . , ǫn = ǫl,n − W̄T

l̄
Sl̄(χi) = O(ǫl,n) = O(ǫ). This ends the proof.

Remark 2. Eq. (37) constitutes a key equation in our proof. The means of obtaining this equation

are clarified in the sentences below. Similar results have been frequently obtained in many existing

deterministic learning studies [1, 8, 29]. For a more quantitative analysis of the error terms, such as

ǫl, ǫl,1 and ǫl,2, readers are referred to [19, 20].

Remark 3. In the case of a not-connected graph, where some nodes are separated from the others, the

information cannot be sufficiently exchanged, because these nodes cannot receive any information sent

from the others. Thus, their learning process is independent of the others and their NN weights converge

only to their local optimal values in the region of their neighborhood instead over a domain consisting of

the union of all state orbits. This means that the generalization ability of the NN cannot be improved.

Remark 4. The first part of the proof of Theorem 1 shows the boundedness of the closed-loop system

signals, including the system states and the control torque. The filter-based control we use is unlike

other techniques (e.g., backstepping) that may require dynamic surface control to overcome the explosion

of terms [35, 36]. Additionally, the second part of the proof shows that a careful choice of the design

parameters guarantees the system stability, as well as the convergence of the error dynamics to a small

neighborhood close to zero. This achieves our objective in designing a stable tracking control and accurate

learning system without using dynamic surface control.

Remark 5. The proof of Theorem 1 shows that, by exchanging weight information among the robot

agents, a consensus is reached in a neighborhood close to the optimum weight. This can be achieved

provided that the reference trajectories are recurrent. Thus, a common optimum estimation about the

robots’ unknown function can be obtained. The common estimation results lead to a beneficial capability,

that is, to the use of the common optimized weights as a learned experience. This learned experience

can be used in different tasks with different reference trajectories without re-performing the NN learning

process. This property is explained in the following section.

4 Learning control using experienced neural networks

In this section, we further address the second objective of Problem 1, that is, to achieve an accurate control

performance without re-adapting the NNs to the nonlinear uncertain dynamics. To this end, consider the
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multiple robot manipulator system (10) and the reference models dynamics (11) with recurrent orbits

φd(χd). Now, we design an NN learning control scheme using the learned knowledge result of Section 3

such that all the signals in the closed-loop system remain bounded and the tracking error converges

exponentially close to zero using the control law (17) after replacing the dynamic NN term by W̄TS(χi),

i.e.,

τi = W̄TS(χi) +M(xi1)(ẍdi,1 − λiėi)−Kiri, ∀i ∈ I [1, N ] , (39)

where W̄TS(χi) = [ W̄T
1 S1(χi) W̄T

2 S2(χi) · · · W̄T
n Sn(χi) ]

T is the accurate RBF NN approximation of

the nonlinear uncertain function H(χi) along the recurrent trajectory φl(χi(t)) |t>Ti
. On this basis, we

have the following theorem on learning control using experiences.

Theorem 2. Given the multi-robot manipulators system consisting of the plants (10) and the reference

models dynamics (11) with the network communication topology G under Assumptions 1–4, the tracking

control performance (i.e., the trajectory tracking error converges exponentially close to zero) can be

achieved using the constant RBF NN control law (39) with the constant weights obtained from (20).

Proof. The closed-loop system of each robot can be formed by involving the local controller in (39), the

robotic system dynamics in (10), and the results shown in Theorem 1, in particular the result showing

that weights converge to a small vicinity of the optimum values W , (i.e., W̄i is approximately equal to Ŵi,

which pushes W̃i to a negligible value). From (19), using the control law in (39), we have the closed-loop

system as

ṙi = M−1
i (xi,1) (−Kiri − ǫi) , ∀i ∈ I [1, N ] . (40)

Considering the Lyapunov function candidate Vr =
M(xi,1)

2

∑N
i=1 r

T
i ri, the derivative V̇r is

V̇r =
Ṁ(xi,1)

2

N
∑

i=1

rTi ri +M(xi,1)

N
∑

i=1

rTi ṙi. (41)

Following an argument similar to that used to prove Theorem 1 and inequality (29), we select the

constant Ki = Ki1 +Ki2 + Y such that Ki1 and Ki2 are positive values,

V̇r 6 −
N
∑

i=1

(

riǫi + rTi Ki1ri + rTi Ki2ri
)

. (42)

Following the same procedures in Theorem 1, part (i), we can show that

−
rTi Ki2ri

2
− riǫi 6

‖ǫ∗‖
2

2λmax (Ki2)
. (43)

Substituting (43) into (42) yields

V̇ 6 −

N
∑

i=1

rTi Ki2ri
2

+

N
∑

i=1

‖ǫ∗‖
2

2λmax (Ki2)
−

N
∑

i=1

rTi Ki1ri

6 −
1

2

N
∑

i=1

rTi (2Ki1 +Ki2) ri +

N
∑

i=1

‖ǫ∗‖
2

2λmax (Ki2)

6 −
1

2
ρ

N
∑

i=1

(

rTi ri
)

+
N
∑

i=1

‖ǫ∗‖2

2λmax (Ki2)
6 −ρVr + δ, (44)

where ρ = min {2Ki1,Ki2} and δ =
∑N

i=1
‖ǫ∗‖2

2λmax(Ki2)
. Then, Vr satisfies

0 6 Vr(t) 6
δ

ρ
+ Vr(0)e

−ρt. (45)

By following an argument similar to that used to prove part (i) of Theorem 1, we can conclude that all the

signals in the closed-loop system remain bounded and the position error of each agent ei = xi,1 − xdi,1
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Table 1 Parameters of the robot

Parameter Value

m1 (kg) 0.8

m2 (kg) 2.3

l1 (m) 1

l2 (m) 1

I1 × 10−3 (kg ·m2) 61.25

I2 × 10−3 (kg ·m2) 20.42

(∀i ∈ I [1, N ]) converges to a small neighborhood close to zero in a finite time, where the size of this

neighborhood can be determined by appropriately choosing λmax (Ki1) and λmax (Ki2) for all i ∈ I [1, N ].

This ends the proof and fulfills the control objective of Problem 1.

Remark 6. As compared to the results shown in Section 3 using (10), (11), (17), and (33), the results

in this section do not require any online RBF NN adaptation for the robots. This notably reduces the

computational expense and hence facilitates the implementation of the controller. The simulations in the

following section provide further details.

5 Simulation studies

In this section, we demonstrate the effectiveness of the proposed approach by considering multiple ho-

mogeneous 2-DOF robot manipulator systems in the form of (10) with the associated parameters given

by

M(qi) =

[

M11 M12

M21 M22

]

, C(qi, q̇i) =

[

C11 C12

C21 C22

]

, F (q̇i) =

[

F11

F21

]

, G(qi) =

[

G11

G21

]

,

with M11 = m1l
2
c1 +m2

(

l21 + l2c2 + 2l1lc2 cos(qi2)
)

+ I1 + I2, M12 = m2

(

l2c2 + l1lc2 cos(qi2)
)

+ I2, M21 =

m2

(

l2c2 + l1lc2 cos(qi2)
)

+ I2, M22 = m2l
2
c2 + I2, C11 = −m2l1lc2q̇i2 sin(qi2), C12 = −m2l1lc2 (q̇i1+

q̇i2) sin(qi2), C21 = m2l1lc2q̇i1 sin(qi2), C22 = 0, G11 = (m1lc2 +m2l1) g cos(qi1) + m2lc2g cos (qi1 + qi2),

G22 = m2lc2g cos (qi1 + qi2), where l1, l2, m1, and m2 are the lengths and masses of the first and second

links for the agents, respectively. lc1 and lc2 are the halves of these lengths, F11, F21 are constants, and I1
and I2 are the inertia of the first and second links, respectively; their values are shown in Table 1. We used

N = 10 manipulators exchanging their estimated weight information to obtain common accurate nonlinear

uncertain function approximation. The following signals were constructed to be periodic reference trajec-

tories for each individual robot to follow, xd1,1 = [0.8sin(t), 0.8cos(t)]T, xd2,1 = [cos(2t), sin(2t)]T, xd3,1 =

[sin(0.5t), cos(0.5t)]T, xd4,1 = [sin2(t), cos2(t)]T, xd5,1 = [0.5cos2(t), 0.5sin2(t)]T, xd6,1 = [0.5sin2(t),

cos(t)]T, xd7,1 = [sin(t), 0.5cos2(t)]T, xd8,1 = [0.5sin(2t), 0.5cos2(t)]T, xd9,1 = [0.5sin(2t)+cos(t), 0.5cos(2t)

+sin(t)]T, xd10,1 = [cos(t), sin(t)]T, where xdi,1 ∈ R
2, i ∈ I [1, 10] is the position of the desired trajectory.

From these reference signals, it can be shown that Assumption 3 is satisfied. A connected undirected

network topology G was considered, as shown in Figure 1 to satisfy Assumption 4.

5.1 Simulation for learning control

We first examined the learning control performance CDL based on the above system setup, using the

control law (17) and the RBF-NN weight update law (18). For each i ∈ I [1, 10], we constructed the

Gauss RBF NN ŴiSi(χi) using 21× 21 = 441 neuron nodes with the centers evenly placed over a state

space of [−1.2, 1.2 ]× [−1.2, 1.2 ] that is determined to cover the state space of the robot manipulator

system. The widths ςi were chosen as 0.6 to guarantee even distribution of the neurons. The con-

troller and update law parameters were selected as in other studies in the literature, e.g., [1, 20], such

that Γi = 10, β = 5. Ki1 and Ki2 were selected to be sufficiently large to obtain accurate tracking as

proved in Theorem 1, that is, 40 and 100, respectively. λ = 20 and σi = 0.00001 were chosen as in

most studies in the literature, e.g., [1, 14]. The position initial conditions were x1,1(0) = [ 0.3 0.6 ]T,
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Figure 1 Network topology G. Figure 2 (Color online) L2 norm of partial neural net-

work weights for Agent 1.
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Figure 3 (Color online) Phase plane trajectories of agents. (a) Robot 1; (b) Robot 10.

x2,1(0) = [ 0.1 0.7 ]T, x3,1(0) = [ 0.5 0.2 ]T, x4,1(0) = [ 0.8 0.4 ]T, x5,1(0) = [ 0.7 0.4 ]T, x6,1(0) =

[ 0.05 0.05 ]T, x7,1(0) = [ 0.2 0.6 ]T, x8,1(0) = [ 0.5 0.5 ]T, x9,1(0) = [ 0.9 0.3 ]T and x10,1(0) = [ 0.9 0.9 ]T

and the initial conditions for the estimated weights Ŵi(0) = [ Ŵi,1(0) Ŵi,2(0) ]
T, Ŵi,1 and Ŵi,2 ∈

R
441, ∀i ∈ I[1, 10] were Ŵ1,1(0) = Ŵ1,2(0) = [ 0 0 · · · 0 ]T, Ŵ2,1(0) = Ŵ2,2(0) = [ 0.5 0.5 · · · 0.5 ]T,

Ŵ3,1(0) = Ŵ3,2(0) = [ 0.1 0.1 · · · 0.1 ]T, Ŵ4,1(0) = Ŵ4,2(0) = [ 0.2 0.2 · · · 0.2 ]T, Ŵ5,1(0)= Ŵ5,2(0) =

[ 0.3 0.3 · · · 0.3 ]T, Ŵ6,1(0) = Ŵ6,2(0) = [ 0.7 0.7 · · · 0.7 ]T, Ŵ7,1(0)= Ŵ7,2(0) = [−0.5 −0.5 · · · −0.5 ]T,

Ŵ8,1(0) = Ŵ8,2(0) = [−0.7 −0.7 · · · −0.7 ]T, Ŵ9,1(0)= Ŵ9,2(0) = [−0.2 −0.2 · · · −0.2 ]T, Ŵ10,1(0) =

Ŵ10,2(0) = [ 1 1 · · · 1 ]T. The simulation was run for 300 s. the results are plotted in Figure 2 through

6. The performance of the scheme in terms of estimating the optimal weight vectors W is shown in Fig-

ure 2, which indicates perfect convergence of the estimated weights, Ŵ1,1 and Ŵ1,2 ∈ R
441, for Robot 1

as an example, to the common optimum weight W ∈ R
441. For simplicity of presentation, we decided

to demonstrate the results of two sample robots, Agents 1 and 10. In Figure 3, we show the reference

orbits and the actual trajectories of these robots. We show in Figure 4 the robot position tracking control

responses and the tracking errors for the two robots. It can be observed that the tracking performance

of the robots is satisfactory, despite the nonlinear uncertainties in the system. We also show the NN

approximation results of the unknown system dynamics H(χ1) and H(χ10) plotted in Figure 5 using

RBF NNs Ŵ1S1(χ1) and Ŵ10S10(χ10), respectively. It is obvious that the cooperative learning succeeded

in achieving accurate approximation of the unknown uncertain nonlinearities and the learned knowledge

can be stored using constant NNs, as shown in Figure 6.
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Figure 5 (Color online) Function approximation. (a) Ŵ1,1S1(χ1) → h1(χ1); (b) Ŵ10,1S10(χ10) → h1(χ10);

(c) Ŵ1,2S1(χ1) → h2(χ1); (d) Ŵ10,2S10(χ10) → h2(χ10).
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Figure 6 (Color online) Function approximation. (a) W̄1,1S1(χ1) → h1(χ1); (b) W̄10,1S10(χ10) → h1(χ10);

(c) W̄1,2S1(χ1) → h2(χ1); (d) W̄10,2S10(χ10) → h2(χ10).

5.2 Simulation for learning control using experience

We further examined the control performance of the multi-robot manipulator system using the experience

obtained from the cooperative learning results of the CDL control by employing the control law (39) with

no weight update law. To this end, we considered the same system dynamics (10), reference trajectories

(11), initial conditions, and control gains for fairness of comparison. The simulation results for the same

robots (i.e., Agents 1 and 10) are plotted in Figures 7 and 8. It can be seen in Figure 7 as compared

to Figure 4 that a much better performance is obtained despite the subtle difference between the two

control laws (17) and (39). Recall that these satisfactory results are obtained without recalculation/re-

adaptation of the NN weights, which is beneficial in that it reduces the computational complexity and

saves the system resources/energy, especially if a large number of neurons is involved in the control

process. Control input responses using the two different control laws (17) and (39) can be observed in

Figure 8.

6 Conclusion

This paper addressed the problem of trajectory tracking control of multi-robot manipulators in the

presence of homogeneous nonlinear uncertainties. The proposed approach is divided into two parts. The

first part comprises cooperative deterministic learning using RBF NNs. It estimates the NN weight

information via inter-agent communication to reach a common approximation of the uncertainties among

agents. The second part is aimed to re-utilize the learned knowledge in any given reference trajectory

and then regulate the robot’s position and velocity accordingly. In this part, no information exchange

or weight update occurs, and hence, the computational burden is reduced. This results in a reduction in

the required system resources/energy, especially if a large number of neurons is involved in the control

process. The CDL control law employs the cooperative learning concept to overcome the nonlinearity
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and uncertainties in the robots model. Extensive numerical simulations for a team of 2-DOF robot

manipulators demonstrated the distinctive capabilities of the technique.
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