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Abstract This paper considers the filtering problem for a class of multi-input multi-output systems with

nonlinear time-varying uncertain dynamics, random process and measurement noise. An extended state based

Kalman filter, with the idea of timely estimating the unknown dynamics, is proposed for better robustness

and higher estimation precision. The stability of the proposed filter is rigorously proved for nonlinear time-

varying uncertain system with weaker stability condition than the extended Kalman filter, i.e., the initial

estimation error, the uncertain dynamics and the noises are only required to be bounded rather than small

enough. Moreover, quantitative precision of the proposed filter is theoretically evaluated. The proposed

algorithm is proved to be the asymptotic unbiased minimum variance filter for constant uncertainty. The

simulation results of some benchmark examples demonstrate the feasibility and effectiveness of the method.
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1 Introduction

As is well known, Kalman filter (KF) has been widely used in many fields [1–3]. The original KF

algorithm provides the minimum mean square error estimation for the accurate linear systems with

Guass white noise. In the last decades, substantial development has been made on extending KF to

deal with nonlinear uncertain systems [4, 5]. For nonlinear systems only perturbed by Gaussian noises,

extended Kalman filter (EKF) is constructed by applying KF algorithm to the first-order linearized part

of the nonlinear systems [6–8]. Unscented Kalman filter (UKF) captures posterior mean and covariance

accurately to the third-order linearization for any nonlinearity by using a sampling approach [9]. For

uncertain nonlinear system, robust filters (RF), including H∞ filter, set valued filter (SVF), emphasize

the issue of minimizing the estimation error under the deterministic/stochastic uncertainties of systems

being in the worst-case bound [10, 11]. Substantial development of this issue has been made by several

important literatures. Ref. [12] minimizes the mean square error according to the least favorable model

with model perturbations limited to the bound parameterized by the τ -divergence family. Ref. [13]

designs robust Kalman filter for linear systems with norm-bounded parameter uncertainty. Ref. [14]
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minimizes the upper bound of the estimation error covariance for system with stochastic nonlinearities

of zero means. Actually, linearization and worst-case bound optimization are two natural ideas to handle

nonlinearity and uncertainty [15]. These two approaches have been proved to be effective in tackling

many filtering problems [11, 16, 17]. Nevertheless, they still have the following limitations as in dealing

with general nonlinear uncertain systems [9, 18].

(i) Linearization based filters may suffer from the instability issue in dealing with nonlinear system.

Generally speaking, filters derived by local linearization at the current estimates have been developed

based on an implicit assumption that the initial estimation error and the noise are sufficiently small to

ensure the stability of the filter [7, 19]. Ref. [7] even gives the range of the initial estimation error and

noise to ensure stability. Such an result is, unfortunately, very conservative and is hard to be satisfied in

practical engineering system due primarily to the various external disturbances and the finite accuracy

of the sensor during filter implementation. Thus the performance of filters based on linearization can be

extremely fragile to initial estimation error and noise, which is shown in [7]. In conclusion, stability of

linearization based filters is still an open problem for nonlinear system.

(ii) The optimization result for the worst-case bound of uncertainties may be conservative. RF usually

has the idea of minimizing certain index based on the worst-case bound of uncertainties. This inevitably

requires the bound of the uncertainty to be small enough otherwise the optimization result may be

conservative. However, this assumption is critical when the uncertainty includes the unmodelled dynamics

as well as the linearization error mentioned above. In this case, the uncertainty depends on the estimation

error. Thus even the boundness of uncertainty should be rigorously proved, not to mention assuming

small enough in advance [16, 20].

The above problems give the primary motivation to design resilient filters capable of dealing with strong

nonlinearity and large uncertainty. Extended state observer (ESO) treats the nonlinear uncertainty, no

matter how complex the uncertain dynamics are, as a time-varying signal to be estimated timely in order

to correct the estimation error of the state. The idea of extended state is nature since compared to the

noise, the nonlinear uncertain dynamics can be viewed as a relatively slow-varying signal which would

be estimated in real time. Thus, the effectiveness of extended state design has been shown in lots of

successfully applications, involving the flight systems [21–23], robotic systems [24], motor systems [25],

MEMS systems [26] and so on [27]. However, parameters tuning for ESO is still an open problem,

especially when the measurement noise is concerned, because higher gain leads to faster tracking, but

also means the worse polluted by the noise [28]. In conclusion, to tackle the problems induced by the

frame of linearization [7,9] and the frame of worst-case optimization [12,13], we will utilize the extended

state design to handle the nonlinearity and uncertainty. In addition, we will also optimize the gain of

the ESO timely to generate the extended state based Kalman filter (ESKF). The main contributions of

ESKF can be highlighted as follow.

(i) The gain of ESO is optimized timely to improve the estimation performance for system with both

uncertain dynamics and stochastic noise.

(ii) Stability of the filter is guaranteed for nonlinear system with strong nonlinearity, large initial

estimation error and large noise.

(iii) Better robustness against large scale of uncertainty is guaranteed by actively estimating the non-

linear uncertainty.

In fact, the effectiveness of the extended state design in filters has been shown by [29, 30] for a class

of time-invariant uncertain systems. Nevertheless, the systems considered therein are limited into time-

invariant. Also the stability and the performance of the corresponding filters have not been discussed for

time-varying systems. In this paper, we construct ESKF for a more general class of nonlinear time-varying

uncertain systems. With the aim of weakening the stability condition and improving the estimation pre-

cision for the existing filters despite nonlinear uncertainties and noise terms, we prove that the estimation

error of ESKF is bounded in mean square despite nonlinear uncertainties, large noise and large initial

estimation error. In addition, ESKF’s estimation precision can be timely evaluated by its parameters,

and it is proved to be the asymptotically unbiased minimum variance estimation under certain conditions.

The paper is organized as follows. In Section 2, ESKF for a class of nonlinear uncertain systems is
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proposed. In Section 3, the properties of ESKF are discussed. In Section 4, the effectiveness of ESKF is

shown by two classical examples. The concluding remark is given in Section 5.

2 Problem formulation and ESKF design

Consider the following class of nonlinear time-varying uncertain systems:

{

Xk+1 = ĀkXk + B̄kF (Xk, k) + wk,

Yk = C̄kXk + nk,
k = 0, 1, . . . , (1)

whereXk ∈ R
n is the state, Āk, B̄k and C̄k are known time-varying matrixes with Āk ∈ R

n×n, B̄k ∈ R
n×l,

C̄k ∈ R
m×n. F (Xk, k) ∈ R

l is the nonlinear uncertain dynamics in the system (1), and its nominal model

is the known function F (Xk, k). wk ∈ R
n and nk ∈ R

m are the process noise and measurement noise,

respectively. Yk ∈ R
m is the measurement output.

Remark 1. F (Xk, k) is usually referred to the “total disturbance” lumping both internal uncertain

dynamics and external disturbance, such as the unknown parameter variations, the unmodeled dynamics

and the discretization error [31, 32].

In model (1), the uncertain dynamics are divided into three parts, i.e., the known linear part ĀkXk,

the slowly time-varying nonlinear uncertain dynamics F (Xk, k) and the noise (wk, nk) which may have

high-frequency changes. We suggest using different methods to deal with different kinds of uncertainties.

F (Xk, k) is treated as an extended state to be estimated as well as compensated for, and (wk, nk) is

attenuated by the optimization technique of KF. Therefore, F (Xk, k) is treated as an extended state and

system (1) can be equivalently transformed to























[

Xk+1

Fk+1

]

= Ak

[

Xk

Fk

]

+BkGk +

[

wk

0

]

,

Yk = Ck

[

Xk

Fk

]

+ nk,

(2)

where

Fk , F (Xk, k), Gk = Fk+1 − Fk, Ak =

[

Āk B̄k

0 I

]

, Bk =

[

0

I

]

, Ck =
[

C̄k 0
]

. (3)

Next, we will construct ESKF for the system (2). To begin with, the following assumptions are given.

A1. (Ak, Ck) is uniformly observable.

A2. {wk}
∞
0 and {nk}

∞
0 are uncorrelated zero-mean Gaussian random sequences and

E(nknk
T) 6 Rk, E(wkwk

T) 6 Sk, (4)

where {Rk}
∞
k=0 and {Sk}

∞
k=0 are known and uniformly bounded. In addition, {wk}

∞
0 , {nk}

∞
0 and X0 are

mutually independent.

A3.

E





[

X0 − X̂0

F0 − F̂0

] [

X0 − X̂0

F0 − F̂0

]T


 6 P0, (5)

where X̂0 is the estimate of X0, F̂0 , F̄ (X̂0, 0), and P0 is a known constant matrix.

A4.

E(G2
k,i) 6 qk,i, i = 1, 2, . . . , ∀k > 0, (6)

where {qk,i}
∞
k=0 is known and uniformly bounded1).

1) In this paper, if ak is a vector, then ak,i denotes its i-th element.
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The assumption A1 is an important and fundamental assumption to ensure the stability of KF typed

algorithm [3, 33]. From (3) we know that Ak and Ck are determined by the matrices of the original

system (1), which means the observability assumption of (Ak, Ck) is actually added on the structure

of the original system. The relationship between the observability of (Ak, Ck) and (Āk, C̄k) can be

demonstrated as the following lemma.

Lemma 1. For systems (1) and (2), (Ak, Ck) is uniformly observable if and only if both (Āk, C̄k) is

uniformly observable and rank
[

In×n − Āk −B̄k

C̄k 0

]

= n+ l, for all k = 0, 1, 2, . . . .

The proof of Lemma 1 is in Appendix A. From Lemma 1, the uniformly observability of (Ak, Ck) equals

to both the uniformly observability of (Āk, C̄k) and rank
[

In×n − Āk −B̄k

C̄k 0

]

= n+ l, k = 0, 1, 2, . . .. However,

compared with the latter conditions, uniformly observability of (Ak, Ck) seems more brief and easier to

be verified. So we choose A1 as the first assumption.

Remark 2. The assumptions A3 and A4 mean that the estimation error for the initial states, the

estimation error for the initial uncertain dynamics and the varying of the uncertain function F (·) between

neighborhood time steps are bounded in mean square. Obviously, A3 and A4 are reasonable for most

practical plants. qk represents the size of the varying of the nonlinear uncertainty F (·) [34]. Besides, the

upper bounds P0 and qk can be chosen according to the priori information of the sensors and physical

limitations on the practical systems.

Then, we design ESO [31] based on the extended model (2)

[

X̂k+1

F̂k+1

]

= Ak

[

X̂k

F̂k

]

+BkĜk −Kk

(

Yk − Ck

[

X̂k

F̂k

])

. (7)

Here, Ĝk, the estimate of Gk, is used to correct the estimation error of the state and the uncertainty by

making full use of the model information. Thus, we use the nominal model of Gk as

Ḡk = F̄ (Xk+1, k + 1)− F̄ (Xk, k). (8)

Then the estimate of Ḡk is denoted as

ˆ̄Gk = F̄ (ĀkX̂k + B̄kF̂k, k + 1)− F̄ (X̂k, k). (9)

According to the estimate of the nominal model Ḡk, Ĝk is designed as

Ĝk,i = sat
(

ˆ̄Gk,i,
√

qk,i

)

, i = 1, 2, . . . , l, (10)

where sat(·) is the saturation function defined by sat(f, b) = max{min{f, b},−b}, b > 0. Here, the

saturation function sat(·) is used to ensure the boundedness of Ĝk,i.

For the system (1) with uncertainty and noise, the tuning of Kk becomes a tradeoff between the

disturbance rejection and the noise sensitivity, because higher Kk leads to faster tracking, but also means

the worse polluted by the noise [28]. Thus, different from ESO, Kk is no longer static and manually tuned

here. Instead, we will optimize Kk to make the mean square estimation error minimal at each step.

Denote the estimation error of ESKF as ek =
[

Xk

Fk

]

−
[

X̂k

F̂k

]

. From (2) and (7), we can obtain that ek

satisfies

ek+1 = (Ak +KkCk)ek +Kknk +Bk(Gk − Ĝk) +
[

wT
k 0
]T

. (11)

Denote G̃k = Bk(Gk − Ĝk). Since nk, wk and ek are mutually independent, the mean square error of

ESKF satisfies

E(ek+1e
T
k+1) = (Ak +KkCk)E(eke

T
k ) (Ak +KkCk)

T
+KkE(nkn

T
k )Kk

T + E(G̃kG̃
T
k )

+

[

E(wkw
T
k ) 0n×l

0l×n 0l×l

]

+ E((Ak +KkCk) ekG̃
T
k ) + E(G̃ke

T
k (Ak +KkCk)

T
).

(12)
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According to the Young’s inequality for the matrices case and A4, we can get

(Gk − Ĝk)(Gk − Ĝk)
T 6 2GkG

T
k + 2ĜkĜ

T
k

6 2ldiag([G2
k,1 G2

k,2 · · · G2
k,l
]) + 2ldiag([Ĝ2

k,1 Ĝ2
k,2 · · · Ĝ2

k,l
])

6 4ldiag([q̄k,1 · · · q̄k,l]).

(13)

Design Q1,k =
[

0n×n 0n×l

0l×n 4Qk

]

, where Qk , l · diag([qk,1 qk,2 . . . qk,l]). Then, it is easy to know that

E((Gk − Ĝk)(Gk − Ĝk)
T) 6 4Qk, E(G̃kG̃

T
k ) 6 Q1,k. (14)

Moreover, since the noise related to Fk is correlated to the noise affecting Xk, the corresponding term

of ek and G̃k cannot be ignored. Based on the Young’s inequality for the matrices case, the last two

terms of (12) have the upper bound

(Ak +KkCk) ekG̃
T
k + G̃kek

T (Ak +KkCk)
T

6 θ (Ak +KkCk) eke
T
k (Ak +KkCk)

T
+

1

θ
G̃kG̃

T
k , ∀θ > 0.

(15)

Ideally, the equality holds if and only if

θ (Ak +KkCk) ek = G̃k. (16)

However, Eq. (16) usually cannot be achieved for each k > 0. Hence we consider the initial time k = 0.

It can be verified that the equality of (16) with k = 0 has the necessary condition

θ2 (Ak +K0Ck)E(e0e
T
0 )(Ak +K0Ck)

T = E(G̃0G̃
T
0 ) 6 Q1,0. (17)

For simplicity, we suggest θ =
√

tr(Q1,0)
tr(P0)

according to (5) and (17). We remark that θ is used here to

decouple the cross terms of estimation error and the uncertainties.

Design

Q2,k =

[

Sk 0n×l

0l×n 0l×l

]

.

Then, from A2 we have
[

E(wkw
T
k ) 0n×l

0l×n 0l×l

]

6 Q2,k. (18)

Hence, according to (14)–(18) and A2, we have

E(ek+1e
T
k+1) 6(1 + θ) (Ak +KkCk)E(eke

T
k ) (Ak +KkCk)

T
+KkRkK

T
k +

(

1 +
1

θ

)

Q1,k +Q2,k. (19)

Let Pk satisfy the following iteration equation:

Pk+1 = (1 + θ) (Ak +KkCk)Pk (Ak +KkCk)
T +KkRkKk

T +

(

1 +
1

θ

)

Q1,k +Q2,k,

k = 0, 1, 2, . . . ,

(20)

with the initial value P0.

Consequently, it follows from (19) and (20) that

E(eke
T
k ) 6 Pk, k = 0, 1, 2, . . . , (21)

provided A3.
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According to (21), Pk describes the upper bound of the mean square error E(eke
T
k ). To simplify the

algorithm and to ensure the consistence property [35], we choose Kk at each time step to minimize Pk

instead of directly minimizing E(eke
T
k ). The first two terms in the right hand of (20) are related to Kk,

which motivates us to design Kk to minimize these two terms.

Define

K∗
k = argmin

Kk

{(1 + θ) (Ak +KkC)Pk (Ak +KkC)T +KkRkKk
T}. (22)

Since Pk is a positive semi-definite matrix, and Rk is a positive definite matrix, CPkC
T + 1

1+θ
Rk is

positive definite. Thus, there is

(1 + θ) (Ak +KkC)Pk (Ak +KkC)T +KkRkKk
T

= (1 + θ)

(

AkPkC
T

(

CkPkC
T
k +

1

1 + θ
Rk

)

−1

+Kk

)

·

(

CkPkC
T
k +

1

1 + θ
Rk

)

(

AkPkC
T
k

(

CkPkC
T
k +

1

1 + θ
Rk

)

−1

+Kk

)T

− (1 + θ)AkPkC
T
k

(

CkPkC
T
k +

1

1 + θ
Rk

)

−1

CkPkA
T
k + (1 + θ)AkPkA

T
k .

(23)

Hence, it is easy to know

K∗
k = −AkPkC

T
k

(

CkPkC
T
k +

1

1 + θ
Rk

)−1

. (24)

Since then, the gain matrix Kk of the estimator is optimized timely based on the prior information

A2–A4.

As a consequence, ESKF, which combines the advantages of ESO and KF, is designed as follows2):

[

X̂k+1

F̂k+1

]

= Ak

[

X̂k

F̂k

]

+BkĜk −Kk

(

Yk − Ck

[

X̂k

F̂k

])

, (25)

Kk = −AkPkC
T
k

(

CkPkC
T
k +

1

1 + θ
Rk

)−1

, (26)

Pk+1 = (1 + θ) (Ak +KkCk)Pk (Ak +KkCk)
T
+KkRkKk

T +

(

1 +
1

θ

)

Q1,k +Q2,k, (27)

Q1,k =

[

0n×n 0n×l

0l×n 4Qk

]

, Q2,k =

[

Sk 0n×l

0l×n 0l×l

]

, Qk = l · diag([qk,1 qk,2 . . . qk,l]), (28)

where

θ =

√

tr(Q1,0)

tr(P0)
, Ĝk,i , sat

(

Ḡk,i,
√

qk,i
)

, Ḡk , Ḡ(X̂k, k), i = 1, 2, . . . , l, (29)

and sat(·) is the saturation function defined by sat(f, b) = max{min{f, b},−b}, b > 0.

According to (25)–(28), ESKF can be viewed as a novel KF typed filter for nonlinear time-varying

uncertain systems. Moreover, ESKF and traditional KF-type filters have the following differences.

(i) The traditional KF-type filters usually approximate the real model as accurately as possible by

using higher order linearization, while ESKF treats the nonlinear uncertainty as a time-varying signal to

be estimated and compensated no matter how complex the model is. Thus ESKF avoids the linearization

which may cause divergency.

(ii) Compared with RF, ESKF uses the bound for the varying rate of uncertain dynamics instead of the

bound for uncertain dynamics itself to solve the optimization. Thus, RF usually needs the uncertainty to

2) In this paper, if a is a vector, then diag(a) is the matrix whose i-th diagonal element is ai and off-diagonal elements

are all 0.
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be small enough to guarantee satisfactory performance while ESKF only assumes the nonlinear uncertain

dynamics to be slow-varying.

(iii) Most existing filtering methods can only deal with single type of disturbance, while an actual

filtering problem usually suffers from multiple disturbances. In ESKF, the disturbances are classified into

two types, i.e., slow-varying uncertain dynamics and sharp-changing noise. Also, ESKF suggests tackling

these two kinds of disturbances in different ways.

The properties of ESKF (25)–(28) will be discussed in Section 3.

3 The properties of ESKF

Theorem 1 (Stability). If A1–A4 hold, then the estimation error of ESKF, ek =
[

Xk

Fk

]

−
[

X̂k

F̂k

]

, satisfies

E(eke
T
k ) 6 Pk, ∀k > 0, (30)

and {Pk}
∞
k=0 is uniformly bounded. Then, there exists a positive matrix P ∗ such that

Pk 6 P ∗, ∀k > 0. (31)

The proof of Theorem 1 is in Appendix B. Theorem 1 demonstrates that ESKF (25)–(28) has the

following properties.

(i) The estimation error of ESKF is bounded in mean square despite the nonlinear unknown dynamics,

the process and measurement noise. Reif et al. [7] indicated that the stability of EKF can only be

guaranteed for true nonlinear model under small initial estimation error and small disturbing noise.

ESKF overcomes these constraints by augmenting the filter with an extended state to actively estimate

the nonlinear uncertain part in the system (1). Therefore, ESKF provides a novel frame to handle large

initial estimation error, nonlinear unknown dynamics as well as noises.

(ii) The estimation error, which is unavailable in practice, can be timely evaluated by the parameter Pk

in mean square. For linear systems, the consistence property [9] is ensured, which means that Pk in KF

exactly equals to the covariance of estimation error. However, in EKF, the relationship between Pk and

the covariance of estimation error is vague, which may lead to unreliable filter gain and the possibility of

divergence. Therefore, Pk in ESKF contains much more important information for evaluating the filtering

precision.

As Pk is an upper bound in mean square for the estimation error, we will investigate the relationship

between Pk and the tunable parameters (P0, Q1,k, Q2,k, Rk) in Lemma 2.

Lemma 2. Let P ∗
k and P ∗∗

k denote the Pk under the situations of (P ∗
0 , Q

∗
1,k, Q

∗
2,k, R

∗
k) and (P ∗∗

0 , Q∗∗
1,k,

Q∗∗
2,k, R

∗∗
k ) in (25)–(28), respectively. If

P0
∗ < P0

∗∗, Q∗
1,k < Q∗∗

1,k, Q∗
2,k < Q∗∗

2,k, R∗
k < R∗∗

k , (32)

then

P ∗
k < P ∗∗

k , ∀k > 0. (33)

The proof of Lemma 2 is in Appendix C. Lemma 2 illustrates the relationship between Pk and the tun-

able parameters (P0, Q1,k, Q2,k, Rk), that is, smaller (P0, Q1,k, Q2,k, Rk) satisfying A1–A4 mean smaller

Pk. Obviously, Lemma 2 implies that (P0, Q1,k, Q2,k, Rk) are suggested to be tuned as small as possible

so as to achieve better filtering performance.

Theorem 2 further shows ESKF is an asymptotically unbiased minimum variance estimation under

certain conditions.

Theorem 2 (Optimality). If F (Xk, k) = F0, Āk = Ā, B̄k = B̄, C̄k = C̄, Rk = R, Sk = S, ∀k > 0, then

ESKF (25)–(28) with Qk = 0 is an asymptotically unbiased minimum variance estimation for [XT
k FT

k
]T

among all the functions of {Yi}
k−1
i=1 .
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Table 1 Initial values and noise weighting matrices for Example 1

ẑ0 Gk Dk

Small initial error and small noise [0.5 0.5]T
√
10−5I

√
10

Small initial error and large noise [0.5 0.5]T
√
10−5I

√
103

Large initial error and small noise [1.5 1]T
√
10−5I

√
10

The proof of Theorem 2 is in Appendix D. Theorem 2 shows that ESKF has some optimality in the

sense of minimum variance if the uncertain term F (Xk, k) is constant, even though it can be arbitrarily

large and unknown. Note that the F (Xk, k) in the physical plants is usually slowly time-varying dynamics,

then it is not to hard to know that ESKF performs well in practical systems, as shown in the examples

of Section 4.

Next, the effectiveness of ESKF for nonlinear filtering problem will be shown by two systems which

have been studied with EKF and the traditional SVF, respectively.

4 Case studies

4.1 Example 1

Reif et al. [7] has shown that EKF may quickly diverge without the conditions of sufficient small initial

estimation error or sufficient small noise. We apply ESKF to this example to illustrate that ESKF can

weaken the stability conditions on the initial error and noise and guarantee the stability for nonlinear

systems.

The system in [7] is given as follows:

{

zk+1 = Ākzk + B̄kFk +Gkwk, z0 = [0.8 0.2]T,

yk = C̄kzk +Dkvk,
(34)

where zk =
[

z1,k

z2,k

]

is the state,

Āk =

[

1 τ

−τ 1− τ

]

, B̄k =

[

0

τ

]

, C̄k = [1 0], Fk = z2,k(z
2
1,k + z22,k), (35)

yk is the measurement, and wk and vk are uncorrelated zero-mean white noise processes with identity

covariance. The sampling time is τ = 10−3, executing k = 2 × 104 steps. The matrices Gk and Dk as

well as the initial value ẑ0 are shown as Table 1, which are the same as those in [7].

We treat Fk as an extended state and design ESKF with parameters

F̂0 = 0, Rk = D2
k, Qk = 3× 10−5, Q2,k =

[

G2
k 0

0 0

]

, P0 = I3×3. (36)

Figure 1 illustrates the paths for the estimation error (ẑ2,k − z2,k) of ESKF and EKF. It can be seen

from Figure 1 that in the case of large measurement noise or large initial error, the estimation error

of EKF is quickly divergent while the estimation error of ESKF is bounded. Thus ESKF releases the

conditions of small enough initial error and disturbing noise, and shows low sensitivity to the initial error

and noise.

4.2 Example 2

In order to further demonstrate the ability of ESKF in dealing with model uncertainties, we use ESKF and

the traditional SVF [20,36,37] in maneuvering targets tracking and compare their filtering performances
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Figure 1 (Color online) The estimation error of ESKF and EKF (Example 1).

for the following target state-space model with unknown maneuvering [38]:



















Ṡ(t) = V (t),

V̇ (t) = −2ΩV (t)− Ω2S(t)−
µ

‖S(t)‖
3S(t) + ∆F (t),

Yk = C̄kSk + vk,

(37)

where S(t) and V (t) are the target position and velocity vectors. The terms 2ΩV (t) and Ω2S(t) represent

the accelerations due to the Coriolis and centrifugal forces respectively, where Ω =

[

0 −ωe 0

ωe 0 0

0 0 0

]

. ωe =

7.292115× 10−5 is the Earth rotation rate. µ

‖S(t)‖3
S(t) represents the gravitational acceleration, where

µ = 3.986005× 1014 is the Earth’s gravitational constant. ∆F (t) is the acceleration induced by unknown

maneuvering force or external disturbance.

Yk is the sampled measurement output and the sampling time is h = 0.01 s. k denotes the integer.

C̄k =









e−9×10−8

0 0

0 e−9×10−8

0

0 0 e−4.5×10−8









.

{vk}
∞
0 is uncorrelated Gaussian random sequence with its variance matrix being

σ2
v =









8× 103 0 0

0 4.5× 103 0

0 0 4.5× 103









.

The targets tracking problem has been identified by a number of authors [39,40], as being particularly

stressful for filters and trackers because of the strong nonlinearities exhibited by the gravity. Besides, the

tracking problem becomes more difficult for the existence of unknown acceleration ∆F (t).

We treat the sum of the nonlinearity µ

‖S(t)‖3S(t) and the uncertainty ∆F (t) as the “total disturbance”

F (t), which satisfies

F (t) = −
µ

‖S(t)‖3
S(t) + ∆F (t).

Thus the nominal model (known information) of F (t) is

F̄ (t) =
µ

‖S(t)‖
3S(t).
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Denote the state Xk as Xk ,
[

S(kh)

V (kh)

]

. The model (37) is discretized with sampling time h in order to

get the discrete form (1) with

Āk = I6×6 + h

[

03×3 I3×3

−Ω2 −2Ω

]

, B̄k =

[

03×3

hI3×3

]

.

To compare the robustness of ESKF and traditional SVF against different uncertainties, the simulations

are carried out for the following three cases of the unknown acceleration ∆F :

C1 : ∆F (t) = 0.1 sin(0.02t), C2 : ∆F (t) = 1.5 sin(0.02t), C3 : ∆F (t) = 0.1t.

According to (25)–(28), ESKF is designed with

X̂0 =

[

C̄−1
0 Y0

03×1

]

, F̂0 =
µ

∥

∥C̄−1
0 Y0

∥

∥

3 C̄
−1
0 Y0, P0 =









C̄−1
0 σ2

vC̄
−1
0

v2maxI3×3

I3×3









, (38)

Rk = σ2
v, Q1,k =

[

06×6 06×3

03×6 4× 10−7I3×3

]2

. (39)

The traditional SVF is designed as [36]

X̂k = X̄k +Kk

(

yk − C̄kX̄k

)

, (40)

X̄k+1 = ĀkX̂k + B̄kF̄ (X̂k), (41)

Kk = w̃P̄kC̄
T
k

(

w̃C̄kP̄kC̄
T
k +Rk

)−1
, (42)

Pk = (I −KkC̄
T
k )P̄k, (43)

P̄k+1 =
1

1− ρk
JkPkJ

T
k +

1

ρk
Qk, (44)

X̄0 =

[

C̄−1
0 Y0

0

]

, P̄0 =

[

(C̄−1
0 σv)

2

v2maxI3×3

]

, Rk = σ2
v , (45)

Qk =

[

0 0

0 1
30I3×3

]

, ρk =

√

tr(Qk)
√

tr(Qk) +
√

tr(JkPkJ
T
k )

, w̃ = 0.05, (46)

where

Jk ,
∂(ĀkX + B̄kF (X))

∂X

∣

∣

∣

∣

X̄k

= I6×6 + h





03×3 I3×3

−
(

µ

‖S̄k‖3 I3×3 +
3µ

‖S̄k‖5 S̄kS̄
T
k − Ω2

)

−2Ω



. (47)

The performances of ESKF and traditional SVF are compared in Figures 2–4. According to Figure 2,

both ESKF and traditional SVF perform well when the size of uncertainty is small (C1). We increase

the size of the uncertainty from C1 to C2 with the fixed parameters of the filters. Figure 3 shows

that the estimation error of ESKF remains small while the estimation performance of traditional SVF

deteriorates. We continue to increase the size of the uncertainty to an unbounded uncertainty as C3.

Figures 4 and 5 show that although unboundedness of ∆F (t) leads to the divergence of system, the

estimation of ESKF performs well while the estimate of traditional SVF becomes divergent. It indicates

that ESKF achieves better filtering results than traditional SVF in the case of large uncertainty or even

unbounded uncertainty. Furthermore, the uncertainty Fk can be timely estimated by ESKF for improving

the estimation performance, as the estimation performance of Fk shown in Figures 2–4. This is the reason

why ESKF can tolerate larger uncertainties than the traditional SVF. Additionally, Figure 6 presents

the curves of the diagonal elements of Pk and the curves of the mean square estimation errors (MSE) for

ESKF obtained from simulation for 100 times in C2. Obviously, the MSE of ESKF, being accordance

with our theoretical result, is bounded by the diagonal elements of Pk for ESKF. Besides, as the curves of

Pk elements can better reflect the MSE of ESKF, Pk can be treated as the accuracy evaluation of ESKF.
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Figure 2 (Color online) The MSE of ESKF and SVF for C1 (Example 2).
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Figure 3 (Color online) The estimate error of ESKF and

SVF for C2 (Example 2).

Figure 4 (Color online) The MSE of ESKF and SVF for

C3 (Example 2).
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5 Conclusion

This paper proposes the ESKF aiming to solve the filtering problem for a class of nonlinear time-varying

uncertain systems. The essence of ESKF is to actively estimate the “total disturbance”, which lumps

model uncertainties and unknown disturbances, for better robustness and higher estimation precision.

Thus the stability of ESKF can be assured for uncertain nonlinear systems under a weaker condition,

rather than the conditions of true model, small enough initial estimation error and noise. Additionally,

the paper shows that the estimation precision can be timely evaluated through the filter parameters.

Moreover, when the uncertainty is constant, ESKF asymptotically tends to the unbiased minimum vari-

ance filter. The simulation results on two typical examples illustrate the effectiveness of the proposed

filter.

This paper offers a new idea to handle nonlinearities and uncertainties by the extended state design of

filters. Besides, the paper also optimizes the gains of ESO for stochastic uncertain system. We believe

this work will have a huge impact on both nonlinear filter and ESO.
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Appendix A Proof of Lemma 1

Sufficiency. If (Ak, Ck) is uniformly observable, then for any λ ∈ R, rank
[

λI − Ak

Ck

]

= n+ l, ∀k = 0, 1, . . ..

From (3), there is

rank









λI − Āk −B̄k

0 λI − I

C̄k 0









= n+ l, ∀λ ∈ R, ∀k = 0, 1, . . . . (A1)

Thus

rank









λI − Āk

0

C̄k









= n, ∀λ ∈ R, ∀k = 0, 1, . . . . (A2)

Therefore, (Āk, C̄k) is uniformly observable.

In addition, let λ = 1, there is

rank









I − Āk −B̄k

0 0

C̄k 0









= n+ l, ∀k = 0, 1, . . . . (A3)

Necessity. Otherwise, if (Āk, C̄k) is uniformly observable and rank
[

I − Āk −B̄k

C̄k 0

]

= n+ l, for any λ ∈ R, there is

rank

[

λI − Āk

C̄k

]

= n, ∀k = 0, 1, . . . . (A4)



Bai W Y, et al. Sci China Inf Sci April 2018 Vol. 61 042201:14

Thus for any λ ∈ R and λ 6= 1, there is

rank









λI − Āk −B̄k

0 λI − I

C̄k 0









= rank









λI − Āk 0

0 λI − I

C̄k 0









= n+ l, ∀k = 0, 1, . . . . (A5)

Besides, if λ = 1, there is

rank









λI − Āk −B̄k

0 λI − I

C̄k 0









= rank









I − Āk −B̄k

0 0

C̄k 0









= n+ l. (A6)

In conclusion, for any λ ∈ R, we have

rank









λI − Āk −B̄k

0 λI − I

C̄k 0









= n+ l, ∀k = 0, 1, . . . . (A7)

Therefore (Ak , Ck) is uniformly observable.

Appendix B Proof of Theorem 1

From (19), it is obvious that the selection methods of the parameters P0, Rk , Q1,k, Q2,k, θ endow ESKF with the

consistence property, that is, E(eke
T
k
) 6 Pk.

Next, we will prove that {Pk}∞k=1 is uniformly bounded.

From (27) Pk can be expressed as

Pk+1 =
(√

1 + θAk +Kk

√
1 + θCk

)

Pk

(√
1 + θAk +Kk

√
1 + θCk

)T

+KkRkKk
T +

(

1 +
1

θ

)

Q1,k +Q2,k. (B1)

Since (
√
1 + θAk,

√
1 + θCk) is uniformly observable and {Rk}∞k=1, {Q1,k}∞k=1, {Q2,k}∞k=1 are uniformly bounded,

{Pk}∞k=1 is uniformly bounded3) .

Appendix C Proof of Lemma 2

Assume P ∗

1 and P ∗∗

1 denote the P1 under the situations of (P ∗

0 , Q
∗

1,0, Q
∗

2,0, R
∗

0) and (P ∗∗

0 , Q∗∗

1,0, Q
∗∗

2,0, R
∗∗

0 ) in (25)–(28),

respectively, and the corresponding K are K∗ and K∗∗ respectively. From

P0
∗ < P0

∗∗, Q∗

1,0 < Q∗∗

1,0, Q∗

2,0 < Q∗∗

2,0, R∗

0 < R∗∗

0 ,

it is obvious that

P ∗∗

1 =(1 + θ) (A0 +K∗∗

0 C0)P
∗∗

0 (A0 +K∗∗

0 C0)
T +K∗∗

0 R∗∗

0 K∗∗

0
T +

(

1 +
1

θ

)

Q∗∗

1,0 +Q∗∗

2,0

>(1 + θ) (A0 +K∗∗

0 C0)P
∗

0 (A0 +K∗∗

0 C0)
T +K∗∗

0 R∗

0K
∗∗

0
T +

(

1 +
1

θ

)

Q∗

1,0 +Q∗

2,0. (C1)

From (23), we can get

K∗

0 =argmin
K0

{

(1 + θ) (A0 +K0C0)P
∗

0 (A0 +K0C0)
T +K0R

∗

0K0
T +

(

1 +
1

θ

)

Q∗

1,0 +Q∗

2,0

}

. (C2)

Thus

P ∗∗

1 >(1 + θ) (A+K∗

0C)P ∗

0 (A+K∗

0C)T +K∗

0R
∗

0K
∗

0
T +

(

1 +
1

θ

)

Q∗

1,0 +Q∗

2,0 = P ∗

1 . (C3)

Therefore, P ∗

1 < P ∗∗

1 . Repeating this procedure, we get

P ∗

k < P ∗∗

k . (C4)

3) Anderson B D O, Moore J B. Detectability and stabilizability of time-varying discrete-time linear systems. SIAM J

Control Optim, 1981, 19: 20–32.
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Appendix D Proof of Theorem 2

For the constant Ā, B̄, C̄, R, the unbiased minimun variance estimation (the estimation of KF) for [XT
k

FT
k
]T satisfies

[

X̄k+1

F̄k+1

]

= A

[

X̄k

F̄k

]

+ K̄k

(

Yk − C

[

X̄k

F̄k

])

, (D1)

K̄k = −AP̄kC
T(CP̄kC

T +R)−1
, (D2)

P̄k+1 = (A+ K̄kC)P̄k(A+ K̄kC)T + K̄kRK̄
T
k +Q2, (D3)

[

X̄0

F̄0

]

=

[

E(X0)

F0

]

, P̄0 =

[

E
(

(X0 − X̄0)(X0 − X̄0)
T
)

0

0 0

]

. (D4)

According to the property of KF [1], P k is the minimun variance of [XT
k

FT
k
]T. From calculating, we can get the limit

of P̄k satisfying

lim
k→∞

P̄k = P̄ =

[

P̄(1) 0

0 0

]

, (D5)

where P̄(1) is the unique positive solution for the following Riccati equation:

P̄(1) =− ĀP̄(1)C̄
T(C̄P̄(1)C̄

T +R)−1
C̄P̄(1)Ā

T + ĀP̄(1)Ā
T + S, (D6)

provided that (Ā, C̄, S) satisfies the observability and controllability conditions [1].

As for ESKF, from F (X(t), t) ≡ F0 it can be verified that

Gk = 0, G(Xk , k) = 0, ∀k > 0. (D7)

Thus ESKF with Qk = 0 becomes
[

X̂k+1

F̂k+1

]

= A

[

X̂k

F̂k

]

−Kk

(

Yk − C

[

X̂k

F̂k

])

, (D8)

Kk = −APkC
T(CPkC

T + R)−1, (D9)

Pk+1 = (A+KkC)Pk (A+KkC)T +KkRKk
T +Q2, (D10)

which equals to KF algorithm. However, since F0 is unknown, the initial estimation F̂0 of ESKF may be biased. In this

case, we will prove that ESKF (D8) tends to the unbiased minimum variance estimation, i.e.,

lim
k→∞

E(eke
T
k ) = P̄ , lim

k→∞

E(ek) = 0. (D11)

Since Pk is bounded (see Theorem 1), there exists a converged subsequence {Pkj
}∞j=1 such that

lim
j→∞

Pkj
= P. (D12)

Besides, P satisfies the following equation:

P = −APCT(CPCT + R)−1CPAT +APAT +Q2. (D13)

According to the expression of A, C, Q2, we introduce the natural block stucture

P =





P(1,1)n×n
P(1,2)n×l

PT
(1,2)l×n

P(2,2)l×l



. (D14)

Thus, (D13) can be rewritten as

P(1,1) =ĀP(1,1)Ā
T + ĀP(1,2)B̄

T + B̄P
T
(1,2)Ā

T + B̄P(2,2)B̄
T + S

− (ĀP(1,1)C̄
T + B̄P

T
(1,2)C̄

T)(C̄P(1,1)C̄
T +R)−1(ĀP(1,1)C̄

T + B̄P
T
(1,2)C̄

T)T, (D15)

P(1,2) =− (ĀP(1,1)C̄
T + B̄P

T
(1,2)C̄

T)(C̄P(1,1)C̄
T +R)−1

C̄P(1,2) + ĀP(1,2) + B̄P(2,2), (D16)

P(2,2) =P(2,2) − P
T
(1,2)C̄

T(C̄P(1,1)C̄
T +R)−1

C̄P(1,2). (D17)

From (D17) and C̄P(1,1)C̄
T +R > 0, we known that

C̄P(1,2) = 0. (D18)

Then substitute (D18) into (D16), we have

(I − Ā)P(1,2) − B̄P(2,2) = 0. (D19)
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Since (A,C) is observable, for any λ ∈ R,
[

λI − A

C

]

is full column rank. Take λ = 1 so that
[

I − Ā −B̄

C̄ 0

]

is full column

rank. Therefore, we can conclude from (D18)–(D19) that

P(1,2) = 0, P(2,2) = 0. (D20)

Substituting (D20) into (D15), we can get P(1,1) satisfying

P(1,1) =− ĀP(1,1)C̄
T(C̄P(1,1)C̄

T +R)−1C̄P(1,1)Ā
T + ĀkP(1,1)Ā

T + S. (D21)

Since (Ā, C̄, S) satisfies the observability and controllability conditions, P(1,1) = P̄(1) is the unique positive solution for

(D21). Hence,

P = P̄ . (D22)

To conclude, all the converged subsequences of {Pk}∞k=0 converge to P̄ . Next, we will prove

lim
k→∞

Pk = P̄ . (D23)

Let
⋃

i=1{P
(i)
kj

}∞j=0 denote the union of the converged subsequences of {Pk}∞k=0. Suppose

{Pk}∞k=0\
{

⋃

i=1

{

P
(i)
kj

}

∞

j=0

}

6= ∅.

Since {Pk}∞k=0\{
⋃

i=1{P
(i)
kj

}∞j=0} is consistent bounded, there exists a subsequence satisfying

{P ∗

(ki)
}∞i=1 ⊆ {Pk}∞k=0\

{

⋃

i=1

{

P
(i)
kj

}

∞

j=0

}

,

such that

lim
i→∞

P ∗

(ki)
= P̄ .

This contradicts P ∗

(ki)
∈ {Pk}∞k=0\{

⋃

i=1{P
(i)
kj

}∞j=0}. Thus

{Pk}∞k=0\
{

⋃

i=1

{

P
(i)
kj

}

∞

j=0

}

= ∅.

That is, every subsequence of {Pk}∞k=0 converges to P̄ , which yields (D23). From the property of Pk and Pk, the error

covariance of ESKF satisfies

Pk 6 E(eke
T
k ) 6 Pk. (D24)

Therefore, from (D5) and (D23),

lim
k→∞

E(eke
T
k ) = P̄ . (D25)

Since KF (D1)–(D4) is an unbiased minimum variance estimation with the covariance being Pk , it is easy to see that

the estimation [XT
k

FT
k
]T is asymptotic unbiased, that is

lim
k→∞

E(ek) = 0. (D26)
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