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Abstract In recent years, convolutional neural networks (CNNs) are leading the way in many computer

vision tasks, such as image classification, object detection, and face recognition. In order to produce more

refined semantic image segmentation, we survey the powerful CNNs and novel elaborate layers, structures and

strategies, especially including those that have achieved the state-of-the-art results on the Pascal VOC 2012

semantic segmentation challenge. Moreover, we discuss their different working stages and various mechanisms

to utilize the structural and contextual information in the image and feature spaces. Finally, combining some

popular underlying referential methods in homologous problems, we propose several possible directions and

approaches to incorporate existing effective methods as components to enhance CNNs for the segmentation

of specific semantic objects.
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1 Introduction

Semantic image segmentation is one of the most challenging problems in computer vision. It is also a

fundamental prerequisite for various hot topics in computer vision, such as scene understanding [1, 2],

reconstruction [3] and image processing.

Before the proposal of the Pascal VOC 2007 semantic segmentation challenge, a great deal of effort

had been focused on the geometric labeling of images, which also applies to semantic image segmentation.

These methods can be divided into two main classes: statistics-based [4–9] and geometry-based [10, 11]

methods. Most parametric statistical methods [4–7] over-segment an image based on several simple

features, which are similar to image segmentation methods [12] partitioning a digital image into mul-

tiple regions based on image appearance. Then, Markov random field (MRF) methods [5] or grammar

methods [8] are used to classify these super-pixels into different geometric classes by extracting complex

hand-crafted features. Data-driven nonparametric statistical methods [9] without a training step find the

most similar scenes from the retrieval set, on which dense alignment [13] can be implemented. Then, the

aligned labels are transferred to the input. Based on constraints of parallelism and verticality between

planes and lines, geometric methods calculate geometric labels directly.
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Figure 1 (Color online) Examples from the segmentation subset [17].

Recently, convolutional neural networks (CNNs) have attracted the attention of many researchers

because of their ability to automatically extract more compact and meaningful features from images than

classical hand-crafted ones. In fact, CNNs have demonstrated clear superiority in many tasks, including

image classification and object detection.

During 2015 and 2016, the state-of-the-art results in semantic image segmentation were significantly

improved by virtue of CNNs. Semantic image segmentation is equivalent to a pixel-wise classification

problem. Approaches such as sliding windows or fully convolutional neural networks allow the existing

structures for image classification to be directly adapted to semantic image segmentation.

The spatial-semantic uncertainty principle is the main challenge in semantic segmentation. At higher

semantic levels, the resolution of feature maps rapidly decreases in general CNNs, which limits the

accuracy of the segmentation results. The downsampling and invariance of CNNs that are desired in

many high-level vision tasks hinder the extraction of spatial details [14]. Many recent approaches have

attempted to preserve, extract or restore structural information to enhance the highly abstract features

obtained from deep layers. Based on rather accurate image classification and detection procedures, the

key prerequisite task is to recognize the boundary pixels of objects [15, 16].

Several datasets related to semantic segmentation are available, such as Cityscapes, PASCAL-Context,

ADE20K, MS COCO, and BSDS. In this paper, we survey the latest results on the Pascal VOC 2012

semantic segmentation challenge, which is the most representative image dataset for this purpose [17].

The twenty object classes that have been selected are as follows:

• Person: person;

• Animal: bird, cat, cow, dog, horse, sheep;

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train;

• Indoor: bottle, chair, dining table, potted plant, sofa, TV/monitor.

This dataset can be used for object classification, detection, segmentation, action classification and a

competition on large-scale recognition run by ImageNet. The segmentation subset contains 1464 images

for training and 1449 images for validation. Some examples from the segmentation subset are shown in

Figure 1. Each of these images contains at least one object and usually some occluded objects captured

from various views.

Remarkable improvement has been achieved using several newly proposed layers, structures and strate-

gies.

Various new layers and structures have been proposed to handle contextual information. Some of

them are implementations of probabilistic graphic models (PGMs) [18–21], such as conditional random

fields (CRFs) and MRFs, for modeling various contextual relationships. The generalization capability of

PGMs and the learning capability of CNNs can complement each other. Other approaches for handling

contextual relationships take advantage of structures such as recurrent neural networks (RNNs) [22,
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23] and long short-term memory (LSTM) neural networks [24], which explicitly propagate long-range

contextual information. We believe that certain correlations exist among these methods.

Features with variable resolutions, multiple scales and different levels of abstraction are passed and

blended through multiple layers in several of these new structures. Unpooling layers and deconvolutional

layers are used alternately to increase resolution and provide more details [25]. Dilated convolution and

atrous convolution [26–28] are used to achieve a trade-off among the field of view (FOV), the number of

parameters and the resolution of feature maps. Multi-scale features implicitly contain different types of

contextual information, thereby enhancing the robustness of frameworks. Resized features with different

levels of abstraction can be summed or concatenated to form multi-granularity features.

Because of the use of deeper layers, higher numbers of parameters and more complex structures, more

effective strategies are needed to accelerate the training process. The computational cost of a single

iteration should be reduced to ensure that the entire network is tractable. To avoid over-fitting caused

by an unbalanced dataset, the training samples and objective functions can be augmented.

Instead of comparing the performances of various new layers, structures and strategies, we place our

emphasis on revealing the reasons why these remarkable accomplishments have been achieved. We believe

that by analyzing their mechanisms, we can determine how they can be combined in a mutually beneficial

manner to enhance the final output.

2 Recent progress in semantic image segmentation

In recent years, significant progress has been made in semantic image segmentation. We list the most

important work with the best results achieved by each architecture in Tables 1 and 2. In high-level

vision tasks, the shape information is lost in the features that are extracted, layer by layer, by CNNs,

with increases in the degrees of nonlinearity and semantic abstraction. However, accurate segmentation

requires information of this kind to be appended to the final output.

There are two commonly applied schemes for recovering the configurations of semantic objects: com-

bining information from different CNN layers and constructing more contextual relationships in the image

or feature space.

Combining information from different CNN layers. Skip-layer architectures [29] are able to present

multi-granularity information aggregated from different layers. Considering the inconsistent resolutions of

feature maps, the methods used to enable the combination of feature maps are the main factors considered

when designing a framework for producing fine segmentations. The feature maps are either upsampled

to a given size or kept invariant in resolution. Therefore, reducing the loss of structural information

between layers and improving the effectiveness of interpolation are the keys to restoring more structural

information. In fact, these approaches simulate the behavior of the human mind in coping with the same

problem. However, because the receptive fields of CNNs can not keep matching with observed objects,

this kind of architecture cannot perform global optimization based on experience and logic in exactly the

same way as human beings.

Constructing more contextual relationships. Before CNNs are applied for semantic image segmentation,

PGMs, including CRFs and MRFs, are commonly used for modeling the connections among nodes, which

correspond to pixels or super-pixels [4–7] in images. The inputs to the energy function are usually hand-

crafted features, which may limit the effectiveness of these methods. Moreover, traditional inference

algorithms, with their high computing costs, cannot be successfully adapted for application to larger

datasets [30].

With the adoption of CNNs for semantic image segmentation, CRFs can be an efficient post-processing

component for smoothing the output from such CNNs [25]. By virtue of the proposal of approximate

algorithms [30] for inferring segmentations, CRFs can be implemented as layers in conventional CNNs.

Simultaneously, the end-to-end training strategy further improves the result. Methods of converting CRFs

into CNN layers and rapidly training such frameworks are the main contributions of the related work.

RNNs are effective tools for depicting long-range dependencies in time and space. An initial segmentation
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Table 1 PASCAL VOC 2012 Challenge Leaderboard (2015/10/2)

Architecture Mean Architecture Mean

Adelaide Context CNN CRF COCO [19] 77.8 DeepLab-CRF-COCO-LargeFOV [27] 72.7

CUHK DPN COCO [20] 77.5 POSTECH EDeconvNet CRF VOC [25] 72.5

CentraleSuperBoundaries [51] 75.7 Oxford TVG CRF RNN VOC [18] 72.0

Adelaide Context CNN CRF VOC [19] 75.3 DeepLab-MSc-CRF LargeFOV [27] 71.6

MSRA BoxSup [55] 75.2 DeepLab-CRF-COCO-Strong [27] 70.4

POSTECH DeconvNet CRF VOC [25] 74.8 DeepLab-CRF-LargeFOV [27] 70.3

Oxford TVG CRF RNN COCO [18] 74.7 TTI zoomout v2 [44] 69.6

DeepLab-MSc-CRF-LargeFOV-COCO-CrossJoint [27] 73.9

Table 2 PASCAL VOC 2012 Challenge Leaderboard (2017/2/1)

Architecture Mean Architecture Mean

PSPNet [48] 85.4 CentraleSupelec Deep G-CRF 80.2

ResNet-38 COCO [39] 84.9 CMT-FCN-ResNet-CRF 80.0

Multipath-RefineNet [38] 84.2 DeepLabv2-CRF [27] 79.7

ResNet-38 MS [39] 83.1 CASIA SegResNet CRF COCO 79.3

R4D MultiScale CRF 82.2 LRR 4x ResNet COCO [15] 79.3

SegModel 81.8 Adelaide VeryDeep FCN VOC 79.1

HikSeg COCO 81.4 LRR 4x COCO [15] 78.7

DP ResNet CRF 81.0 CASIA IVA OASeg 78.3

OBP-HJLCN 80.4 Oxford TVG HO CRF [46] 77.9

can be refined through repeated iteration in an RNN. RNNs can be not only implementations of PGMs

but also a special kind of flexible structure for explicitly propagating contextual information. As a type

of RNN that incorporates a gate function, LSTM neural networks have become popular structures that

can either remember or forget inconsistent contextual information. Our experimental results show that

although the accuracy on the test set is improved, the robustness of the system to images outside the

training set remains an open question.

2.1 Implementations of the combination of multi-granularity features

As seen from the results produced by 16-layer VGGNet (VGG-16) [31] that are presented in Figure 2,

the feature maps become sparser in both the feature dimension and the spatial dimension from one layer

to the next, and higher-level semantic information becomes concentrated in fewer maps as the analysis

proceeds through the entire framework. The semantic levels of various multi-granularity features arrange

from color and edge to typical structures of subparts of or even whole objects. High semantic level features

can be utilized to localize and classify the objects roughly. Conversely, low semantic level features related

to local appearance are not insufficient to classify the observed patch but helpful to discriminate details

of objects, especially which are close to boundaries.

With regard to the pixel-wise classification task, pixels can be divided into those that belong to easy

and difficult regions. Difficult pixels are usually located near boundaries and are the main basis on which

the effectiveness of an approach can be evaluated. Feature encoders, such as the VGG-16 and ResNet [32],

output low-resolution feature maps based on stacked convolution layers, ReLu layers and pooling layers.

In general CNNs, the FOV determines the accuracy of segmentation. Because of the lack of complete

information on the detected objects, a small FOV may lead to false positives or false negatives. To

enlarge the size of the FOV, pooling layers and downsampling layers are introduced into CNNs, thereby

reducing the resolution of the output and the quality of details. Therefore, to improve the accuracy of

segmentation and refine the proposed boundaries, it is natural to attempt to enlarge the FOV without

losing resolution and to integrate the ability to handle incomplete objects. Notably, a large number of

intermediate multi-granularity feature maps need to be used to further improve semantic segmentation
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Figure 2 (Color online) Different semantic feature maps obtained from different VGG-16 layers. The sizes of the feature

maps have been adjusted for ease of observation.

in various ways. However, a too large FOV may incorporate some irrelevant contexts, which lead to

mislabeling, using too many parameters to overfit the data and consuming too much computing resource.

Therefore, constraints on parameters and multi-scale methods are adopted to ease these issues.

Unpooling layers and deconvolutional layers [25] are efficient and critical structures for calculating more

detailed feature maps at higher resolutions. Instead of classical smooth interpolation, an upsampling op-

eration that can recover details, especially boundary information, is desired. In general, unpooling layers

are placed in symmetric positions to resize the input maps to larger maps with structural patterns that

are recorded in corresponding pooling layers. Deconvolutional layers usually serve as complex nonlinear

interpolating filters for inferring the original shapes of semantic objects. Ghiasi et al. [15] designed their

complete structural learning technique based on the idea of dividing an image into different frequency

bands using classical methods. During the process of combining multi-granularity information, the details

could be recovered from shallow feature maps. They artificially embedded basis functions containing prior

knowledge into the deconvolution layers to effectively reconstruct high-resolution details. During end-to-

end training, these basis functions were found not to vary significantly, thereby indirectly demonstrating

the effectiveness of using artificial features in CNNs. This approach expands the usage of deconvolution

layers to reconstruction tasks. Off-the-shelf realizations of unpooling layers and deconvolutional layer-

s are available that are easy to configure and train. To ameliorate the problem of ill-conditioning in

appearance recovery, some frameworks attempt to avoid excessive downsampling. In the Deep Parsing

Network (DPN) approach, some pooling layers are removed from VGG-16 to improve the resolutions of

the intermediate layers, and the kernels in the convolution layers are padded to a larger size to ensure the
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usability of the existing weights. Overfeat [28] shifts the input and interlaces the output to yield denser

predictions without interpolation.

Considering the number of parameters, atrous convolution and dilated convolution [26, 27] are used

to reduce the loss of resolution in feature maps that is introduced by pooling layers. Experiments

demonstrate that an enlarged FOV and implicitly aggregated multi-scale contextual information can

significantly improve the results. Dropout, which is also a helpful module to avoid over-fitting, has been

proven to reduce the Rademacher complexity in polynomial or exponential [33].

Wu et al. [34] also noted the importance of the FOV. To make a trainable network with a larger FOV,

they proposed a multi-pass method that can run with limited GPU memory. In their network, multiple

low-resolution score maps produced by a structure with the same parameters are stitched together to

form a higher-resolution score map.

Hypercolumns [35] concatenate different responses at the same position in bilinearly interpolated heat

maps from several layers to obtain a feature vector for each pixel. Considering the heterogeneous distri-

butions of the features in the bounding boxes of detected objects, K×K logistic regression classifiers that

take hypercolumns as input are interpolated to infer the results.

The Fully Convolutional Network (FCN) approach [36] is a piece of pioneering work on the realization

of a skip-layer architecture with a directed acyclic graph (DAG) network. The best results are produced

by FCN-8s, in which shallow predictions are added into upsampled predictions three times. Following this

idea, FCN-2s [37] is equipped with a powerful function for discovering the boundaries of semantic objects.

Although the results produced by FCN have now been far surpassed, it has served as a vital foundation

for subsequent work. Similar to FCN, RefineNet [38] is a cascade-like multipath network. Low-level

information is introduced step by step. Chained residual pooling as well as long- and short-range residual

connections improve the high-resolution predictions. We consider that the residual connections present

in ResNet [32] can stabilize the structure of the feature space, as proven by experiments using RefineNet.

Without explicitly combining coarse and fine information, DeconvNet [25] appends a symmetric seg-

mentation network to the end of the VGG-16, which is treated as the feature encoder. In 2016, the more

powerful ResNet was adopted as a replacement for the classical VGG-16 [15, 34, 39] to directly improve

the results. The segmentation network is constructed with multiple series of unpooling, deconvolution

and rectification operations. Furthermore, the results are still comparable to those of existing studies if

the deconvolution layers are replaced with conventional convolution layers. We believe that the activation

patterns of the pooling layers are the most meaningful component of this inference process. This scheme

is extremely simple and clear, allowing it to be easily adapted into many more powerful frameworks.

Simple combinations of multiple semantic levels usually ignore the different effectiveness of different

features. However, it is hoped that in addition to the learned sparse effective parameters, these specific

connections can be enhanced to be sensitive to certain variations, such as variations in scale, position

or even semantic category, to further constrain the activation of neural cells. Attentional models can

serve as hyperparameters to softly weight different features or scores. With different considerations,

attentional models learned from networks can be used to enhance the accuracy and robustness of the

overall approach. Hong et al. [40] focused on an attentional model to generate category-specific saliency

results for each location in an image, thereby revealing location information for each category in a coarse

feature map. A dense and detailed foreground segmentation mask for each category could subsequently

be obtained by the decoder. Chen et al. [41] mainly considered the problem of robustness to scale by

explicitly introducing factors of this kind.

Kuen et al. [23] noted that CNNs do not work well for objects of multiple scales. A recurrent attentional

convolutional-deconvolutional neural network (RACDNN) uses a spatial transformer and an RNN to

perform saliency refinement. The saliency refinement is applied locally to selected subregions of the

image.

Explicitly considering the completeness of segmentation, Multi-scale Patch Aggregation (MPA) [42]

uses a suitable FOV to segment parts of or entire objects, which are then integrated into a complete

configuration. This is a novel way to promote robustness to scale variations.

Bertasius et al. [43] also took advantage of boundary cues to enhance the FCN approach. Because
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Table 3 Effects of various methods for combining multi-granularity features

Implementation Mean/Relative improvement

FCN-8s [36] 62.2/0

DeconvNet [25] 69.6/7.4

EDeconvNet [25] 71.7/9.5

DecoupledNet-Full [45] 66.6/4.4

DPN [20] 74.1/11.9

DPN With COCO [20] 77.5/15.3

Hypercolumn Sys1 [35] 54.6/−7.6

Hypercolumn Sys2 [35] 62.6/0.4

Zoom-out [44] 69.6/7.4

LRR 4x ResNet COCO [15] 79.3/17.1

LRR 4x COCO [15] 78.7/16.5

Multipath-RefineNet-Res152 [38] 83.4/21.2

DeepLab-CRF-COCO-LargeFOV-Attention [41] 75.1/12.9

DeepLab-CRF-COCO-LargeFOV-Attention+ [41] 75.7/13.5

TransferNet [40] 51.2/−11

of the distinct appearance of pixels near boundaries, the recognition of semantic boundaries enables the

achievement of significantly better accuracy than semantic segmentation [37], and the results can be

treated as a believable prior to constrain the refinement of a coarse segmentation. The coarse segmenta-

tions predicted by a semantic FCN are used to define the unary potentials of the boundary neural field

(BNF). The local boundaries are then used to build pairwise pixel affinities. The pairwise potentials can

be used to globally refine the initial segmentation, and these potentials are added into the CRF energy

function introduced in Subsection 2.2. However, incomplete outlines and tiny false boundaries introduce

failure modes that require additional research.

Because over-segmentations based on differences in appearance can yield richer statistical features,

classical image segmentation approaches usually use super-pixels as inputs for the hierarchical generation

of the final segmentation. Mostajabi et al. [44] presented a CNN framework for extracting features from

a sequence of nested regions called zoom-out regions, which increase in size from super-pixels to even

larger scales. Then, the super-pixels are classified by a multi-layer neural network based on the features

assigned to these regions.

In all of the methods discussed above, the output from the feature encoder is passed as a whole to the

subsequent segmentation network. However, not all feature maps will be well suited for specific semantic

objects, and some may even cause the quality of the segmentation results to degrade. To select class-

specific information, DecoupledNet [45] uses a bridging layer to decouple the classification network and

the segmentation network. The bridging layer takes the output from the last pooling layer and uses the

relevance of activations in f(k) with respect to a specific class l to construct a class-specific activation

map for a given semantic label. Then, the corresponding class-specific segmentation network can be

trained in isolation.

The effects of these methods are summarized in Table 3, based on the results of testing on the Pascal

VOC 2012 dataset. FCN-8s is chosen as the baseline. Table entries grouped by horizontal lines share

similar underlying concepts.

As in the case of augmented frameworks such as EDeconvNet [25], combinations of the different methods

listed in Table 3 can offer further improvements in accuracy. Many experimental results have demonstrat-

ed that these methods are, to some extent, independent. As seen in Figure 3, despite a general lack of

experiments, the different methods discussed above appear to make effect in distinct stages of the whole

process using different mechanisms. Regardless of the size of the dataset, the available video memory

and the number of parameters, almost all of these structures can be combined to independently improve

the segmentation accuracy. In the case of larger datasets, we believe that the applicable mixture of these
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Mechanism

Stage

Frameworks                     Feature-encoder Classification Post-process

Upsample the 

resolution

Mixture of 

multi-grain 

information

Mixture of 

contextual 

information

Attention module

Bridging layer

Cascade-like 

architecture

Skip-layer

BNF
MPA

Hyper-column

PSP
Zoom-out

Others ResNet

Removing pooling layers and 

padding kernels

Deconvolution and unpooling

Shifting input and interlacing 
output

Atrous and dilated convolution

Figure 3 Distinct stages of applicability and different underlying mechanisms of the analyzed methods and structures.

methods can effectively enhance the robustness and accuracy of segmentation frameworks.

2.2 Implementations of the construction of contextual relationships

We divide contextual information into three categories: the appearance context, the high-level feature

context and the semantic context.

• The appearance context can be used to smooth an initial segmentation based on consistency of

appearance.

• Because appearance is sometimes unreliable, high-level features, which are inherently more closely

related to semantic information, can be used to further disambiguate the initial segmentation.

• The semantic context mainly describes the functional compatibility among recognized objects in an

initial segmentation, which can play a large role in eliminating misunderstandings in local regions.

A CNN can propagate contextual information from inside the equivalent FOV. However, the availability

of inconsistent or global information is limited in the general CNN architecture. To explicitly propagate

this information, Shuai et al. [22] treat the input image as an undirected cyclic graph (UCG) structure,

which can be represented as a set of DAGs with different context propagation directions. DAG-RNNs

have been proposed for processing DAG-structured images, thereby allowing the network to explicitly

model long-range semantic contextual dependencies. LG-LSTM extends the Grid-LSTM approach to the

global context for the iterative refinement of the current segmentation.

PGMs have been adopted from classical methods for application to CNNs; they complement CNNs

by providing a feasible mechanism for handling many kinds of contexts. Semantic image segmentation

using PGMs can be treated as a graph cut problem. Contextual relationships can be formulated as

edges in the graph model and different-order potentials in the energy function. Fully connected CRF

models [30] with pairwise Gaussian edge potentials, which are conditioned on the input, are commonly

used for this purpose. In a model of this kind, connections are established between all pairs of pixels in an

image. These connections are able to depict various complex contextual relationships, including occlusion,

spatial relations and discontinuity, as shown in Figure 4 [25]. However, the practical applicability of fully

connected CRFs is limited by the rapid growth in the number of edges with increasing input resolution.
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(a)                                    (b)                                   (c)

Figure 4 (Color online) Obvious false recognitions are evident in column (b), which can be corrected by using a CRF

model. The post-processed results obtained using the CRF approach are shown in column (c).

We let xi denote the label assigned to pixel i and let I denote the possible input images of size N . In the

fully connected CRF model with potentials of order two, the corresponding Gibbs energy function [30] is

E(x) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj), (1)

where the unary potential term ψu(xi) measures the cost of assigning label xi to pixel i and the pairwise

term ψp(xi, xj) measures the smoothness of assigning labels xi and xj to pixels i and j simultaneously.

The maximum a posteriori (MAP) labeling of the random field is x∗ = argmaxx∈LNP (x|I), where

P (x|I) has the following form:

P (x|I) =
1

Z(x)
exp(−E(x)). (2)

The energy functions of MRFs [20] have a form similar to that for CRFs.

Message passing (MP) algorithms [21], such as loopy belief propagation (LBP), tree-reweighted message

passing and the mean-field (MF) approximation, are commonly applied to approximate inference. As

demonstrated in [18–21], MP algorithms can be implemented as components of CNNs or as entire neural

networks trained in an end-to-end manner.

In the case of the MF approximation, the series of independent marginal probabilities produced by

minimizing the KL divergence are taken as approximations to the accurate distribution. The simpler

approximated distribution function Q(x) [30] can be written as follows:

Q(x) =
∏

i

Qi(xi), (3)

Qi(xi) =
1

Z(xi)
exp

{

− ψu(xi)−
∑

l′

µ(l, l′)m(l′)

}

, (4)
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Table 4 Transforming a CRF into an RNN

Step of iteration Implementation in the RNN

Initialization Softmax layer

Message passing Gaussian filters

Weighting of filter outputs 1× 1 convolutional layer

Compatibility transform 1× 1 convolutional layer

Addition of unary potentials Elementwise layer

Normalization Softmax layer

m(l′) =
K
∑

m=1

ωm
∑

j 6=i

km(fi, fj)Qj(l
′). (5)

Therefore, the inference procedure is simplified to an iterative message passing procedure in the graph,

which can be solved quickly and accurately. Subsequently, the unary potentials and pairwise potentials

are learned, either sequentially or simultaneously.

CRF-RNN [18] reformulates the iterative algorithm presented in [30] as an RNN. Each step in the

iteration is equivalent to a conventional layer used in CNNs, as shown in Table 4. Since the output of

the classifier for each pixel is independent of the outputs of the classifiers for the other pixels, the unary

potentials obtain inputs from the existing FCN. With the termination criterion set to a fixed number of

iterations, the distribution Q(x) can be assumed to converge to the actual distribution.

Context CNN CRF [19] won first place on the PASCAL VOC 2012 Challenge in 2015. The workflow

of this framework can be divided into three parts: Network Part 1, which extracts multi-scale features;

Network Part 2, which produces potentials; and a final stage for training or prediction. As a common

approach to extracting hand-crafted image features, multi-scale networks [14, 37] can implicitly contain

various contextual relations and enhance the robustness to scale variations of semantic objects. Network

Part 2 constructs one network for the unary potential and a network for each pairwise potential function

corresponding to a specific asymmetric contextual relation, such as “surrounding” or “above/below”.

These potential networks have different parameters but the same architecture. The procedure for label

prediction can be performed by applying an efficient message passing algorithm based on the MF ap-

proximation. The prediction converges within 2 iterations, which demonstrates the effectiveness of the

potentials produced by the first two parts of the framework.

Time-consuming iterations are not desirable for CNNs trained on large datasets. The DPN [20],

whose pairwise potentials are generalizations of various previously proposed pairwise terms, is formed by

stacking conventional layers onto a VGG-16 network. The MF approximation can be achieved within

only one iteration in the DPN, reducing the computational cost while maintaining high performance.

Higher-order potentials usually describe more contextual information. However, in the work discussed

above, the dimension of the output is Ka, where K is the number of semantic classes and a is the order

of the potentials. Lin et al. [21] constructed a message estimator learned using a CNN architecture. The

messages passed during the inference procedure, which are K-dimensional vectors, are estimated directly.

This network is also compatible with other MP algorithms in addition to the MF approximation.

Arnab et al. [46] added higher-order potentials related to super-pixels and object detection into the

general CRF approach. Their experiments demonstrate the connection between semantic segmentation

and object detection. This approach takes advantage of the boundary consistency between super-pixels

and object regions.

The continuous Gaussian CRF [47] involves a Gaussian mean field (GMF) network over a Gaussian

CRF, which can be solved optimally. GCRFs model continuous quantities and can be efficiently solved

using linear algebra routines. These implementations of the construction of contextual relationships

represent the top five performers on the PASCAL VOC 2012 dataset in 2015, with performances ranging

from 75.3% to 77.8%.

To our knowledge, CRFs continued to play an important role in enabling further improvements to the

accuracy of semantic segmentation in 2016 [15,27,34,47]. The cited experiments demonstrate that CNNs
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show weaknesses in analyzing the connections among small ambiguous regions, which can be compensated

for by using contextual information. Although these studies are not compatible with each other, they

can be used to refine the combined multi-granularity features described in Subsection 2.1. We consider

an ideal CRF implementation to have the following characteristics:

(1) A non-iterative workflow that can reduce the computational load;

(2) Parameters trained in an end-to-end manner to achieve better performance;

(3) Good compatibility with various contextual relationships.

Thus, a version of Context CNN CRF adapted to learning messages through message passing inference

as proposed by Lin et al. [21] is expected to be a good choice.

In addition to the contextual information among pixels, a global prior representation [48] can also

be used to eliminate the ambiguity between semantic objects and to determine the type of scene as a

whole. PSPNet adds a pyramid pooling module, which consists of commonly used neural layers, back

into ResNet. This module concatenates a multi-scale composite constraint with the feature maps from

ResNet, thereby achieving a significant boost in accuracy.

2.3 New training strategies

The networks discussed in Subsections 2.1 and 2.2 involve additional parameters and a higher degree of

nonlinearity. The parameters in these networks are expected to converge to the global optimal solution

in an acceptable time with limited samples. In addition to common tricks used in other tasks, such as

flipping, rotation, blur and cropping, three aspects should be considered during the end-to-end training

of such deep learning frameworks:

(1) Training new layers from scratch and utilizing the existing models to fine-tune the networks;

(2) Solving the CRF objective function in the networks;

(3) Avoiding over-fitting with unbalanced samples in the dataset.

The task of semantic image segmentation requires invariance with respect to object location and scale.

DeconvNet significantly reduces the search space by means of a two-stage training method. In the first

stage, training samples aligned with the semantic objects of interest are cropped from the input images

to significantly reduce the search space. In the second stage, training samples with more variation are

used to increase the robustness of the framework.

As described in Subsection 2.2, the DPN is constructed by stacking randomly initialized layers on an

adapted VGG-16 network one by one. Using a greedy strategy, only one new layer and a loss function

are added to the network and are then trained while keeping all previous parameters fixed. Finally, all

parameters are fine-tuned simultaneously.

We introduce two main methods of training the implementations of CRFs discussed above.

For the RNN structure, the back-propagation algorithm and the Stochastic Gradient Descent (SGD)

approach are introduced. During backward passing, the error differentials propagate within the loop until

the termination criterion is reached.

To reduce the time spent on inference, which is influenced by the partition function Z in (2), piecewise

training is employed to jointly train the CNN and CRFs. In this method, the original graph is divided

into smaller, nonadjacent sub-graphs to avoid the computation of the global partition function Z.

Insufficient samples of specific types of semantic objects [44] can lead to poor results. Hence, precau-

tions should be taken to address this issue. For example, in the zoom-out approach, a simple method is

used to rewrite the loss function according to the frequencies of the different semantic classes. In [22,49],

the loss functions incorporate weights for the different categories.

Wu et al. [34] use a bootstrapping method for training. They incorporate a threshold into the loss

function to guide the training of the network to focus on more difficult and more valuable pixels. In

summary, because of the large size of the semantic segmentation space compared with the size of the

dataset, the following strategies are used:

• Dividing the network into stages or layers;

• Dividing datasets into groups;
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• Dividing PGMs into cliques;

• Fine-tuning the parameters in an end-to-end manner;

• Reformulating the loss function.

3 Progresses related to semantic segmentation

With the rapid development of deep learning, many CNN-based approaches implicitly related to semantic

segmentation have been introduced for this task, such as image classication and object detection. Methods

for the extraction of more meaningful features and the utilization of different types of annotations are

summarized below.

3.1 Methods related to semantic segmentation

All of the studies discussed above have been based on the hypothesis that shallow features are sufficiently

meaningful for semantic segmentation; however, this hypothesis has not yet been proven. We believe

that although under-constrained features are generally useful for various tasks, retrained task-specific

intermediate features can be more suitable for specific purposes. In particular, the features associated

with boundaries are desirable for refining practical segmentations.

More robust shallow features can be introduced to produce better segmentations more efficiently. In

a deeply supervised net (DSN) [50], the intermediate features and classification error are explicitly su-

pervised simultaneously by reformulating the loss functions. It has been proven that these reformulated

objective functions follow the same configuration as the original functions. Experiments have demon-

strated that the parameters can converge faster with fewer training samples.

The practicality of segmentation results is more strongly affected by the boundaries of regions than

by the pixels inside them. The attempt to extract boundaries with finer outlines can be seen as the

foundation for many subsequent studies.

Holistically nested edge detection (HED) [37] is based on a concept similar to that of DSNs for the

construction of a skip-layer architecture. Side-output layers with a classifier can be trained for boundary

prediction using the desired features. The multi-scale and multi-level outputs are combined in a weighted

manner to produce more accurate and meaningful boundaries.

Based on the DSN and HED approaches, Kokkinos [51] integrated multi-scale input and augmented

data with a normalized cut to address the low-level vision task of boundary detection. The proposed

structure is able to surpass human performance. Meanwhile, there are also many algorithms [52–54]

for accelerating CNN computations that are worthy of interest. However, in this paper, we place our

emphasis on the study and analysis of contributions related to the design of effective CNN architectures

rather than computational methods.

3.2 Semantic image segmentation with special annotations

Annotations for semantic image segmentation require expensive labeling efforts. The workload for label-

ing segmentation masks is more than 15 times heavier than that for labeling image contents or object

locations [14, 55], and this restricts the scale and distribution of such annotated datasets. It is well

known that the use of a larger dataset can sometimes improve the results more than can be achieved by

introducing a new effective layer into the network. Datasets for image classification and object detection,

which are cheaper to obtain, are therefore expected to be used for the semantic segmentation task.

For the purpose of expanding the usable datasets, experiments reported by Dai et al. [55] prove that

complete annotations of semantic segmentations are not necessary. Only one in ten images in their se-

mantic segmentation dataset is fully supervised with masks, whereas the others are labeled with bounding

boxes; this level of annotation can provide sufficient information to yield results comparable to the base-

line. The workflow can be divided into two parts: region proposals and CNN analysis. Intuitively, this

method takes advantage of the discrimination power of CNNs and the ability of unsupervised methods

to find foregrounds. In algorithms such as Grabcut [56], selective search [57], MCG [58] and GOP [59],
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shallow features are used to refine the boundaries. These iterative processes exploit the complementarity

between semantic information and image features.

Papandreou et al. [14] adopted the expectation maximization (EM) algorithm to utilize bounding boxes

and image-level labels. Three strategies were tested: Bbox-rect, Bbox-seg and Bbox-EM-fixed. In the

Bbox-rect method, all pixels in a bounding box are taken as positive examples. In Bbox-seg, a CRF

model is used to extract a foreground/background segmentation automatically. In Bbox-EM-fixed, the

estimated segmentation is refined throughout training. The accuracy achieved on a dataset with only

image-level labels was only 39.6%, whereas the accuracy on a dataset with only bounding boxes reached a

level comparable to that achieved using fully supervised data. Thus, image-level labels are not sufficient

to train a high-quality segmentation model. These findings demonstrate the theoretical gap between

image classification and semantic segmentation and the implicit overlap between object detection and

semantic segmentation.

BoxSup [55] also uses bounding boxes as annotations to train a segmentation network. The framework

alternates between automatically generating region proposals and training convolutional networks. The

multiscale combinatorial grouping (MCG) method is used to propose regions that are assigned semantic

labels, and a CNN estimates segmentation masks from these regions. We believe that bounding boxes can

enhance the ability of networks to recognize objects in images. In the iterative workflow, the candidate

masks produced by supervised or unsupervised algorithms are corrected to update the parameters in

the CNN. One advantage of this architecture is that it is a FCN structure during the test stage, which

guarantees its efficiency.

Following the idea of decoupling the classification network from the segmentation network, Decoupled-

Net [45] uses image-level labels to train the classification network and segmentation masks to train the

segmentation network. The different types of datasets are input into the different parts of the framework

during the training stage. This architecture fully utilizes heterogeneous annotations.

Lin et al. [60] have presented a practical method of rapidly labeling semantic segmentation masks.

Meanwhile, they have proven that their sparse confident labels can be efficiently propagated to generate

segmentation proposals. Their experiments prove that the labels output by the semantic segmentation

network are less inaccurate than those generated by considering the labels of highly relevant confident

regions.

Instance segmentation [61] is a more difficult task involving the discrimination of each distinct instance

of an object during segmentation. An RNN is used to sequentially delineate instances. This architecture,

which includes a spatial memory, is trained in an end-to-end manner to sequentially segment single

instances. Results achieved on multiple-person segmentation and leaf counting show that this method

outperforms other approaches. Dai et al. [62] have demonstrated the relationship of logical progression

among the differentiation of instances, the estimation of masks and the categorization of objects. Based

on knowledge of instances, the features learned by a segmentation network can be made more effective.

The learning processes for instance segmentation and semantic segmentation can be mutually beneficial.

It is a meaningful task to rapidly and effectively synthesize existing semantic segmentation networks

from different domains into a current domain of interest. The cost of repeatedly training such networks

for different categories and datasets is prohibitively high, but transferable learning provides a way to

solve this problem. Segmentation annotations in the source domain can be used to train the decoder and

attentional model, whereas image-level class labels in the source and target domains can be used to train

the attentional model. Thus, it possible to share the information necessary for shape generation among

different categories.

4 Conclusion and possible directions of future research

We have summarized and analyzed the leading contributions on the Pascal VOC 2012 semantic segmen-

tation challenge, the underlying concepts of which are listed in Table 5. The widespread connections

between features from different layers and from the same layer can be used to significantly improve the
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Table 5 Underlying concepts of the summarized studies

Concept Related structures

Feature encoder VGG [31], ResNet [32]

Upsampling of low-resolution features or score maps Unpooling layers [25,36], Deconvolution layers [25,36], Recon-

struction [15]

Reduction of the resolution loss Atrous and dilated convolution [26,27], Removing pooling lay-

ers [14], Shifting input and interlacing output [28], Multi-pass

method [34]

Enhancement of features Hypercolumns [35], Attentional model [23,41], Zoom-out [44],

Context CNN CRF [19], CentraleSuperBoundaries [51]

Selection of features DecoupledNet [45]

Step-by-step refinement of intermediate segmentations Skip-layer architecture [36], Cascade-like structure [38], De-

convNet [25], DSN [50]

Utilization of heterogeneous annotations BoxSup [55], DecoupledNet [45], Weakly and semi-supervised

learning [14]

Explicit propagation of context DAG [22], LG-LSTM [24], PSPNet [48]

Learning of potentials Context CNN CRF [19], GCRF [47], High-order potential

CRF [21, 46], DPN [20]

Solving of CRFs CRF-RNN [18], DPN [20], Adelaide Learning Messages [21]

segmentation results. There is a degree of independence among these contributions, which can therefore

be combined to further refine the results.

As shown in Figures 5 and 6, the state-of-the-art results produced by PSPNet [48] show remarkable

performance in both the detection and localization of contours. Even in cases of varying posture, ap-

pearance and occlusion, almost all objects in the test images can be recognized. However, some failures

occur as a result of the absence of sufficient context, crucial textural distinctions or in-depth functional

analysis.

Despite the incredible breakthroughs achieved to date, we believe that some problems remain to be

addressed:

(1) More effective strategies for extracting features.

To further improve the results, the extracted features should be more effective, robust and meaningful.

In the case of specific semantic categories, more general selection policies for constructing multi-granular

representations of features related to specific semantic objects are anticipated.

(2) Consideration of contextual connections throughout the entire framework.

CRFs and RNNs are implemented as post-processing components to perform joint inference with

contextual information that is restricted to the output layer of the feature encoder. The connections that

exist among different levels could be used to further reduce ambiguity. In addition, using general CNNs

to represent context would also be a meaningful contribution.

(3) Fuller utilization of weakly and semi-supervised annotations.

Human beings have the ability to identify the outlines of new objects that they have never seen before,

not merely by virtue of binocular stereo vision, which suggests the feasibility of unsupervised algorithms

for segmenting foregrounds from images. We believe that it should be possible to simulate human vision by

utilizing known semantic knowledge to detect objects and distinctions among features to trace contours.

Based on the recent progress reviewed here, we summarize the general framework for image segmenta-

tion in Figure 7. Below, we recommend several potential approaches to combining or enhancing current

studies:

• Multi-granular information could be combined more efficiently as pixel-wise descriptions;

• Multi-scale and multi-granular information could be treated as inputs to implementations of fully

connected CRFs;

• DSN-like architectures could be expanded to guide the construction of not only class-specific features

but also context-specific features, among others;
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Figure 5 (Color online) Remarkable results produced by PSPNet [48].

4

Figure 6 (Color online) Failure cases of PSPNet [48].

• Weakly and semi-supervised annotations could be introduced to enhance the power to recognize and

localize semantic objects.

Based on the above discussion, we present four possible architectures that have not been tested on the

test set:

Zoom-out + CRF-RNN. Utilizing CRFs and MRFs to classify and smooth super-pixels is a conven-

tional strategy. This idea can be applied to the present CNN architecture. The features extracted using

the zoom-out approach can be treated as inputs to inference layers in a CRF-RNN to produce smoothed

results.

BoxSup + DSN. We substitute a DSN-like architecture for the CNN architecture. Hence, the

parameters can be updated more efficiently. We propose this architecture based on the consideration

that more meaningful features can accelerate the convergence of the iterative process.

DSN + Multi-scale input + Hypercolumns + CRF-RNN. We propose this design to enhance

the effectiveness and robustness of the components listed above to the greatest possible extent. Hy-

percolumns form the feature vector for each pixel, for which elements are obtained from the DSN-like
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Figure 7 (Color online) The general framework for image segmentation. We divide it into two components: feature

extractor and segmentation generator. The green boxes represent vital data used throughout the entire framework; the

pink boxes represent functions used to process different data, where those presented with gray frames are optional structures.

Different connections represent different paths.

architecture fed with multi-scale input. The subsequent CRF-RNN implementation produces smoothed

results.

DSN + Cascade-like structure. Cascade-like structures can be used to refine results from a low

resolution to a high resolution in a step-by-step manner. This strategy involves incorporating new feature

levels at every step. Meanwhile, a DSN can supervise every step to ensure the quality of the intermediate

segmentations.

We hope that further research will be conducted based on the architectures proposed above to continue

to improve the performance achieved on the PASCAL VOC 2012 challenge. With the synthesis of

powerful workflows and components, we trust that the current state-of-the-art results in semantic image

segmentation can yet be surpassed.
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