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Abstract This paper presents our investigation of the implicit factorization problem, where unknown prime

factors of two RSA moduli share a certain number of middle bits. The problem is described as follows. Let

N1 = p1q1, N2 = p2q2 be two different n-bit RSA moduli, where q1, q2 are both αn-bit prime integers.

Suppose that p1, p2 share tn bits at positions from t1n to t2n = (t1 + t)n. Then this problem focuses on the

condition about t, α to factor N1, N2 efficiently. At PKC 2010, Faugère et al. showed that N1, N2 can be

factored when t > 4α. Subsequently, in 2015, Peng et al. improved this bound to t > 4α−3α2. In this paper,

we directly apply Coppersmith’s method to the implicit factorization problem with shared middle bits, and

a better bound t > 4α− 4α
3
2 is obtained. The correctness of our approach is verified by experiments.
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1 Introduction

In 1978, Rivest et al. [1] proposed the well-known RSA public key cryptosystem. Since then, much effort

has been made to evaluate the security of RSA because of its wide variety of applications. For example,

RSA is vulnerable in the case of either a small public exponent [2, 3] or a small private exponent [4, 5].

Some attacks were also presented when a portion of the private key is exposed [6–11]. From the work

of [12, 13], it was proved that recovering the private key and factoring the modulus are determinately

equivalent in polynomial time. In addition, both Luo et al. [14] and Zheng et al. [15], in 2009 and 2016,

respectively, found some weak keys for the RSA public key cryptosystem.

In this paper, we concentrate on the implicit factorization problem (IFP). Suppose that for two n-bit

RSA moduli N1 = p1q1 and N2 = p2q2, q1, q2 are both αn-bit prime integers, and p1, p2 share tn bits.

Then the IFP becomes the problem of determining the conditions under which there exists an efficient

algorithm to factor N1, N2. It also includes the generalized case of more RSA moduli.

At PKC 2009, May and Ritzenhofen [16] firstly introduced the IFP. They considered the case where

p1, p2 share the least significant bits (LSBs), and claimed that the two RSA moduli N1, N2 can be factored

when t > 2α + 3
n
. It was proved in [16] that under the condition t > 2α + 3

n
, (q1, q2) is the shortest

vector in a two-dimensional lattice they constructed. Then by some lattice basis reduction method, q1, q2
were recovered and N1, N2 were factored. Subsequently, at PKC 2010, Faugère et al. [17] analyzed two
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Table 1 Previous bounds and our contribution to the IFP

Case [16] [17] [21, 22] [23] [24] [25] This paper

LSBs (t > ·) 2α – 2α− α2 4− 4α − 4(1 − α)
3
2 2α − 2α2 – –

MSBs (t > ·) – 2α 2α− α2 4− 4α − 4(1 − α)
3
2 2α − 2α2 – –

Middle bits (t > ·) – 4α – – – 4α− 3α2 4α− 4α
3

2

cases where p1, p2 share the most significant bits (MSBs) or the middle bits. Similarly, for the case of

shared MSBs they got the bound t > 2α + 3
n

using a two-dimensional lattice. For the case of shared

middle bits, they obtained a heuristic result that q1, q2 can be found from a three-dimensional lattice

when t > 4α+ 7
n
.

Both [16,17] used lattice-based methods involving the construction of either a two-dimensional lattice

or a three-dimensional lattice. Different from them, another lattice-based method widely adopted by

researchers for cryptanalysis is Coppersmith’s method. Coppersmith’s method is used to find small roots

of v-variate modular polynomial equations or (v+1)-variate integer polynomial equations in polynomial

time based on lattice basis reduction. Initially in 1996, Coppersmith [2, 18] obtained results for the case

of v = 1. Later the methods of [2, 18] were reformulated by Howgrave-Graham [19] and Coron [20]

respectively in simpler ways. The aforementioned two reformulations can also be extended to the case

of v > 2, in which the results are based on an assumption and are thus heuristic. In general, the

reformulations are used when we refer to Coppersmith’s method.

From [16, 17] we know that the IFP mainly includes three cases where p1, p2 share MSBs, LSBs,

or middle bits. For the case of shared MSBs and shared LSBs, respectively, the bounds have been

simultaneously improved several times by means of lattice-based methods. In 2011, Sarkar and Maitra [21]

related the Approximate Common Divisor Problem (ACDP) to the IFP, and a better bound t > 2α−α2+ε

was obtained for these two cases. Here “ε” is a small constant that depends on the bit length n and

the dimension of the lattice constructed in [21]. The same applies for the following results. The bound

obtained by Lu et al. [22] is also t > 2α−α2+ε. However, when generalized to k (k > 3) RSA moduli, the

result in [22] is better than that of [21]. Both the methods used in [21, 22] are essentially Coppersmith’s

method. In 2014, Peng et al. [23] combined Coppersmith’s method with the method in [16,17], and thus

improved the bound to t > 4 − 4α − 4(1− α)
3
2 + ε. Finally, in 2015, Lu et al. [24] investigated all the

above methods and acquired the best bound t > 2α− 2α2 + ε among all known attacks.

For the case of shared middle bits, Peng et al. [25] recently obtained a new bound t > 4α − 3α2 + ε,

which improved the bound t > 4α+ 7
n
in [17]. Similar to [23], Ref. [25] first utilized the lattice proposed

in [17] to obtain a reduced basis, and then acquired the desired vector from this reduced basis by using

Coppersmith’s method. In this paper, we directly apply Coppersmith’s method to the IFP with shared

middle bits, and obtain a better bound t > 4α− 4α
3
2 + ε than [25].

Table 1 summarizes all the above existing bounds and our contribution. For the sake of simplicity, the

small constants “ 3
n
, 7
n
, ε” are omitted from Table 1. In this paper, we focus on the case of shared middle

bits. In this regard, Figure 1 illustrates the comparison between our result and previous work in [17,25].

Since (1−α)n-bit p1, p2 share tn bits, we have t < 1−α. Thus, any valid range of t with respect to α lies

below the diagonal line in Figure 1. According to Figure 1, we know the result given in [17] is only valid

when 0 < α < 0.2, whereas that obtained in [25] applies for 0 < α < 5−
√
13

6 ≈ 0.2324. In this paper, we

extend the range of α to 0 < α < 9+
√
17

32 ≈ 0.4101, and our new improvement is denoted by the red area

in Figure 1. From Figure 1, one can see that our bound is better than those in [17, 25].

Our result is based on Coppersmith’s method for finding the small roots of multivariate modular

polynomial equations. Thus, it relies on Assumption 1, which is introduced in Section 2 and is examined

through experiments in Section 4. Ignoring “ε” just as [25], we conclude our contribution as follows.

Theorem 1. Let N1 = p1q1, N2 = p2q2 be two different n-bit RSA moduli, where q1, q2 are both αn-bit

prime integers. Suppose that p1, p2 share tn bits at positions from t1n to t2n = (t1 + t)n. Then under

Assumption 1, N1 and N2 can be factored in polynomial time if

t > 4α− 4α
3
2 .
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Figure 1 Comparison between our result and previous work in [17, 25].

The remainder of this paper is organized as follows. In Section 2, we introduce lattice-based Copper-

smith’s method, mainly including Howgrave-Graham’s lemma and the LLL algorithm. Section 3 presents

our new analysis for the IFP with shared middle bits. A new lattice for Coppersmith’s method is con-

structed and the proof of Theorem 1 is provided in this section. In Section 4, we examine the justification

of our approaches through some experiments. Section 5 is the conclusion.

2 Preliminaries

In this section, we introduce Coppersmith’s method for finding the small roots of multivariate modular

polynomial equations, which will be used in the proof of Theorem 1 in Section 3. First of all, let us recall

the definition of lattice.

Definition 1. Let b1, b2, . . . , bω ∈ R
s be linearly independent row vectors for ω 6 s. A lattice Λ

generated by b1, b2, . . . , bω is the set of all integral linear combinations of these vectors:

Λ = span
Z
(b1, b2, . . . , bω) =

{
ω∑

i=1

xibi | xi ∈ Z, i = 1, 2, . . . , ω

}
.

We call s the dimension of Λ and ω its rank. The row vectors b1, b2, . . . , bω are a basis of Λ, and we

denote the basis as a matrix, termed the basis matrix of Λ:

B =




b1

b2
...

bω




∈ R
ω×s.

The determinant of Λ is defined as det(Λ) =
√
det(BBT), which is independent of the choice of basis

and only determined by Λ. This paper only considers lattices for the case of ω = s. Thus, B is a square

matrix and det(Λ) = | detB|.
In 1982, Lenstra et al. [26] proposed the well-known LLL algorithm for lattice basis reduction. It allows

one to find a short vector in a lattice in polynomial time. The proof of the following fact can be found

in [27]. The norm of a vector vi = (vi1, vi2, . . . , vis) is defined as ‖vi‖ =
√
v2i1 + v2i2 + · · ·+ v2is.

Proposition 1 (LLL). Let s be the dimension (and the rank) of Λ. Given a basis (square) matrix B
of Λ, the LLL algorithm outputs an LLL-reduced basis v1, v2, . . . , vs satisfying

‖v1‖, ‖v2‖, . . . , ‖vi‖ 6 2
s(s−1)

4(s−i+1) det(Λ)
1

s−i+1 , 1 6 i 6 s
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in polynomial time in s and in the bit sizes of the entries of the basis matrix B.
Next, we introduce the following useful lemma due to Howgrave-Graham [19]. The norm of a polyno-

mial h(x1, . . . , xn) =
∑

at1,...,tnx
t1
1 · · ·xtn

n is defined as ‖h(x1, . . . , xn)‖ =
√∑ |at1,...,tn |2.

Lemma 1 (Howgrave-Graham). Let h(x1, . . . , xv) ∈ Z[x1, . . . , xv] be a polynomial that consists of at

most s monomials. Suppose that there exists (x
(0)
1 , . . . , x

(0)
v ) ∈ Z

v satisfying

h(x
(0)
1 , . . . , x(0)

v ) ≡ 0 mod V, |x(0)
1 | < X1, . . . , |x(0)

v | < Xv,

and we have

‖h(X1x1, . . . , Xvxv)‖ < V/
√
s.

Then h(x
(0)
1 , . . . , x

(0)
v ) = 0 holds over the integers.

Combining Proposition 1 with Lemma 1, one can analyse the bounds for the small roots. The method

is called Coppersmith’s method, which has been widely adopted by researchers for the lattice-based

cryptanalysis of RSA. Taking the case of trivariate modular polynomial equations as an example, we

summarize Coppersmith’s method as follows.

Finding small roots of a trivariate modular polynomial equation can be described as finding each root

(x
(0)
1 , x

(0)
2 , x

(0)
3 ) ∈ Z

3 of

h0(x1, x2, x3) ≡ 0 mod W, |x1| < X1, |x2| < X2, |x3| < X3.

Let τ be a positive integer, and find a subset Λ∗ of Z[x1, x2, x3] satisfying

h(x
(0)
1 , x

(0)
2 , x

(0)
3 ) ≡ 0 mod W τ , ∀ h(x1, x2, x3) ∈ Λ∗.

Given an order of some monomials of Z[x1, x2, x3], there is a one-to-one correspondence between a poly-

nomial h(x1, x2, x3) in Λ∗ and a vector in a subset Λ of Rs for some s, and the components of the vector

are coefficients of h(X1x1, X2x2, X3x3) in the order of the corresponding monomials. For example, if

s = 4 and the monomial order “≺” is defined such that 1 ≺ x1 ≺ x1x2 ≺ x1x3, we know that the

polynomial 2 + x1x2 + 6x1x3 corresponds to the vector (2, 0, X1X2, 6X1X3). Λ is also required to be a

lattice of dimension s. Combining Proposition 1 for i = 3 with Lemma 1 for v = 3, V = W τ , if

2
s(s−1)
4(s−2) det(Λ)

1
s−2 < W τ/

√
s (1)

is satisfied, by running the LLL algorithm one can get three polynomials g1(x1, x2, x3), g2(x1, x2, x3), g3(x1,

x2, x3), all of which share the desired root (x
(0)
1 , x

(0)
2 , x

(0)
3 ) as a common root over the integers. Then

Coppersmith’s method needs the following assumption.

Assumption 1. The polynomials obtained by our lattice-based method are algebraically independent,

and the common roots of these polynomials can be efficiently computed using techniques such as the

calculation of the resultants or finding a Gröbner basis.

Since Assumption 1 is heuristic, we need to perform experiments to examine it in our attacks, which is

done in Section 4. In our experiments, we choose to extract the desired root (x
(0)
1 , x

(0)
2 , x

(0)
3 ) by computing

the resultants of g1(x1, x2, x3), g2(x1, x2, x3), g3(x1, x2, x3). One can see Section 4 for these details.

Notice that inequality (1) is equivalent to 2
s(s−1)

4 s
s−2
2 det(Λ) < W τ(s−2), and researchers often ignore

terms that do not depend on W . Thus, we obtain

det(Λ) < W τ(s−2). (2)

According to the analysis above, under Assumption 1, using Coppersmith’s method to find the small

roots of trivariate modular polynomial equations just requires the condition inequality (2).



Wang S X, et al. Sci China Inf Sci March 2018 Vol. 61 032109:5

3 Our new analysis

In this section, we present our new analysis for the IFP with shared middle bits. Similar to [21, 22, 24],

our approach is based on Coppersmith’s method for finding the small roots of multivariate modular

polynomial equations. We optimize the lattice construction for Coppersmith’s method and then prove

Theorem 1.

Recall that for two n-bit RSA moduli N1 = p1q1 and N2 = p2q2, q1, q2 are both αn-bit prime integers,

and p1, p2 share tn bits at positions from t1n to t2n = (t1 + t)n. Thus, we write

p1 = p122
t2n + p2t1n + p10 , p2 = p222

t2n + p2t1n + p20 ,

and it is obtained that

p1 − p2 = (p12 − p22)2
t2n + (p10 − p20).

Together with

N2 + (p1 − p2)q2 ≡ 0 mod p1,

we obtain

N2 + [(p12 − p22)2
t2n + (p10 − p20)]q2 ≡ 0 mod p1,

or

N2 + 2t2n(p12 − p22)q2 + (p10 − p20)q2 ≡ 0 mod p1. (3)

Set N := 2n, then we have N1 ≈ N2 ≈ N , and roughly

|p12 − p22 | < 2(1−α−t2)n = N1−α−t2 , |p10 − p20 | < 2t1n = N t1 , |q2| < 2αn = Nα. (4)

From (3) and inequality (4), we know that (x
(0)
1 , x

(0)
2 , y(0)) := (p12 − p22 , p10 − p20 , q2) is a small root of

the following modular equation:

f(x1, x2, y) := N2 + 2t2nx1y + x2y ≡ 0 mod p1, (5)

|x1| < X1 := N1−α−t2 , |x2| < X2 := N t1 , |y| < Y := Nα.

If we recover (x
(0)
1 , x

(0)
2 , y(0)) = (p12 − p22 , p10 − p20 , q2), N2 is factored, and we can also easily factor N1

from p1 = N2

q2
+ (p12 − p22)2

t2n + (p10 − p20) =
N2

y(0) + x
(0)
1 · 2t2n + x

(0)
2 .

Just as [24], we introduce a new variable z for p2, and multiply the polynomial f(x1, x2, y) by a power

zi for some i, which is optimized later. Set z(0) := p2, and roughly we have |z(0)| < Z := N1−α. Since

N2 = q2p2, it allows us to replace each occurrence of the monomial yz by N2, which optimizes our lattice

construction. Let positive integers m, τ , together with i, be undetermined parameters. Then for two

non-negative integers j, k, define

gj,k(x1, x2, y, z) := zi(x1y)
j
[f(x1, x2, y)]

kN
max{τ−k,0}
1 , where j + k = 0, 1, 2, . . . ,m.

Recall that f(x
(0)
1 , x

(0)
2 , y(0)) ≡ 0 mod p1 and N1 ≡ 0 mod p1. Thus, every polynomial gj,k(x1, x2, y, z)

has the root (x
(0)
1 , x

(0)
2 , y(0), z(0)) = (p12 − p22 , p10 − p20 , q2, p2) modulo pτ1 .

For every polynomial gj,k(x1, x2, y, z), we replace each occurrence of the monomial yz by N2 as men-

tioned before. Therefore, for some j1, j2, the monomial xj1
1 xj2

2 yj1+j2zi (j1 + j2 6 i) with coefficient

aj1,j2 is transformed into a monomial xj1
1 xj2

2 zi−(j1+j2) with coefficient aj1,j2N
j1+j2
2 , and the monomial

xj1
1 xj2

2 yj1+j2zi (j1 + j2 > i) with coefficient aj1,j2 is transformed into a monomial xj1
1 xj2

2 y(j1+j2)−i with

coefficient aj1,j2N
i
2.

Let E be the inverse of N2 modulo N τ
1 , namely, EN2 ≡ 1 mod N τ

1 . If E does not exist, one can easily

factor N1, N2 by computing gcd(N1, N2). Next, we define

hj,k(x1, x2, y, z) := Emin{j+k,i}gj,k(x1, x2, y, z), where j + k = 0, 1, 2, . . . ,m.
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Table 2 The basis matrix B when m = 3, τ = 2, i = 2a)

hj,k z2 x1z x2z x2
1 x1x2 x2

2 x3
1y x2

1x2y x1x
2
2y x3

2y

h0,0 N2
1Z

2

h1,0 N2
1X1Z

h0,1 ∗ ∗ N1X2Z

h2,0 N2
1X

2
1

h1,1 ∗ ∗ N1X1X2

h0,2 ∗ ∗ ∗ ∗ ∗ X2
2

h3,0 N2
1X

3
1Y

h2,1 ∗ ∗ N1X
2
1X2Y

h1,2 ∗ ∗ ∗ ∗ ∗ X1X
2
2Y

h0,3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X3
2Y

a) Non-zero off-diagonal entries are denoted by *, and blank elements mean zero entries.

Here (x
(0)
1 , x

(0)
2 , y(0), z(0)) is also the root of every hj,k(x1, x2, y, z) modulo pτ1 . Notice that we are only

concerned with hj,k(x1, x2, y, z) modulo pτ1 . From p1|N1 one obtains EN2 ≡ 1 mod pτ1 . Thus, we can

replace each occurrence of EN2 by 1 in hj,k(x1, x2, y, z). If j + k 6 i, there is a monomial xj
1x

k
2z

i−(j+k)

with coefficient N
max{τ−k,0}
1 (EN2)

j+k in hj,k(x1, x2, y, z). If j + k > i, there is a monomial xj
1x

k
2y

(j+k)−i

with coefficient N
max{τ−k,0}
1 (EN2)

i in hj,k(x1, x2, y, z). By substituting EN2 ≡ 1 mod pτ1 , we are able

to minimize the coefficient of the monomial xj
1x

k
2z

i−(j+k) or the monomial xj
1x

k
2y

(j+k)−i, which is related

to the determinant of the lattice Λ proposed in this paper.

Before constructing the basis matrix B of our lattice Λ, we need to define the monomial order “≺”. For

convenience, here we use xj1
1 xj2

2 yj1+j2zi to denote xj1
1 xj2

2 zi−(j1+j2) if j1+j2 6 i and denote xj1
1 xj2

2 y(j1+j2)−i

if j1+j2 > i. Then, “≺” is defined such that xj1
1 xj2

2 yj1+j2zi ≺ xk1
1 xk2

2 yk1+k2zi if and only if j1+j2 < k1+k2
or j1+j2 = k1+k2, j2 < k2. Now, the coefficient vectors of hj,k(X1x1, X2x2, Y y, Zz) (j+k = 0, 1, 2, . . . ,m)

are determined according to “≺”, and thus we know the basis matrix B that consists of these coefficient

vectors.

A simple example of B when m = 3, τ = 2, i = 2 is shown in Table 2, where other non-zero off-

diagonal entries are denoted by *, and blank elements mean zero entries. Here we use the polynomial

h2,1(x1, x2, y, z) in Table 2 to illustrate the above substitution and the one-to-one correspondence between

a polynomial and a row vector. According to the definition, we know

h2,1(x1, x2, y, z) = Emin{2+1,2}z2(x1y)
2(N2 + 2t2nx1y + x2y)N

max{2−1,0}
1

= N1E
2(N2x

2
1y

2z2 + 2t2nx3
1y

3z2 + x2
1x2y

3z2).

Replace each occurrence of the monomial yz by N2, and get

h2,1(x1, x2, y, z) = N1E
2(N2x

2
1 ·N2

2 + 2t2nx3
1y ·N2

2 + x2
1x2y ·N2

2 )

= N1N2(EN2)
2x2

1 + 2t2nN1(EN2)
2x3

1y +N1(EN2)
2x2

1x2y.

Next, replace each occurrence of EN2 by 1, and obtain

h2,1(x1, x2, y, z) = N1N2x
2
1 + 2t2nN1x

3
1y +N1x

2
1x2y.

Thus, h2,1(X1x1, X2x2, Y y, Zz) = N1N2X
2
1x

2
1 + 2t2nN1X

3
1Y x3

1y + N1X
2
1X2Y x2

1x2y. According to the

definition of the monomial order “≺”, the corresponding coefficient vector is

(0, 0, 0, N1N2X
2
1 , 0, 0, 2t2nN1X

3
1Y, N1X

2
1X2Y, 0, 0).

Define σ := i
m
, ξ := τ

m
, and we only consider the case of 0 < σ < 1, 0 < ξ < 1. Now one gets

i = σm, τ = ξm, which is used in the following calculation. As seen in Table 2, it is easy to make

B a lower triangular square matrix; thus, we can easily compute the value of det(Λ) = | detB|. Let
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det(Λ) = N
sN1
1 X

sX1
1 X

sX2
2 Y sY ZsZ , and then we have

sN1 =

τ∑

k=0

(τ − k)(m− k + 1) = −1

6
τ3 +

1

2
τ2m+ o(m3) =

(
− 1

6
ξ3 +

1

2
ξ2
)
m3 + o(m3),

sX1 = sX2 =
1

2

m∑

j=1

j(j + 1) =
1

6
m3 + o(m3),

sY =

m∑

j=i+1

(j − i)(j + 1) =
1

6
i3 − 1

2
im2 +

1

3
m3 + o(m3) =

(
1

6
σ3 − 1

2
σ +

1

3

)
m3 + o(m3),

sZ =

i∑

j=0

(i − j)(j + 1) =
1

6
i3 + o(m3) =

1

6
σ3m3 + o(m3).

Let s denote the dimension of Λ, and we can calculate

s =

m∑

j=0

(j + 1) =
1

2
m2 + o(m2).

As described in Section 2, under Assumption 1, using Coppersmith’s method to find the small common

root (x
(0)
1 , x

(0)
2 , y(0)) simply requires the condition inequality (2), namely, det(Λ) < W τ(s−2), where

W = p1. Both N1 and N2 can be successfully factored after we recover (x
(0)
1 , x

(0)
2 , y(0)). Here we note

that there are four variables x1, x2, y, z with the relation yz = N2, which is essentially the case of three

variables x1, x2, y. One can see Section 4 for details.

From condition det(Λ) < p1
τ(s−2) and calculation of det(Λ) and s, we have

N
− 1

6 ξ
3+ 1

2 ξ
2+ o(m3)

m3

1 (X1X2)
1
6+

o(m3)

m3 Y
1
6σ

3− 1
2σ+

1
3+

o(m3)

m3 Z
1
6σ

3+ o(m3)

m3 < p1
1
2 ξ+

o(m3)

m3 .

Substitute N1 ≈ N, X1 = N1−α−t2 , X2 = N t1 , Y = Nα, Z = N1−α, p1 ≈ N1−α, and then it is

obtained that

N− 1
6 ξ

3+ 1
2 ξ

2+ o(m3)

m3 N
1
6 [1−α−(t2−t1)]+

o(m3)

m3 N ( 1
6σ

3− 1
2σ+

1
3 )α+

o(m3)

m3 N
1
6σ

3(1−α)+ o(m3)

m3 < N
1
2 ξ(1−α)+ o(m3)

m3 .

Take m → ∞ and omit term o(m3)
m3 , then we have

−1

6
ξ3 +

1

2
ξ2 +

1

6
(1− α− t) +

(
1

6
σ3 − 1

2
σ +

1

3

)
α+

1

6
σ3(1− α) <

1

2
ξ(1 − α),

which reduces to

σ3 − 3ασ + 2α+ (1− α− t) < ξ3 − 3ξ2 + 3(1− α)ξ. (6)

In order to minimize the left-hand side of inequality (6) and maximize the right-hand side of inequality (6),

the optimized values of σ and ξ are given by σ =
√
α, ξ = 1−√

α. After substituting σ =
√
α, ξ = 1−√

α

in inequality (6), we acquire

−2α
3
2 + 2α+ (1− α− t) < 2α

3
2 − 3α+ 1,

which finally ends up with

t > 4α− 4α
3
2 ,

and thus Theorem 1 follows.

Theorem 1 ignores “ε” for the bound t > 4α − 4α
3
2 + ε. From the above proof, we know that “ε” is

dependent on N (or the bit length n) and the parameter m (or the parameter s, the dimension of Λ).

The value of “ε” can be made arbitrarily small by ensuring that n and s are sufficiently large.

Technique for introducing a new variable z. Note that a new variable z is introduced for p2.

In order to optimize our lattice construction, we multiply the polynomial f(x1, x2, y) by a power zi, and
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then replace each occurrence of the monomial yz by N2 later. After optimizing the value of i, we obtain

the final result t > 4α− 4α
3
2 .

If this technique is not used, we can only consider f(x1, x2, y) = N2 + 2t2nx1y + x2y ≡ 0 mod p1 (or

f∗(u1, u2) := N2 + 2t2nu1 + u2 ≡ 0 mod p1 for simplicity, where u1 := x1y, u2 := x2y). The situation is

equivalent to multiplying f(x1, x2, y) by zi and then taking i = 0. Since σ = i
m
, we know i = 0 implies

σ = 0. After substituting σ = 0, ξ = 1 −√
α (instead of σ =

√
α, ξ = 1 −√

α) in inequality (6), finally

we can only obtain the result t > 4α− 2α
3
2 . Although this result is better than t > 4α− 3α2 (the result

of [25]) for 0 < α < 4
9 , it is not as good as t > 4α− 4α

3
2 (the result of Theorem 1).

From the analysis above, one can see how the technique contributes to an optimal result in our paper.

Finally, we note that this technique was not only used by [24] for the IFP with shared LSBs or shared

MSBs, but also used earlier in 2006 by [28] for attacks on RSA with small secret CRT-exponents.

Extension to more RSA moduli. Similar to [25], our new analysis can also be generalized from

two RSA moduli to an arbitrary number of RSA moduli. The key sketch can be described as follows.

Suppose there are k (> 2) moduli Nj = pjqj for j = 1, 2, . . . , k, where all the Nj have n bits, all the

qj have αn bits, and all the pj share tn bits at the positions from t1n to t2n = (t1 + t)n. Thus, we write

pj = pj22
t2n + p2t1n + pj0 , j = 1, 2, . . . , k,

and it is obtained that

p1 − pj = (p12 − pj2)2
t2n + (p10 − pj0), j = 2, . . . , k.

Together with Nj + (p1 − pj)qj ≡ 0 mod p1 for j = 2, . . . , k, we get

Nj + 2t2n(p12 − pj2)qj + (p10 − pj0)qj ≡ 0 mod p1, j = 2, . . . , k.

Namely, we obtain the following modular equations:

fj(xj2 , xj0 , yj) := Nj + 2t2nxj2yj + xj0yj ≡ 0 mod p1, j = 2, . . . , k,

with the small roots (x
(0)
j2

, x
(0)
j0

, y
(0)
j ) := (p12 − pj2 , p10 − pj0 , qj) for j = 2, . . . , k.

Again we introduce new variables zj for pj, where j = 2, . . . , k. Then we construct the basis matrix of

the lattice used for attack according to the following polynomials:

(z2z3 · · · zk)i(x22y2)
l∗2f l2

2 (x32y3)
l∗3f l3

3 · · · (xk2yk)
l∗
kf lk

k N
max{τ−l2−l3−···−lk,0}
1 ,

where (l∗2 + l2) + (l∗3 + l3) + · · · + (l∗k + lk) = 0, 1, 2, . . . ,m, and the positive integers m, τ, i are three

undetermined parameters just like before. Since Nj = qjpj, it allows us to replace each occurrence of the

monomial yjzj by Nj for j = 2, . . . , k, which again optimizes our lattice construction.

For this situation, there are 3(k−1) variables. Thus, we need to generalize the condition for attack from

det(Λ) < p1
τ(s−2) to det(Λ) < p1

τ(s−3(k−1)+1). The computation for the dimension s and the determinant

det(Λ) of the new lattice Λ may be very intricate and complicated, which also involves the optimization of

σ := i
m
, ξ := τ

m
. Take m → ∞ and substitute the values of s and det(Λ) into det(Λ) < p1

τ(s−3(k−1)+1),

and one can obtain the generalized result of the IFP with shared middle bits for k(> 2) RSA moduli.

4 Experiments

Similar to other cryptanalyses of RSA based on Coppersmith’s method, our approach is heuristic due

to Assumption 1 as stated before. In order to show the correctness of our results, we have implemented

several experiments in SAGE 5.0 over Linux Fedora 16 on a laptop with 2.80 GHz Intel Core2 CPU and

4 GB RAM.

We choose to use the calculation of the resultants to examine Assumption 1 in our experiments.

According to our approach, if the bound t > 4α− 4α
3
2 is satisfied, after running the LLL algorithm, we
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Table 3 Some experimental results for Theorem 1

n α t t1 t2 m τ i dim(Λ) log2(det(Λ)) Time for LLL algorithm (s)

1000 0.250 0.650 0.050 0.700 6 3 3 28 6.042 × 104 1.826

1500 0.230 0.670 0.020 0.690 6 4 2 28 1.234 × 105 14.13

2000 0.270 0.630 0.075 0.705 6 3 3 28 1.221 × 105 9.975

1000 0.310 0.660 0.010 0.670 8 4 4 45 1.217 × 105 22.89

1500 0.290 0.640 0.020 0.660 9 4 5 55 2.284 × 105 197.5

2000 0.300 0.650 0.030 0.680 7 3 4 36 1.506 × 105 26.13

can finally obtain three polynomials g̃1(x1, x2, y, z), g̃2(x1, x2, y, z), g̃3(x1, x2, y, z), all of which share the

desired root (x
(0)
1 , x

(0)
2 , y(0), z(0)) as a common root over the integers.

The case of four variables x1, x2, y, z with the relation yz = N2 is essentially the case of three variables

x1, x2, y. This is why we need only three polynomials g̃1, g̃2, g̃3. The variable z can be eliminated by

substituting z = N2

y
. Namely, for j = 1, 2, 3 we set gj(x1, x2, y) := yig̃j(x1, x2, y,

N2

y
), where i = σm

is a parameter defined and optimized before. Now we have three polynomials g1(x1, x2, y), g2(x1, x2, y),

g3(x1, x2, y) with the desired root (x
(0)
1 , x

(0)
2 , y(0)) as a common root over the integers.

By computing resultants we can eliminate x1 and x2. Namely, we obtain g12(x2, y) = Resx1(g1, g2),

g13(x2, y) = Resx1(g1, g3) and then g12,13(y) = Resx2(g12, g13). If Assumption 1 holds, g12,13(y) 6≡ 0.

Thus, one can use any standard root-finding algorithm to recover y(0) ∈ Z from g12,13(y). Similarly, x
(0)
2 ∈

Z can be computed from g12(x2, y
(0)) or g13(x2, y

(0)), and x
(0)
1 ∈ Z is also obtained from g1(x1, x

(0)
2 , y(0))

or g2(x1, x
(0)
2 , y(0)) or g3(x1, x

(0)
2 , y(0)).

In Table 3, we show some experimental results for Theorem 1. Assumption 1 holds for these experi-

mental results, and the desired root (x
(0)
1 , x

(0)
2 , y(0)) is successfully acquired.

Assumption 1 may fail for other experimental results on a few occasions. In this case, we give another

method to factorN1, N2. Still suppose that after running the LLL algorithm we obtain g̃j(x1, x2, y, z), j =

1, 2, 3, and then set gj(x1, x2, y) := yig̃j(x1, x2, y,
N2

y
), j = 1, 2, 3. According to our lattice construction,

it can be proved that every monomial (neglect the corresponding coefficient) of gj(x1, x2, y) must have

the form of xj1
1 xj2

2 yj1+j2 . Therefore, for j = 1, 2, 3 it is reasonable to define g∗j (u1, u2) := gj(x1, x2, y)

by substituting u1 := x1y, u2 := x2y. Consequently, the case of three variables x1, x2, y is changed into

the case of two variables u1, u2. Then we can recover the small root (u
(0)
1 , u

(0)
2 ) := (x

(0)
1 y(0), x

(0)
2 y(0))

by computing the resultants of g∗1(u1, u2), g
∗
2(u1, u2) and by running the standard root-finding algorithm

just as before. Here we also need Assumption 1, which actually holds in all of our experiments. Next,

since p1q2 = p2q2+(p1−p2)q2 = N2+(p12 −p22)2
t2n · q2+(p10 −p20)q2 = N2+x

(0)
1 y(0) ·2t2n+x

(0)
2 y(0) =

N2 + u
(0)
1 · 2t2n + u

(0)
2 , we are able to obtain the value of p1q2 from the knowledge of u

(0)
1 , u

(0)
2 . Thus,

after computing gcd(N1, p1q2) and gcd(N2, p1q2), finally we can also factor N1, N2 in this way.

5 Conclusion

In this paper, we revisit the implicit factorization problem for the case where the unknown prime factors

of two RSA moduli share a certain number of middle bits. We present the best bound among all known

attacks in this case. It is for the first time that Coppersmith’s method is directly applied to the IFP

with shared middle bits. Besides, we give almost optimal lattice construction for Coppersmith’s method

in our new analysis. The justification of our approach is also examined through experiments.
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