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Abstract Computing knots for a given set of data points in a plane is one of the key steps in the construction

of fitting curves with high precision. In this study, a new method is proposed for computing a parameter value

(knot) for each data point. With only three adjacent consecutive data points, one may not determine a unique

interpolation quadratic polynomial curve, which has one degree of freedom (a variable). To obtain a better

curve, the stress and stretching energies are used to optimize this variable so that the quadratic polynomial

curve has required properties, which ensure that when the three consecutive points are co-linear, the optimal

quadratic polynomial curve constructed is the best. If the position of the mid-point of the three points lies

between the first point and the third point, the quadratic polynomial curve becomes a linear polynomial

curve. Minimizing the stress and stretching energies is a time-consuming task. To avoid the computation of

energy minimization, a new model for simplifying the stress and stretching energies is presented. The new

model is an explicit function and is used to compute the knots directly, which greatly reduces the amount

of computation. The knots are computed by the new method with minimum stress and stretching energies

in the sense that if the knots computed by the new method are used to construct quadratic polynomial,

the quadratic polynomial constructed has the minimum stress and stretching energies. Experiments show

that the curves constructed using the knots generated by the proposed method result in better interpolation

precision than the curves constructed using the knots by the existing methods.
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1 Introduction

One of the fundamental problems faced in computer-aided design, engineering, scientific computing, and

computer graphics is the construction of curves with high precision and of an appropriate shape. For

different applications, the curves and surfaces require high precision and distinct properties [1–6]. Various

energy models, such as stress energy, strain energy, stretching energy, energy or length of a curve, are

often used for optimization to ensure that the constructed curves/surfaces have the precision and requisite

properties for a specific application. This paper focuses on computing the knots for constructing curves

with high precision.
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Previous work. Before constructing a parametric curve, the parameter values, i.e., knots, of the

data points should be known. We should also know how the choice of a parameterization method makes

a significant impact on the resulting interpolated curve. For the same set of data, even with the same

interpolation scheme, different parameterization methods will produce different curves. It is well-known

that using uniform parameterization to choose knots generally leads to unsatisfactory results. Phys-

ically, this indicates particles placed at the same time intervals between any two points regardless of

their distance. When the intervals between consecutive data points are uneven, it is difficult for the

uniform parameterization method to produce satisfactory results. To overcome this drawback of the

uniform parameterization method, several non-uniform parameterization strategies have been proposed.

In particular, there are three popular parameterization techniques in use: the chord length method [7],

Foley’s method [8] and the centripetal method [9]. Among these methods, the chord length method has

always been considered as the best method and has been most widely used. However, in terms of the

approximation error, our experiments show that none of these methods demonstrate any advantage over

the others. Besides, although these methods are widely used to construct parametric curves, in some

cases, none of them can produce a satisfactory result.

Based on the work by Lee [9], Jeong et al. [10], parameters were estimated using tabulated parameter

and length data. However, our experiments show that the Jeong’s method [10] generally results in more

errors than the original method proposed in [9]. In addition, among the chord length method, Foley’s

method [8] and the centripetal method [9], the centripetal method is the only method for parametric

curve construction that can ensure that there will be no local self-intersections on the curve [11]. An

analysis of the uniform method, chord length method, and centripetal method [9] conducted by Yuksel et

al. [11] shows that centripetal parameterization produces more visually appropriate curves as compared

to the curves created using uniform and chordal parameterizations. This study, however, does not provide

any mathematical explanation for this result. Therefore, though the centripetal method appears to be

the preferable one, the interpolating results of these methods do not always capture all the data features.

Fang et al. [12] proposed a refined centripetal method to improve the wiggle deviation of the interpolation,

especially for abrupt data interpolation.

Note that the interpolation precision of the aforementioned knot selection methods is only linear,

which means that for the knots created by these methods, the resulting interpolation curve will be a

linearly parameterized straight line if the data points are sampled from a straight line and will not

be a quadratic polynomial curve if the data points are sampled from a quadratic polynomial curve.

When the data points are sampled from a non-linear curve, e.g., a quadratic polynomial curve, a higher

interpolation precision is required to reconstruct the underlying high-order curve [13, 14]. In the work

by Zhang et al. [13], a global method for choosing knots was proposed. Using the chosen knots, the

constructed interpolants reproduce parametric quadratic curves if the interpolation scheme reproduces

quadratic polynomial curves. Recently, by extending the ideas proposed in [13], a method for choosing

knots for parametric curve interpolation was introduced by Zhang et al. [14]. Even though this method

employs a local knot selection process, it delivers quadratic precision. Therefore, from the perspective

of approximation, the method in [14] is better than the chord length method, Foley’s method, and

the centripetal method. In addition, while the approximation error produced by the method in [14] is

relatively small, it is also more practical than other existing methods. Studies by Hartley and Judd [15]

and Martin [16] proposed a method of choosing knots through optimization. Some articles also discuss

the parameterization problems of spatial data points. In the article by [17–20], the parameterized results

are used to construct a parametric surface.

Parameterization for curve and surface construction is still an unresolved problem and has attracted

considerable attention. Lü [7] showed that the rational cubic and quartic curves are suitable for G1

Hermite interpolation. They identified a family of curves that can be parameterized using the chord

length method, in which rational chord-length parameterizations are thoroughly investigated. Bastl et

al. [21, 22] extended the property of chord length parameterization of quadratic rational curves studied

in the work by Lü [7] to surfaces. It is shown that the ratios of the three distances of a point to the

patch vertices and the ratios of the distances of the parameter point to the three vertices of the domain
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triangle are identical. Besides Hermite data, Tsuchie and Okamato [23] also introduced a method for

fitting a high-quality planar curve for styling design data by using a G2 quadratic B-spline curve. In

order to attain G2 continuity of the B-spline curve, a non-uniform knot vector is used, which enables the

curve to be composed of fewer segments as compared to a uniform curve. To avoid solving a complicated

nonlinear optimization problem, the control points and the knot vector of the B-spline curve are calculated

separately. Han [24] also discussed geometric continuous splines in curve design. This study proposed

a class of general quartic splines for a non-uniform knot vector. The generated quartic spline curves

displayed C2 continuity with three local adjustable shape parameters. Using a method different from

the classical tensor product setting, [25] assigned a different parameter interval to each mesh edge, which

allows interpolation of each section polyline with parameter values that can prevent wiggling and generate

other interpolation artifacts in the resulting curve, yielding high-quality interpolating surfaces. The

splines display C2 continuity at simple knots and depict the cubic non-uniform B-spline as a special

case. Based on the given splines, piecewise quartic spline curves with three local shape parameters are

provided. This representation can be used to interpolate sets of points by fixing some values of the curve’s

parameters. As the shape parameters increase, the quartic spline curves move from the C2 continuous

interpolation curves to the cubic B-spline curves.

Proposed method. In this paper, a new method for computing knots is presented. The new method

is derived based on the assumption that the given set of data points are taken from a parametric curve

that can be approximated well by piecewise quadratic polynomial curve segments. In particular, the

new method assumes that each curve segment between three adjacent points can be approximated by a

quadratic polynomial. Because three adjacent consecutive data points are not sufficient for determining

a unique interpolation quadratic polynomial curve, the quadratic curve is determined by optimizing its

stress energy and stretching energies. This optimization lends appropriate properties to the resulting

quadratic curve to ensure that when the three consecutive points are almost co-linear, the first derivative

of the quadratic curve constructed is the most appropriate. For three co-linear data points, Pi−1, Pi and

Pi+1, if Pi is between Pi−1 and Pi+1, the quadratic curve Pi(s) = Pi−1 + (Pi+1 − Pi−1)s is the simplest

quadratic polynomial passing three points with the first derivative being constant. If Pi+1 is between Pi−1

and Pi, the first derivative of the quadratic curve at Pi is zero, which is the most reasonable, the reason is

that when a proton moves along a straight line, from Pi−1 through Pi then back to Pi−1, the best case is

that its velocity at point Pi is zero. Optimizing the stress and stretching energies is to solve a non-linear

problem, which is a time-consuming task. In order to reduce the computation time, a new model is

presented to simplify the process of optimizing the energy. The new model is an explicit function and is

used to compute the knots directly with less computation. As the knots are determined by optimizing the

quadratic curve, they can reflect the distribution of the data points well. Therefore, when used for curve

construction, the resulting curve could have higher precision than the methods with linear precision.

Our method is a local method, thus, it is easy to modify a curve interactively, consequently making the

curve design process more efficient and flexible. Experiments show that approximation precision with

our method is better than the ones proposed in [7–9,12,14,22]. Moreover, as the knots are computed by

a formula, our method is simpler to implement and easier to compute. Simulation results also show that

our method produces smaller contour errors and lower feed-rate fluctuation compared to the other four

representative methods and two new methods (Section 4).

2 Basic premise for the study

Let Pi = (xi, yi), i = 1, 2, . . . , n, be a given set of data points. When constructing a parametric inter-

polation curve P (t) to pass this set of data points, one needs to compute knot ti for Pi so that P (t)

satisfies the condition Pi = P (ti), i = 1, 2, . . . , n. This paper proposes a method to compute ti for Pi,

i = 1, 2, . . . , n when the interpolation method is given so that the parametric curve P (t) constructed by

the given method delivers a better approximation precision than the curve created using the knots by

other methods.
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Figure 2 The plots of Pi(s) for si = i/10, i = 2, 3, . . . , 8.

For a given set of data points, they can be regarded as being sampled from a parametric curve. If the

parametric curve is known, the knot for each data point can be computed easily using the parametric

curve. Based on the assumption that the given data points are taken from a parametric curve that

can be approximated appropriately by piece-wise quadratic polynomial curve segments, we describe the

basic premise of our method for computing knots as follows: Without loss of generality, we assume that

Pi = (xi, yi), i = 1, 2, . . . , n, are taken from a parametric curve Q(t), i.e., Pi = Q(ti), and the curve

segment of Q(t) from Pi−1 and Pi+1 can be approximated by a quadratic polynomial Pi(t) passing Pi−1,

Pi and Pi+1, as shown in Figure 1. If Pi(t) is constructed, the knots tj corresponding to Pj , j = i−1, i, i+1

can be computed approximately using Pi(t). Hence, computing tj , j = i − 1, i, i+ 1 becomes a problem

of constructing Pi(t). The knots ti and ti+1 can be computed by Pi(t) or Pi+1(t). The combination of

the two groups of ti and ti+1 is used to determine the end value. The following sections will explain the

construction of the quadratic curve Pi(t). Let

t = ti−1 + (ti+1 − ti−1)s, (1)

then the knots ti−1, ti and ti+1 are transformed into 0, si and 1 with one degree of freedom, si satisfying

si = (ti − ti−1)/(ti+1 − ti−1). (2)

This means that for ti−1, ti and ti+1, there is only one degree of freedom. The quadratic curve

Pi(s) = (xi(s), yi(s)), 1 < i < n, that passes Pi−1, Pi and Pi+1 can be defined by the Lagrange formula

as follows:

Pi(s) =
(s− si)(s− 1)

si
(Pi−1 − Pi) +

s(s− si)

1− si
(Pi+1 − Pi) + Pi, (3)

where si is an unknown and satisfies 0 < si < 1.

As si is a variable, Pi(s) is a family of curves, as shown in Figure 2, where the curves are plots of Pi(s)

in (3) for si = i/10, i = 2, 3, . . . , 8. The task process for selecting a suitable curve from this family is

discussed in the following sections.

2.1 Selecting si

Stress energy is widely used to optimize the shape and precision of the curve. One choice is to determine

si by minimizing the stress energy of Pi(s) in (3), i.e., by minimizing energy as follows:

Es(si) =

∫ 1

0

k(si, s)
2ds, (4)
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Figure 3 Three co-linear points. (a) P ′

i (s) is a constant; (b) P ′

i (si) = 0.

where k(si, s) is the curvature of Pi(s) in (3).

There is no guarantee that minimizing the objective function (4) Pi(s) in (3) is a suitable option. For

example, if Pi−1, Pi and Pi+1 are co-linear, then for any 0 < si < 1, the minimum value of Es(si) in (4)

is zero; that is, in this case, si is not unique. In fact, it is difficult to define a set of properties that can

be used to characterize whether Pi(s) in (3) meets the requirements or not. However, for some special

cases, one can judge whether the curve is suitable or not. For example, if Pi−1, Pi and Pi+1 are co-linear,

as shown in Figure 3, one can easily determine whether Pi(s) in (3) is suitable or not. There are two

cases to be considered when Pi−1, Pi and Pi+1 are co-linear, as shown by Figure 3(a) and (b). From

a physical point of view, the curve Pi(s) can be viewed as a path of a proton moving from point Pi−1

through Pi to Pi+1. Then, P ′
i (s) is the proton’s velocity. We then discuss how to construct a suitable

Pi(s) in (3) from the perspective of proton motion for these special cases. For the case in Figure 3(a),

the ideal Pi(s) in (3) is that the proton’s velocity of the proton is a constant for 0 6 s 6 1. It is easy to

know that if si is defined by the following formula (5), then P ′
i (s) is a constant, and Pi(s) in (3) becomes

Pi(s) = Pi−1 + (Pi+1 − Pi−1)s, which is the optima quadratic polynomial passing Pi−1, Pi and Pi+1,

si =
di−1

di−1 + di
, (5)

where di =

√

(xi+1 − xi)
2 + (yi+1 − yi)

2 is the Euclidean distance between Pi and Pi+1.

For the case in Figure 3(b), when the proton moves from Pi−1 to Pi, it should symmetrically move

back from Pi to Pi+1. The best case scenario would be that the proton’s velocity at Pi is zero, i.e.,

|P ′
i (si)| = 0. Here, the symmetry means that if a proton moves from point Pi+1 through Pi to Pi−1, its

velocity at Pi is also zero. Obviously, if si is defined by the following formula (6), then P ′
i (si) is zero.

si =

√

di−1
√

di−1 +
√
di
, (6)

where di is defined by (5).

To ensure that Pi(s) in (3) has the properties defined by (5) and (6), si in (3) will be determined by

minimizing the combination of the stress and stretching energies as explained follows:

E(si) =

∫ 1

0

(βk(si, s)
2 + (1 − β)P ′

i (s)
2)ds, (7)

where β = π−αi

π

αi

π
, αi is the angle between vectors Pi−1−Pi and Pi+1−Pi, as shown in Figure 1, k(si, s)

is defined in (4). This means that when αi = π or 0, si is determined by minimizing
∫ 1

0
P ′
i (s)

2ds.

Theorem 1. For the curve Pi(s) in (3), if si is determined by minimizing E(si) in (7), then, Pi(s) in

(3) has the properties defined by (5) and (6) when Pi−1, Pi and Pi+1 are co-linear.

Proof. When αi = π or 0, then β = 0, E(si) in (7) becomes

E(si) =

∫ 1

0

(

(r(s) − 1)2d2i−1

si2
+A

2(r(s)− 1)r(s)di−1di
si(1− si)

+
r(s)2d2i
(1− si)2

)

ds,

with

r(s) = 2s− si,
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where A = 1,−1 for αi = π and 0, respectively.

Direct computation gives

E(si) =
1

3

(

di−1

si
+A

di
1− si

)2

+ (di−1 −Adi)
2.

By minimizing E(si) we get

si =
di−1

di−1 + di
, for A = 1, (8)

and

si =

√

di−1
√

di−1 +
√
di
, for A = −1. (9)

We also have
∣

∣

∣

∣

∂Pi

∂s
(si)

∣

∣

∣

∣

=

∣

∣

∣

∣

si − 1

si
di−1 +A

si
1− si

di

∣

∣

∣

∣

. (10)

Substituting (8) and (9) into (10), respectively, we get

∣

∣

∣

∣

∂Pi

∂s
(si)

∣

∣

∣

∣

= di−1 + di, (11)

and
∣

∣

∣

∣

∂Pi

∂s
(si)

∣

∣

∣

∣

= 0. (12)

When αi = π and si is defined by (8), then Pi(s) in (3) becomes

Pi(s) = Pi−1 + (Pi+1 − Pi−1)s. (13)

This is the ideal quadratic polynomial curve for interpolating Pi−1, Pi and Pi+1, the velocity of Pi(s)

in (13) is a constant defined by (11).

When αi = 0, si defined by (9) makes the velocity of Pi(s) in (3) zero at the point Pi. Thus, si defined

by (9) generates the optimum Pi(s) in (3) which establishes the validity of the proposed method.

2.2 Formula for computing si

For every instance of three adjacent data points Pi−1, Pi and Pi+1, we need to minimize the objective

function E(si) in (7) to obtain si, which is a time consuming calculation. To overcome this drawback,

we normalize the data points Pi−1, Pi and Pi+1 as follows, Let di−1 > di, then the three points are

normalized to the following forms:

P̄i−1 = Pi−1/di−1,

P̄i = Pi/di−1,

P̄i+1 = Pi+1/di−1.

(14)

Then, the distance from P̄i−1 to P̄i is 1, the one from P̄i to P̄i+1 is less than or equal to 1. If di−1 < di,

the three points are assumed to be in the order from Pi+1 through Pi to Pi−1. We define that for any

two sets of the adjacent three data points Pj−1, Pj and Pj+1, j = k,m, after normalization by (14), if

the two sets of the adjacent three data points are the same, then, the corresponding sk and sm satisfy

sk = sm. With this definition, we can construct the formula for computing si in the following way.

Set (xi−1, yi−1) = (−1, 0) and (xi, yi) = (0, 0), (xi+1, yi+1) is defined by

xi+1 = lj × cos(π− αk),

yi+1 = lj × sin(π− αk),
(15)

where lj = j/20, j = 2, 3, . . . , 20, αk = kπ/40, k = 2, 3, . . . , 40, as shown in Figure 4.
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Figure 4 lj and αk.

For each set of Pi−1, Pi and Pi+1, one can get an si = sj,k by minimizing E(si) in (7), then a point

(lj , αk, si) is formed. There are M = 19 × 39 data points (lj , αk, si), j = 2, 3, . . . , 20, k = 2, 3, . . . , 40,

si = sj,k can be regarded as a function of (lj , αk). We construct a function s = s(l, α) to approximate

these data points. Firstly, we discuss the boundary properties that s = s(l, α) should satisfy. The three

boundary properties are as follows.

(1) When αk = π, si should satisfy (8), i.e., si should be defined by

si =
1

1 + lj
. (16)

(2) When αk = 0, si should satisfy (9), i.e., si should be defined by

si =
1

1 +
√

lj
. (17)

(3) When lj = 1, si should satisfy

si = 0.5. (18)

To construct s = s(l, α), we define the following four curves fr(l), r = 0, 1, 2, 3, associated with αk = 0,

π/3, 2π/3 and π, respectively, which are defined by

f0(l) =
1

1 +
√
l
,

f1(l) = L0(l)c1,0 + L1(l)c1,1 + L2(l)c1,2 + L3(l)/2,

f2(l) = L0(l)c2,0 + L1(l)c2,1 + L2(l)c2,2 + L3(l)/2,

f3(l) =
1

1 + l
,

(19)

where L0(l), L1(l), L2(l) and L3(l) are cubic Langrange basis functions defined on l = 0, 1/3, 2/3, 1, cm,g,

m = 1, 2, g = 0, 1, 2, are unknowns to be determined. As the cases of αk = 0 and αk = π do not appear

generally, f0(l) and f3(l) are redefined as follows to provide six degrees of freedom, which are cg,0, cg,1,

and cg,2, g = 0, 3, respectively.

fk(l) = L0(l)ck,0 + L1(l)ck,1 + L2(l)ck,2 + L3(l)/2, k = 0, 3. (20)

Now s(l, α) is defined by fr(l), r = 0, 1, 2, 3, with cubic polynomial interpolation as follows:

s(l, α) = L0(α)f0(l) + L1(α)f1(l) + L2(α)f2(l) + L3(α)f3(l), (21)

where L0(α) L1(α), L2(α) and L3(α) are cubic Langrange basis function defined on α = 0,π/3, 2π/3, 1.

Based on the properties of a cubic Langrange basis function, it is easy to detect that s(l, α) in (21)

satisfies the boundary properties defined by (16)–(18). The unknowns cm,g, m = 0, 1, 2, 3, g = 0, 1, 2,

in s(l, α) in (21) are determined by the least square fitting method, i.e., by minimizing the following

objective function:

G(c0,0, c0,1, . . . , c3,2) =

40
∑

k=2

20
∑

j=2

(s(lj , αk)− sj,k)
2. (22)

Minimization gets

c0,0 = 0.8136, c1,0 = 0.8332, c2,0 = 0.9326, c3,0 = 0.9903,

c0,1 = 0.6441, c1,1 = 0.6519, c2,1 = 0.7089, c3,1 = 0.7524,

c0,2 = 0.5542, c1,2 = 0.5566, c2,2 = 0.5804, c3,2 = 0.6003.

(23)
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Figure 5 The plot of the formula (21).

The formula (21) with (19), (20) and (23) can approximate the data points (lj , αk, si), j = 2, 3, . . . , 20,

k = 2, 3, . . . , 40, with high precision. Computation showed that the maximum error for the formula (21)

approximating (lj , αk, si), j = 2, 3, . . . , 20, k = 2, 3, . . . , 40, is 0.009857. As the data points (lj , αk, si),

j = 2, 3, . . . , 20, k = 2, 3, . . . , 40, are the solution of the model (7), formula (21) is a better approximation

of the model (7). Computing the solution si of the model (7) using the formula (21) is an easy task.

The plot of the formula (21) is shown in Figure 5, which shows that the solution of the formula (7) is a

smooth function, which can be approximated easily.

3 A new local method for computing si

With Pi(s) and Pi+1(s), there are two knot intervals for Pi and Pi+1, i.e., 1 − si and si+1, respectively.

As Pi(s) and Pi+1(s) are defined on different parametric spaces, in general, 1 − si is not equal to si+1,

even if Pi(s) and Pi+1(s) represent the same curve. The reason is that if the knot interval for Pi−1 and

Pi+1 is set as [0, 1], then, by (2), the knot corresponding to Pi+2 should be

si+2 = (ti+2 − ti−1)/(ti+1 − ti−1). (24)

Since Pi+2 is an arbitrary point and could have any possible position, then in general the knot interval

[si, si+2] for Pi and Pi+2 will not be [0, 1] through a translation transformation defined in (2), i.e.,

si+2 − si 6= 1. In this section, we use a normal form of a quadratic curve introduced in the study [14]

to merge 1 − si and si+1 to form the knot interval for Pi and Pi+1. All the knot intervals associated

with different point pares Pi−1 and Pi, i = 2, 3, . . . , n, are put together to form a consistent global knot

sequence with respect to the same parameterization of a quadratic curve.

For the convenience of discussion, Pi(s) in (3) is written as

xi (s) = Xi,2s
2 +Xi,1s+ xi−1,

yi (s) = Yi,2s
2 + Yi,1s+ yi−1,

(25)

where

Xi,2 =
xi−1 − xi

si
+

xi+1 − xi

1− si
, Xi,1 = −Xi,2si −

xi−1 − xi

si
,

Yi,2 =
yi−1 − yi

si
+

yi+1 − yi
1− si

, Yi,1 = −Yi,2si −
yi−1 − yi

si
.

(26)
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If Pi(s) and Pi+1(s) represent the same curve, they can be transformed into the normal form (29).

Based on the normal form, they will have the same knot interval between Pi and Pi+1, as they are defined

on the same parameter axis [14].

Suppose that in (26), Xi,2 6= 0 or Yi,2 6= 0. By the following transformation:

x̄ = xcosβi + ysinβi,

ȳ = −xsinβi + ycosβi,
(27)

where

cosβi =
Xi,2 + Yi,2
√

X2
i,2 + Y 2

i,2

, sinβi =
Yi,2 −Xi,2
√

X2
i,2 + Y 2

i,2

,

and a linear reparameterization

t =
(

X2
i,2 + Y 2

i,2

)
1
4 s. (28)

Pi(s) in (25) can be transformed into the following normal form:

x̄i (t) = t2 + X̄1t+ X̄0,

ȳi (t) = t2 + Ȳ1t+ Ȳ0,
(29)

where
X̄0 = cosβixi−1 + sinβiyi−1, Ȳ0 = − sinβixi−1 + cosβiyi−1,

X̄1 =
cosβiXi,1 + sinβiYi,1

√

cosβiXi,2 + sinβiYi,2

, Ȳ1 =
− sinβiXi,1 + cosβiYi,1
√

cosβiXi,2 + sinβiYi,2

.
(30)

When we convert the quadratic curve Pi(s) in (25) to the normal form in (29), through the reparam-

eterization process (28), the knot intervals si and 1− si associated with Pi become

∆i
i−1 =

(

X2
i,2 + Y 2

i,2

)
1
4 si,

∆i
i =

(

X2
i,2 + Y 2

i,2

)
1
4 (1− si) ,

(31)

where Xi,2 and Yi,2 are defined in (26).

By mapping each Pi(s) into the normal form, for each pair of consecutive points Pi and Pi+1 there

are two knot intervals, ∆i
i and ∆i+1

i , 2 6 i 6 n− 1. In general, ∆i
i 6= ∆i+1

i . While for the two end data

points, there is only one knot interval for each of them, i.e., ∆2
1 for the pair P1 and P2, and ∆n−1

n−1 for

the pair Pn−1 and Pn. We average the two sequences of knot intervals,
{

∆i
i

}

and
{

∆i+1
i

}

, into a single

sequence of knot intervals, {∆i} , i = 1, 2, . . . , n− 1, using the following formula:

∆1 = ∆2
1,

∆i = w(i)∆i
i + (1− w(i))∆i+1

i , i = 2, 3, . . . , n− 2,

∆n−1 = ∆n−1
n−1,

(32)

where w(i) is the weight function.

We now determine w(i). Consider αi as shown in Figure 1, if Pi−1, Pi and Pi+1 are co-linear with

the case in Figure 3(a), then αi = π. In this case, ∆i should be mainly defined by ∆i
i = di in (8)

to make Pi(s) having a form close to the one in (13). When αi is larger than αi+1, ∆
i
i should have a

bigger impact on the formation of ∆i than ∆i+1
i , thus w(i) should be proportional to αi so that it has

a larger value. Furthermore, corresponding to Pi and Pi+1, there are two knot intervals 1− si and si+1.

If si(1 − si) > si+1(1 − si+1), then in general |di − di−1| < |di+1 − di|, which means that si has higher

precision than si+1. That said, wi(i) should have a relationship with the knot intervals si(1 − si) and

si+1(1− si+1), and wi(i) is inversely proportional to si+1(1 − si+1). We define

v1(i) = eλαi/(1 + σsi+1(1− si+1)),

v2(i) = eλαi+1/(1 + σsi(1 − si)).
(33)
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Then, w(i) is defined by

w(i) = v1(i)/(v1(i) + v2(i)). (34)

The values of λ and σ are selected in a way that when Eqs. (32)–(34) are used to compute the knots, λ

and σ should make the computed knots having as small error as possible. Our computation results show

that in most cases, setting λ = 1.5, and σ = 0.3 makes the knots computed by (32)–(34) having the least

errors.

Now, the global knot sequence {ti} , i = 1, 2, . . . , n, are determined by

t1 = 0;

ti+1 = ti +∆i, i = 1, 2, . . . , n− 1.
(35)

The discussion above shows that the parameter interval between Pi and Pi+1 is determined by Pi(s)

and Pi+1(s), thus, only four points are needed to determine a knot interval, so, our method is local.

4 Experiments

In this section, we compare our method (New) with the chord length method (M1), Foley’s method

(M2), the centripetal method (M3), the quadratic polynomial precision method (M4) [14], the rational

chord length method (M5) [22] and the refined centripetal method (M6) [12]. Three types of primitive

curves are used to define the data points for comparison, leading to three types of data points. Among

these three different types of data points, two of them are obtained from existing studies [13, 14]. The

seven methods are used to compute knots to construct piece-wise cubic Hermite curves which interpolate

the data points with C1 continuity [14]. The tangent vector at each point is computed with the Bessel

method [3]. These seven methods are compared via the interpolation precision of the piece-wise cubic

Hermite curves constructed. The data points of the first type are taken from a family of elliptic curves,

F1(k, t) = (x1(k, t), y1(k, t)), defined by

x1(k, t) = (2 + 0.5k) cos(2πt),

y1(k, t) = 2 sin(2πt),
(36)

where k = 0, 1, . . . , 13.

The data points of the second type are taken from a family of cubic Hermite curves, F2(k, t) =

(x2(k, t), y2(k, t)), k = 1, 2, . . . , 14, which is defined by

x2(k, t) = df1(t) + 3g0(t) + dg1(t),

y2(k, t) = df1(t)− dg1(t),
(37)

where d = 3 + 0.5k, and

f0(t) = (1− t)2(1 + 2t), f1(t) = (1− t)2t,

g0(t) = t2(3− 2t), g1 = −t2(1− t),

are cubic Hermite basic functions on region [0, 1].

When k = 0, F2(k, t) is a quadratic polynomial, if the data points are taken from a quadratic polynomial

curve, then the knots computed by method M4 are exact. Hence the case of k = 0 is not considered here.

The plots of F2(k, t) = (x2(k, t), y2(k, t)), k = 0, 2, 4, . . . , 14, are given in Figure 6.

The data points of the third type are taken from a set of special curves, Fl(t) = (xl(t), yl(t)), l =

3, 4, 5, 6, which are defined respectively as follows and the plots are given in Figure 7.

Involute

x3(t) = cos(t) + t sin(t),

y3(t) = sin(t)− t cos(t).
(38)
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Figure 6 The plots of F2(k, t). Figure 7 The plots of Fl(t), l = 3, 4, 5, 6.

Versiera
x4(t) = tg(t),

y4(t) = cos(t)2.
(39)

Common cycloid

x5(t) = t− sin(t),

y5(t) = 1− cos(t).
(40)

Picycloid

x6(t) = 3 cos(t)− 2 cos(3t/2),

y6(t) = 3 sin(t)− 2 sin(3t/2).
(41)

The interval [0,1] used in the comparison is divided into 20 sub-intervals to define the data points

Pi = Fj(k, ti) or Fl(ti), i = 0, 1, 2, . . . , 19, j = 1, 2, l = 3, 4, 5, 6, where ti is defined by

ti = [i+ λ sin((20− i)i)]/20, i = 0, 1, 2, . . . , 20, (42)

where 0 < λ 6 0.25 to ensure the data points are non-uniformly distributed [13, 14], and satisfy

Max{di−1, di} 6 3Min{di−1, di}.
As F2(k, t) and Fl(t), l = 3, 4, 5, 6, are not closed curves, in order to prevent the error at the end points

from reaching the maximum value, the tangent vectors of F2(k, t) and Fl(t), l = 3, 4, 5, 6, at the end

points t = 0 and t = 1 are used to construct the cubic Hermite curves. The seven methods are evaluated

in terms of the absolute error curves of F1(k, t), F2(k, t) and Fl(t), l = 3, 4, 5, 6, defined below [13, 14].

Ej(k, t) = |P (s)− Fj(k, t)| = min{|Pi(s)− Fj(k, t)|}, j = 1, 2,

El(t) = |P (s)− Fl(t)| = min{|Pi(s)− Fl(t)|}, l = 3, 4, 5,

si 6 s 6 si+1, i = 0, 1, 2, . . . , 19,

(43)

where P (s) denotes one of the cubic Hermite curves constructed by the seven methods. Fj(k, t), j = 1, 2,

and Fl(t), l = 3, 4, 5, 6, are defined by (36)–(41), respectively. Pi(s) denotes the part of P (s) on [si, si+1],

|P (s)− Fj(k, t)|, j = 1, 2, and |P (s)− Fl(t)|, l = 3, 4, 5, 6, measure the distance from P (s) to Fj(k, t)

and Fl(t).

The seven methods are first compared with the first and second types of data points. The comparison

results are as follows. For E1(k, t), k = 0, 1, 2, . . . , 13, and for E2(k, t), k = 1, 2, 3, . . . , 14, when λ = 0.15

in (42), the maximum values of the error curves E1(k, t) and E2(k, t) generated by the seven methods are

shown in Table 1. For the convenience of comparison, we introduce the Maximum-Minimum error. The

Maximum-Minimum error is described as follows: For each given λ and k corresponding to E1(k, t) or

E2(k, t), each of the seven methods produces one maximum error, hence there are seven maximum errors

in total, and the minimum one among the seven maximum errors is known as the Maximum-Minimum

error. In Table 1, the Maximum-Minimum errors of E1(k, t) and E2(k, t) are marked in bold. When
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Table 1 Maximum errors of E1(k, t) and E2(k, t) for λ = 0.15

E1(k, t) New M1 M2 M3 M4 M5 M6
k=0 1.64E−3 1.02E−3 5.95E−3 1.03E−2 1.11E−3 1.76E−2 8.96E−3
k=1 1.78E−3 2.18E−3 7.67E−3 1.24E−2 1.24E−3 2.09E−2 1.09E−2
k=2 2.04E−3 3.49E−3 9.14E−3 1.40E−2 1.75E−3 2.36E−2 1.23E−2
k=3 2.39E−3 5.59E−3 1.03E−2 1.51E−2 2.24E−3 2.58E−2 1.32E−2
k=4 2.70E−3 7.99E−3 1.14E−2 1.57E−2 2.71E−3 2.77E−2 1.36E−2
k=5 2.96E−3 1.07E−2 1.27E−2 1.58E−2 3.19E−3 2.93E−2 1.37E−2
k=6 3.19E−3 1.35E−2 1.42E−2 1.60E−2 3.63E−3 3.06E−2 1.50E−2
k=7 3.39E−3 1.73E−2 1.55E−2 1.76E−2 4.03E−3 3.17E−2 1.66E−2
k=8 3.58E−3 2.20E−2 1.66E−2 1.91E−2 4.41E−3 3.26E−2 1.82E−2
k=9 3.75E−3 2.71E−2 1.76E−2 2.04E−2 4.75E−3 3.34E−2 1.97E−2
k=10 3.93E−3 3.23E−2 1.84E−2 2.17E−2 5.08E−3 3.40E−2 2.10E−2
k=11 4.22E−3 3.76E−2 1.91E−2 2.28E−2 5.38E−3 3.45E−2 2.21E−2
k=12 4.71E−3 4.30E−2 1.97E−2 2.38E−2 5.66E−3 3.50E−2 2.30E−2
k=13 5.51E−3 4.83E−2 2.02E−2 2.46E−2 5.93E−3 3.54E− 2 2.39E−2

E2(k, t) New M1 M2 M3 M4 M5 M6
k=1 4.18E−5 7.87E−5 2.24E−4 8.09E−4 2.15E−5 1.26E−4 7.60E−4
k=2 5.49E−5 1.01E−4 2.76E−4 8.83E−4 4.64E−5 1.57E−4 8.32E−4
k=3 7.69E−5 1.24E−4 3.31E−4 9.53E−4 7.37E−5 1.78E−4 9.01E−4
k=4 1.03E−4 1.63E−4 3.88E−4 1.02E−3 1.06E−4 1.90E−4 9.64E−4
k=5 1.33E−4 2.06E−4 4.45E−4 1.07E−3 1.51E−4 2.30E−4 1.02E−3
k=6 1.67E−4 2.47E−4 4.99E−4 1.12E−3 1.85E−4 2.66E−4 1.06E−3
k=7 2.05E−4 2.83E−4 5.49E−4 1.14E−3 1.93E−4 2.97E−4 1.09E−3
k=8 2.45E−4 3.76E−4 5.90E−4 1.15E−3 2.49E−4 3.24E−4 1.10E−3
k=9 2.86E−4 4.92E−4 6.58E−4 1.12E−3 5.03E−4 3.46E−4 1.07E−3
k=10 3.33E−4 6.39E−4 7.23E−4 1.04E−3 4.18E−4 3.97E−4 1.01E−3
k=11 3.97E−4 9.32E−4 7.76E−4 9.93E−4 5.09E−4 4.70E−4 9.73E−4
k=12 4.50E−4 1.35E−3 8.06E−4 1.03E−3 5.78E−4 5.54E−4 1.02E−3
k=13 6.19E−4 1.88E−3 7.97E−4 1.04E−3 5.42E−4 6.48E−4 1.04E−3
k=14 8.43E−4 2.50E−3 7.23E−4 9.85E−4 8.13E−4 7.48E−4 9.79E−4

Table 2 Maximum-Minimum errors of E1(k, t) and E2(k, t)

E1(k, t) New M1 M2 M3 M4 M5 M6
λ = 0.05 11 1 0 0 2 0 0
λ = 0.10 12 1 0 0 1 0 0
λ = 0.15 10 1 0 0 3 0 0
λ = 0.20 7 1 0 0 6 0 0
λ = 0.25 4 1 0 0 9 0 0
Summary 44 5 0 0 21 0 0
E2(k, t) New M1 M2 M3 M4 M5 M6
λ = 0.05 8 0 2 0 4 0 0
λ = 0.10 9 0 1 0 4 0 0
λ = 0.15 8 0 1 0 5 0 0
λ = 0.20 9 0 0 0 4 1 0
λ = 0.25 10 0 0 0 4 0 0
Summary 44 0 4 0 21 1 0

λ = 0.05i, i = 1, 2, 3, 4, 5 in (42), the Maximum-Minimum errors of E1(k, t) and E2(k, t) produced by

the seven methods are summarized in Table 2. In Table 2, the line of E1(k, t) with λ = 0.15 shows that

the times of getting the Maximum-Minimum errors by New, M1–M6 methods are 10, 1, 0, 0, 3, 0 and 0

respectively, for k = 0, 1, 2, . . . , 13. The lines with λ = 0.15 in Table 2 summarize E1(k, t) and E2(k, t) in

Table 1, respectively. Table 2 shows that for λ = 0.05i, i = 1, 2, 3, 4, 5 in (42), the total times of getting

the Maximum-Minimum errors of E1(k, t) and E2(k, t) by New, M1–M6 methods are 44, 5, 0, 0, 21, 0,

0 and 44, 0, 4, 0, 21, 1, 0, respectively, for k = 0, 1, 2, . . . , 13. In order to make the comparison more

intuitive, when λ = 0.15, the error curves E1(k, t) and E2(k, t) for k = 6 produced by the six methods

are given in Figure 8. As the error curve by M5 is very similar to the one by M3, the error curve by M5

is not given in Figure 8. Based on the results in Tables 1 and 2 and Figure 8, it is clear that the precision

of the curves constructed by our method is higher than those by M1–M6 methods, while the precision of

the curves obtained with M4 method is higher than the one by M1–M3, M5, M6 methods.

The seven methods are further compared using the third type of data points from the set of special

curves, Fl(t) = (xl(t), yl(t)), l = 3, 4, 5, 6. The comparison results are provided in Tables 3 and 4. Table 3

is the Maximum errors for the set of data points taken from F3(t), when λ = 0.05i, i = 1, 2, 3, 4, 5 in (42),
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Figure 8 Error curves by six methods. (a) 80E1(6, t) by M1; (b) 700E2(6, t) by M1; (c) 92E1(6, t) by M2; (d) 330E2(6, t)

by M2; (e) 92E1(6, t) by M3; (f) 140E2(6, t) by M3; (g) 360E1(6, t) by M4; (h) 800E2(6, t) by M4; (i) 36E1(6, t) by M6;

(j) 600E2(6, t) by M6; (k) 396E1(6, t) by New; (l) 1000E2(6, t) by New.

and the Maximum-Minimum errors of E3(t) are marked in bold. Table 4 shows the total times of getting

the Maximum-Minimum errors of El(t), l = 3, 4, 5, 6, by New, M1–M6 methods are 19, 0, 0, 0, 1, 0 and

0, respectively. Tables 3 and 4 indicate, for F3(t)–F6(t), that the new method provides the best results

among the seven methods. In detail, the test result shows that for the third type of data points, the

new method is obviously better than the other six methods when used to construct interpolation curves.

Among the rest six methods, for the two sets of data points taken from F3(t) and F6(t), M4 has better

results than M1–M3 and M5, M6; for the data points taken from F4(t), M5 provides better results than

M1–M4 and M6; for the data points taken from F5(t), none of these six methods has obvious advantage

over the others.

In interactive design, it is often necessary to modify the shape of the curve. Since the new method is
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Table 3 Maximum errors of E3(t)

E3(t) New M1 M2 M3 M4 M5 M6
λ = 0.05 3.75E−6 6.71E−6 6.23E−6 2.39E−5 5.38E−6 9.13E−6 3.60E−5
λ = 0.10 3.82E−6 6.74E−6 5.87E−6 4.97E−5 4.83E−6 9.22E−6 6.05E−5
λ = 0.15 3.88E−6 6.77E−6 9.06E−5 7.80E−5 4.29E−6 9.30E−6 8.74E−5
λ = 0.20 3.94E−6 6.80E−6 1.31E−5 1.08E−4 4.55E−6 9.38E−6 1.17E−4
λ = 0.25 4.00E−6 6.82E−6 1.78E−5 1.42E−4 4.91E−6 9.45E−6 1.49E−4

Table 4 Maximum-Minimum errors of El(t), l = 3, 4, 5, 6

El(t) New M1 M2 M3 M4 M5 M6
λ = 0.05 4 0 0 0 0 0 0
λ = 0.10 4 0 0 0 0 0 0
λ = 0.15 4 0 0 0 0 0 0
λ = 0.20 4 0 0 0 0 0 0
λ = 0.25 3 0 0 0 1 0 0
Summary 19 0 0 0 1 0 0

Figure 9 Modify a curve interactively.

local, it is easy to be used to modify a curve interactively. For example, the left C1 curve in Figure 9

is not appropriate at the local region marked by symbol 2, where the symbols + denote the positions

of the data points. Changing the position of the data point marked by 2 and re-parameterization will

only change the parameters of the three adjacent points near the 2. The parameters of the other points

remain unchanged and consequently the corresponding curve shape is also unchanged. For the left curve

in Figure 9, we move the point in symbol 2 to a suitable location and re-parameterize the parameters of

the three adjacent points. The right C1 curve in Figure 9 is obtained.

5 Conclusion

The discussion in this paper shows that computing the knots for a given set of data points is equivalent to

the problem of constructing the parametric curve. In this study, we propose a new method that assumes

that the curve segment between three adjacent points can be approximated by a quadratic polynomial.

However, the quadratic polynomial curve passing three consecutive points is not unique. To address

this issue, we propose to generate a unique curve by minimizing its stress and stretching energies, which

ensures that the quadratic curve has the appropriate properties so that when the three consecutive points

are co-linear, the quadratic curve constructed is optimal, i.e., for three co-linear data points, Pi−1, Pi, and

Pi+1, if Pi is between Pi−1 and Pi+1, then the quadratic curve constructed becomes a linear polynomial

Pi(s) = Pi−1 + (Pi+1 − Pi−1)s, which is the ideal curve in this case. While if Pi+1 is between Pi−1 and

Pi, then the first derivative of the quadratic curve at Pi is zero, which is also the ideal interpolating

quadratic curve in this case.

Minimizing the stress and stretching energies to solve a non-linear problem is time-consuming. To

overcome this drawback, we proposed a new model to simplify the minimization process, which approxi-

mates the stress and stretching energies with high precision. The new model is an explicit function and

is used to compute the knots directly and requires less computation. This means that some classes of

non-linear optimization problems can be simplified using an explicit function with high precision. Thus,

using approximation techniques and machine learning techniques to simplify the process of solving the
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time-consuming non-linear optimization problems is feasible and effective.

The least that our method offers is linear precision, which means that from the point of view of

approximation, our method is better than the chord length method, Foley’s method [8], the centripetal

method [9], the rational chord length method [22], and the refined centripetal method [12], all of which

offer only linear precision. Experiments show that approximation precision of our method is better than

the method proposed in [14], and obviously better than the other five methods.

As the knot is determined based on only three consecutive points, our method is not invariant under

affine transformation, which is the same as the chord length method, Foley’s method [8], the centripetal

method [9], the rational chord length method [22] and the refined centripetal method [12]. For future

studies, we plan to study how to make the knot computation method invariant under affine transformation

and with quadratic polynomial precision. In a future study we plan to undertake, we intend extend the

new method for data parameterization for constructing surface to fit the scattered data points. For each

local region, the parameters associated with the data points will be computed using a local method, and

the surface constructed will have GC1 continuity.
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