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Abstract A novel rational protocol to share two arbitrary qubits among multiple parties is investigated

in this paper. First, the protocol is presented, which is learned from Li et al.’s protocol. Second, the utility,

security, correctness, fairness, Nash equilibrium, and Pareto optimality of our scheme are discussed in detail,

where the utility, correctness, and fairness of rational quantum state sharing protocols are creatively given

because the agent who recovers the state plays a different and more important role. Another important point

is that assumptions about our protocol are more practical and suitable than existing protocols.
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1 Introduction

In the secret sharing (SS) problem, there exists a dealer Alice and some agents Bobi. Alice owns a secret

or some bits, which are split by her and shared by all the agents. Since the secret is fatal, Alice will send

part of it to each agent, instead of the integrated secret. Only sufficient agents can recover the secret

with the help of each other. This problem was first investigated by Shamir [1] and Blakley [2] in 1979.

The quantum secret sharing (QSS) protocol is the quantum version solution of the SS problem. Quantum

mechanics was introduced to ensure the unconditional security of the protocol [3, 4]. In 1999, Hillery et

al. [5] proposed a QSS scheme with the Greenberger-Horne-Zeilinger (GHZ) state.

At the same time, Cleve et al. [6] studied how to share quantum information (a quantum secret),

instead of classical bits, among different agents. This kind of protocol is called quantum state sharing

(QSTS). Owing to the quantum no-cloning principle [7], an unknown quantum state cannot be copied as

several ones. Only one agent, who is named Bobk or Charlie, can obtain the state with the help of the

others. In 2004, Li et al. [8] proposed a QSTS protocol to share an arbitrary unknown qubit via sharing

Bell states and multi-particle GHZ basis measurement. Lance et al. [9] investigated a (2, 3) threshold

quantum state sharing scheme in the same year. They demonstrated that average fidelity is equal to

0.73±0.04.

In 2005, Deng et al. [10] proposed a multi-party controlled scheme to teleport an arbitrary two-particle

state. In this scheme, a three-particle GHZ state were utilized as the quantum resource. Actually, most
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controlled teleportation could be regarded as a QSTS protocol with or without a little modification [11].

The same is true of Deng et al.’s scheme [10]. After that, Li et al. [11] simplified the process of this

scheme. Participants in [11], do not need to perform multi-party entanglement measurement or two-

qubit joint operation, which makes their protocol easier to implement. They also expanded the scheme

to a multi-particle version to extend its use. Later, Muralidharan and Panigrahi [12] designed a perfect

QSTS protocol to share arbitrary single- and two-qubit states via maximally entangled five-qubit states.

To complete the task, multi-particle measurements are needed. Recently, Li et al. [13] investigated how

to share an arbitrary two-qubit state by using a cluster state and a Bell state. There are two agents

in this scheme. Security analysis shows that it is safe. In addition, the deterministic QSTS in cavity

quantum electrodynamics was investigated.

Halpern and Teague [14] considered a rational classical SS protocol in 2004. Rational players are not

supposed to be honest or malicious. On the contrary, they only pay attention to their own benefit,

and make decisions to maximize it. They will cooperate with others or not depending on which choice

is more advantageous for themselves. Another all-important standpoint is that no rational multi-party

computation protocol can be accomplished in a deterministic time [14].

In the view of assumption about players, we rechecked all the above QSTS protocols [6, 8–12], and

found that agents are supposed to accomplish the sharing faithfully even if they are malicious. Indeed,

the same assumption also holds in the general case. We do not think this is reasonable enough. Players

actually will also have incentive to obstruct the accomplishment of sharing if they can benefit more.

Maitra et al. [15] investigated the rational QSTS scheme for the first time in 2015. The state is

encoded by CSS code. A (3, 7) rational QSTS scheme was investigated first. In this scheme, the dealer

is semi-offline. The generation to a (t, n) version scheme was given second. Correctness, fairness, and

the existence of Nash equilibrium were analyzed. A (t, n) QSTS protocol with the offline dealer and the

corresponding analysis were also described.

Another important assumption is whether the dealer knows the information about the state or not.

In Maitra et al.’s protocol [15], the dealer does know, so she can copy the state and distribute the same

particles to different agents. In addition, t agents can obtain the state simultaneously. However, it makes

the protocol more like a remote state preparing (RSP) protocol, instead of the QSTS. In general, the

dealer does not know the state, much less copy it. Only one agent can recover the state accordingly. The

general case is more reasonable indeed.

The third assumption of a protocol is whether the setting of agents is Byzantine or fail-stop. In the fail-

stop setting, a player will only fulfill his duty or drop out, depending on which choice is more beneficial.

In contrast, a Byzantine agent may deviate from the protocol, such as sending false bits. It is evident

that Byzantine agents are more practical and harder to investigate.

In this paper, we follow the work of Li et al. [11] and Maitra et al. [15], and design a novel rational

QSTS protocol. The processes are learned from [11]. Some delicate and necessary modifications are made,

which makes players prefer the strategy Cooperating. The properties of rational multi-party computation

are also ensured: correctness, fairness, and the existence of Nash equilibrium. Furthermore, Cooperating

is also the strategy which satisfies the Pareto optimality. In addition, our protocol is also as safe as Li et

al.’s [11].

Compared with Maitra et al.’s protocol [15], on the one hand, we suppose that only one agent can

obtain the state, instead of all t agents. On the other hand, the setting is Byzantine, rather than fail-stop.

Our assumptions are more practical. A detailed discussion is also given.

The rest of paper is arranged as follow. Preliminaries, including a random electoral method, quan-

tum mechanics, Li et al.’s scheme [11], and the basic concepts of the rational multi-party protocol are

introduced in Section 2. Our novel rational QSTS protocol and analysis are shown in Sections 3 and 4,

respectively. Discussion is described in Section 5. Finally, conclusion is given in Section 6.
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2 Preliminaries

2.1 A simple method to randomly elect one player among N

For N players Pj (1 6 j 6 N), a simple way to elect a representative among themselves randomly could

be described as follows.

[E-1] 2⌊log
N
2 ⌋−N virtual players are added. These players will not do anything. Now, there are 2⌊log

N
2 ⌋

players in the election.

[E-2] Each of N real players randomly publishes one bit cj . Then they can compute the XOR of cj,

C =
⊕N

j=1 cj . Here,
⊕

denotes the addition module 2.

[E-3] If C = 0, then the first half of 2⌊log
N
2 ⌋ players will still have the right to be elected, the others

will lose, and vice versa.

(1) If all the players who have the rights are virtual, the election will be restarted.

(2) If more than one player has the right, and at least one of them is real, they will reperform the

Steps [E-2] and [E-3] until only one exists.

(3) If only one player has the right, and is real, he will be the chosen one.

Although this way is not the true random in the quantum case [16], it is simple and easy to perform.

More importantly, the result is co-determined by all the players instead of part of them. If this election

is considered as a game, we can show that it is fair. The analysis is given in Subsection 4.4.

2.2 Quantum mechanics

Some vital quantum states and bases in our paper are now introduced.

(1) Bell states and Bell basis. Four Bell states are written as follows:

|Φ0±〉 = 1√
2
(|00〉 ± |11〉) = 1√

2
(|+±〉+ | − ∓〉),

|Φ1±〉 = 1√
2
(|01〉 ± |10〉) = 1√

2
(|+±〉 − | − ∓〉).

(1)

They could be denoted as |ΦV P 〉 with different V and P , and constructed as the Bell basis. Similarly,

|+〉 and |−〉 could be rewritten as |P 〉, and constructed as the X basis.

(2) GHZ states. In the three-particle case, there are 8 = 23 GHZ states in total. They are listed as

follows:

|Ψ00±〉 = 1√
2
(|000〉 ± |111〉), |Ψ01±〉 = 1√

2
(|001〉 ± |110〉),

|Ψ10±〉 = 1√
2
(|010〉 ± |101〉), |Ψ11±〉 = 1√

2
(|011〉 ± |100〉).

(2)

The best known state of these eight is |Ψ00+〉 = 1√
2
(|000〉 + |111〉). In the (n + 2)-particle case, the

counterpart is |Ψn〉 = 1√
2
(
∏n+2

i=1 |0〉+∏n+2
i=1 |1〉).

2.3 Review of Li et al.’s QSTS protocol

In 2006, Li et al. [11] proposed a multi-party QSTS protocol. In the protocol, there are n+1 agents Bobi
(1 6 i 6 n + 1) and a boss Alice. Suppose that the quantum state they want to share is an arbitrary

two-particle state:

|Υ 〉xy = (a|00〉+ b|01〉+ c|10〉+ d|11〉)xy, (3)

where, |a|2 + |b|2 + |c|2 + |d|2 = 1. The processes are simply reviewed as follows.

[L-1] Alice prepares two (n + 2)-particle GHZ states |Ψ〉s1 = |Ψ〉s2 = 1√
2
(
∏n+2

i=1 |0〉 +∏n+2
i=1 |1〉), and

shares them with the n+ 1 agents. The whole system is shown as

|Ψ〉S ≡ |Υ 〉xy ⊗ |Ψ〉s1 ⊗ |Ψ〉s2
= (a|00〉+ b|01〉+ c|10〉+ d|11〉)xy
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⊗ 1√
2

(
n+2∏

i=1

|0〉ai
+

n+2∏

i=1

|1〉ai

)

⊗ 1√
2

(
n+2∏

i=1

|0〉bi +
n+2∏

i=1

|1〉bi

)

. (4)

Alice sends the photons ai and bi to the agent Bobi, respectively.

[L-2] Alice performs the Bell basis measurement on her photon x and an+2, y and bn+2, respectively.

The rest of the system becomes

|Ψ〉sub = α

n+1∏

i=1

|00〉aibi + β

n+1∏

i=1

|01〉aibi + γ

n+1∏

i=1

|10〉aibi + δ

n+1∏

i=1

|11〉aibi . (5)

The parameter set {α, β, γ, δ} is the permutation of {±a,±b,±c,±d}, and is related to the measurement

results Vxan+2
, Vybn+2

, Pxan+2
, and Pybn+2

.

[L-3] Suppose that Bob1 will recover the state, then Bobi (2 6 i 6 n + 1) will perform X ba-

sis measurement to help him. The measurements they performed can be expressed as follows: M ≡
[(〈+|)n−t(〈−|)t]a ⊗ [(〈+|)n−q(〈−|)q]b, where, [(〈+|)n−t(〈−|)t]a denotes the measurement operation re-

lated to the particles ai, [(〈+|)n−q(〈−|)q]b is related to bi. The symbols t and q are the numbers of agents

who obtain the result 〈−|, respectively.
[L-4] After previous measurements, the state collapsed into

|Ψ〉a1b1 = (α|00〉+ (−1)qβ|01〉+ (−1)tγ|10〉+ (−1)(q+t)δ|11〉)a1b1 . (6)

Bobi will perform local operations to recover the state |Υ 〉 according to the public measurement results

Vxan+2
, Vybn+2

, Pa, and Pb. Here, Pa = Pxan+2
⊗∏n+1

i=2 Pai
, Pb = Pybn+2

⊗∏n+1
i=2 Pbi .

2.4 Rational multi-party computation protocol

Let Γ = ({Pi}ni=1, {Ai}ni=1, {ui}ni=1) denote a game which contains n players. Concretely, Pi is the

ith player. The strategy set player Pi may perform is Ai. Let A ≡ A1 × A2 × · · · × An, then a =

(a1, a2, . . . , an) ∈ A is called as a strategy vector of this game. Here, ai is the strategy of Pi and {ui}ni=1

denotes the utility function. If Pi prefers strategy a to a
′, then we say ui(a) > ui(a

′). In addition, the

outcome of this game is denoted as o(a) = (o1, o2, . . . , on).

Further, for a given strategy a = (a1, a2, . . . , an), a−i is defined as a−i ≡ (a1, . . . , ai−1, ai+1, . . . , an),

and naturally we have (a′i,a−i) = (a1, . . . , ai−1, a
′
i, ai+1, . . . , an).

Nash equilibrium and Pareto optimality are two vital definitions about the game. The general descrip-

tions are also given below.

Definition 1 (Strict Nash equilibrium). A strategy vector a in the game Γ is a strict Nash equilibrium,

if for each player Pi and his any other strategy a′i we have

ui(a
′
i,a−i) < ui(a). (7)

Definition 2 (Pareto optimality). A strategy vector a in the game Γ is a Pareto optimality if it is

impossible to improve anyone’s utility without reducing at least one other’s. In other word, if ui(a
′) >

ui(a), then there exists at least one player j which has uj(a
′) < uj(a).

In contrast, if ui(a
′) > ui(a) for each player Pi, and there exists at least one player j which has

uj(a
′) > uj(a), we say a

′ is a Pareto improvement of a.

Since only one agent can obtain the state in our protocol, the utility, correctness, and fairness of our

protocol are different from general protocols. The details are given in Section 4.

3 Our new rational QSTS protocol

In this section, we propose a new rational QSTS protocol. The processes follow Li et al.’s [11]. There

is also a boss (dealer) Alice and n+ 1 agents. The protocol contains r rounds. The processes Alice and

Bobi need to perform are described as follows.
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Dealer’s protocol

[D-1] The dealer (Alice) prepares an ordered list, which contains r bits. More specifically, only one bit

is 1, and the others are 0, such as

list = {0 . . .0
︸ ︷︷ ︸

p

1 0 . . . 0
︸ ︷︷ ︸

r−1−p

}.

In the ith round, if listi = 1, she goes to Step [D-2]. Otherwise, she goes to Step [D-2′].

[D-2] The dealer prepares two (n + 3)-particle GHZ states (instead of (n + 2)-particle states). The

whole system is

|Ψ〉S ≡ |Υ 〉xy ⊗ |Ψ〉s1 ⊗ |Ψ〉s2
= (a|00〉+ b|01〉+ c|10〉+ d|11〉)xy

⊗ 1√
2

(
n+3∏

i=1

|0〉ai
+

n+3∏

i=1

|1〉ai

)

⊗ 1√
2

(
n+3∏

i=1

|0〉bi +
n+3∏

i=1

|1〉bi

)

. (8)

Alice sends the particles ai and bi (1 6 i 6 n+ 1) to the agent Bobi.

[D-3] Then, the dealer takes the Bell basis measurement on the photons x and an+3, y and bn+3,

respectively. Following this, the state becomes

|Ψ〉sub = α

n+2∏

i=1

|00〉aibi + β

n+2∏

i=1

|01〉aibi + γ

n+2∏

i=1

|10〉aibi + δ

n+2∏

i=1

|11〉aibi . (9)

[D-4] Later, she asks all n + 1 agents to perform X basis measurement. The measurement could be

expressed as M ′. Here, M ′ = [(〈+|)n+1−t(〈−|)t]a ⊗ [(〈+|)n+1−q(〈−|)q]b. The collapsed state is

|Ψ〉an+2bn+2
= (α|00〉+ (−1)qβ|01〉+ (−1)tγ|10〉+ (−1)(q+t)δ|11〉)an+2bn+2

. (10)

We should note that the particles an+2 and bn+2 are in the dealer’s hand now. Then, she tells agents to

publish the measurement results.

[D-5] She sends the particles |Ψ〉an+2bn+2
to the elected Bobk (Charlie) via quantum teleportation [17,

18]. The game has ended for her.

[D-2′] The dealer shares two arbitrary Bell states with each agent. The whole system is

|Ψ ′〉S ≡
n+1∏

i=1

|ΦVi1Pi1〉aici |ΦVi2Pi2〉bidi
, (11)

where, she keeps the particles ci and di, while Pi keeps ai and bi.

[D-3′] She asks all the agents to announce the measurement result as Step [D-4]. The dealer measures

the particles in her hand, and analyzes the correlation between different results. She can judge whether

these agents are cheating or not, and publish their ID. Then, she goes to the next round.

Agent’s protocol

[A-1] In each round, all agents perform the X basis measurement on their received particles.

[A-2] They announce the result as the dealer’s claim.

[A-3] If listi = 0, some agents may be informed that they are forbidden to participate in the next λ

(λ < r) round because they are cheating in measurement results. The others will go to the next round.

Otherwise, they will randomly elect one of them to recover the state. Suppose the chosen one is Bobk.

He is also renamed as Charlie.

[A-4] Charlie recovers the state |Φ〉xy by the local operations which are related with all the measurement

results. The protocol is accomplished.
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4 Analysis

4.1 Security

When we discuss the security of a QSTS protocol, there are two types of attack we need to consider:

outside attack [19–21] and participants’ attack [19, 21, 22]. Analysis shows that our protocol is safe.

4.1.1 Outside attack

Consider the faked states attack, time-shift attack, and detector blinding attack: extra equipment [23–25]

could be utilized to resist these attacks. Since the transmission of particles is one-way, Trojan horse

attacks, such as the invisible photons eavesdropping (IPE) Trojan horse attack and the delay-photon

Trojan horse attack, are invalid.

In addition to the intercept-resend attack, measurement-resend attack, and entanglement-measure

attack, decoy states could also play an important role. These attacks will be detected with a non-zero

probability [26].

After all the agents announce the results, the operations to recover the state are evident. Thus, the

player who receives the particles an+2 and bn+2 can gain the state easily. Under these circumstances, all

the outside attackers, even agents, will be incentivized to steal these particles. Fortunately, teleportation

is the method to transmit them. Only Charlie can obtain the state.

4.1.2 Participants’ attack

The analysis of the reduced matrix and collusion attack are the two branches of participants’ attack in

general.

(1) For any agent Bobi, the reduced matrix may be a valuable tool to steal the information. The whole

system after Alice’s measurement is |Ψ〉sub. The reduced matrix of Bobi’s particle is

ρi = tr−i(|Ψ〉sub〈Ψ |sub) = (|α|2|00〉〈00|+ |β|2|01〉〈01|+ |γ|2|10〉〈10|+ |δ|2|11〉〈11|)aibi . (12)

Since the set {α, β, γ, δ} is the permutation of {±a,±b,±c,±d}, and a, b, c, d are unknown, Bobi cannot

obtain the details of them.

(2) Another considerable attack is the collusion attack for the multi-party protocol.

First, Charlie is more powerful than the other agents. He also has an incentive to gain the state without

the help of any others, or only with the help of part of them.

Fortunately, the Pauli operations he needs to perform are related with Vxan+2
, Vybn+2

, Pa, and Pb.

Here, Pa (Pb) is the product of Pxan+2
(Pybn+2

) and all the agents’ result Pai
(Pbi ). Charlie cannot

deduce whether Pa or Pb = +/− without all the agents’ help. In addition, the other possible attacks

would be detected as an outside attack.

Second, several Bobi may also want to obtain the state instead of Charlie. However, their classical

bits will be published, they cannot do anything else without the particles an+2 and bn+2. Nonetheless, if

they decide to steal these particles, they will also be detected as an outside attacker.

Third, if some agents want to analyze the reduced matrix, the result is similar to the single-agent case.

Suppose that m agents are colluded, they are denoted as G = {i1, i2, i3, . . . , im}, ij ∈ {1, . . . , n+ 1}:

ρG = tr−G(|Ψ〉sub〈Ψ |sub)

= |α|2
m∏

j=1

|00〉〈00|aij
bij

+ |β|2
m∏

j=1

|01〉〈01|aij
bij

+ |γ|2
m∏

j=1

|10〉〈10|aij
bij

+ |δ|2
m∏

j=1

|11〉〈11|aij
bij

. (13)

Agents in G also cannot deduce anything more. This attack is fruitless.

In summary, our protocol is safe from the above attacks.
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Table 1 The detailed strategies, outcomes, and utilities

The value of listi Role Strategy Outcome Explanation Utility

0 Any agent Cooperating Passed The agent passes the check. Ug

0 Any agent Cheating Failed
The agent does not pass the

check.
Uf

1 Bobk Recovering True state
The agent Bobk obtains the

true state successfully.
Us

1 Bobk Recovering False state
The agent Bobk obtains a

false state.
Ue

1 Bobi (i6=k) Cheating Threatening

The agent Bobi (i6=k)

threatens that his results

are wrong.
Ut

1 Bobi (i6=k) Cooperating
Successfully

helping

The agent Bobi (i6=k) helps

Bobk obtain the state suc-

cessfully.
Ups

1 Bobi (i6=k) Cooperating Unsuccessfully

helping

The agent Bobi (i6=k) wants

to help Bobk, but Bob gets

a false state since some-one

else is threatening.

Upe

Table 2 The strategies and utilities in a two-agent version

Cheating Cooperating

Cheating (UA, UA) (UB , UC)

Cooperating (UC , UB) (UD, UD)

4.2 Utilities

The utility of each agent Pi is defined by the corresponding outcomes of this game. They are shown in

Table 1.

Some necessary explanations about the utilities are given here. (1) Apparently, Uf is the minimum

in all the utilities. We can deduce that Uf < Ug. Further, in the ith round, if an agent does not pass

the check, he will be forbidden from participating in the next λ round. The probability that he cannot

participate in the sharing is λ
r−i

. We have Uf = − kλ
r−i

(k > 0) here. (2) Obtaining a false state is

disadvantageous for an agent, hence Ue < Us. (3) A cooperating Bobi (i 6= k) should not be responsible

for other agents’ cheating. In other words, when Bobi chooses to cooperate, his utility will not be affected

by other Bobj (j 6= k), i.e., Ups = Upe. (4) All the Bobi cannot obtain the state, but they are needed to

help Charlie in the protocol. In this situation, Charlie may pay to Bobi to make Ups + ε 6 Us. Here, ε is

a negligible value. (5) The motivation for Bobi’s cheating is that he gains more by cooperating with than

by threatening Charlie. It is easy to obtain that Ut > Ups = Upe. (6) For simplicity’s sake, we suppose

that only Uf is proportional to λ
r−i

. The other utilities are independent with λ and r − i.

Next, we describe the utility of agents when they choose the strategy Cheating or Cooperating in a

two-agent version as an example (Table 2).

Here,

UA =
r − i

r − i+ 1
Uf +

1

r − i+ 1

(
n

n+ 1
Ut +

1

n+ 1
Ue

)

,

UB =
r − i

r − i+ 1
Uf +

1

r − i+ 1

(
n

n+ 1
Ut +

1

n+ 1
Us

)

,

UC =
r − i

r − i+ 1
Ug +

1

r − i+ 1

(
n

n+ 1
Upe +

1

n+ 1
Ue

)

,

UD =
r − i

r − i+ 1
Ug +

1

r − i+ 1

(
n

n+ 1
Ups +

1

n+ 1
Us

)

.

(14)

Since the election occurs after the publication of measurement results, all the agents need to choose

whether to cheat or cooperate when publishing. The computational process used to obtain UA, UB, UC ,
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and UD for the ith round is

UA = Pr[listi = 0] · {Pr[passes the check] · Ug + Pr[does not pass the check] · Uf}
+ Pr[listi = 1] · {Pr[is not chosen as Charlie] · Ut + Pr[is chosen as Charlie] · Ue}

=
r − i

r − i+ 1
(0 · Ug + 1 · Uf ) +

1

r − i + 1

(
n

n+ 1
Ut +

1

n+ 1
Ue

)

=
r − i

r − i+ 1
Uf +

1

r − i+ 1

(
n

n+ 1
Ut +

1

n+ 1
Ue

)

, (15)

UB = Pr[listi = 0] · {Pr[passes the check] · Ug + Pr[does not pass the check ] · Uf}
+ Pr[listi = 1] · {Pr[is not chosen as Charlie] · Ut + Pr[is chosen as Charlie] · Us}

=
r − i

r − i+ 1
(0 · Ug + 1 · Uf ) +

1

r − i+ 1

(
n

n+ 1
Ut +

1

n+ 1
Us

)

=
r − i

r − i+ 1
Uf +

1

r − i+ 1

(
n

n+ 1
Ut +

1

n+ 1
Us

)

, (16)

UC = Pr[listi = 0] · {Pr[passes the check] · Ug + Pr[does not pass the check ] · Uf}
+ Pr[listi = 1] · {Pr[is not chosen as Charlie] · Upe + Pr[is chosen as Charlie] · Ue}

=
r − i

r − i+ 1
(1 · Ug + 0 · Uf ) +

1

r − i+ 1

(
n

n+ 1
Upe +

1

n+ 1
Ue

)

=
r − i

r − i+ 1
Ug +

1

r − i+ 1

(
n

n+ 1
Upe +

1

n+ 1
Ue

)

, (17)

UD = Pr[listi = 0] · {Pr[passes the check] · Ug + Pr[does not pass the check] · Uf}
+ Pr[listi = 1] · {Pr[is not chosen as Charlie] · Ups + Pr[is chosen as Charlie] · Us}

=
r − i

r − i+ 1
(1 · Ug + 0 · Uf) +

1

r − i+ 1

(
n

n+ 1
Ups +

1

n+ 1
Us

)

=
r − i

r − i+ 1
Ug +

1

r − i+ 1

(
n

n+ 1
Ups +

1

n+ 1
Us

)

. (18)

If the noise is not considered, the probability that a cheating Bobi passes the check is zero. In contrast,

the probability that a cooperating Bobi passes the check is one. Another point we need to explain is,

before the ith round, agents have played the game for i− 1 rounds, in which all listj = 0 (1 6 j 6 i− 1).

Hence, Pr[listi = 1] = 1
r−(i−1) =

1
r−i+1 .

4.3 Correctness

Definition 3 (Correctness). A rational QSTS game Γ is called correct if for each Bobi’s arbitrary

strategy ai ∈ {Cooperating, Cheating}, the following holds

Pr[ok(Γ, (ai,a−i)) = False state ] 6 ε, (19)

where ε is a negligible value.

Theorem 1. The correctness of the protocol is ensured if all the agents are rational.

Proof. Bobk (Charlie) needs the results announced by Bobi to recover the state |Υ 〉xy. Fortunately,

Bobi does not have incentive to make Charlie gain a false state. Since each agent is rational, his purpose

is to benefit more. Although he may announce a false result at first, he will no longer cheat after getting

more from Charlie. In addition, listi = 0 in most cases, so Bobi is less likely to cheat.

Therefore, the protocol is correct.



Dou Z, et al. Sci China Inf Sci February 2018 Vol. 61 022501:9

4.4 Fairness

In general, the fairness of a protocol means that all the players can obtain the value of the multi-party

computation function [27]. However, only one player can obtain the state in our protocol, but he will pay

the others for his assistance.

The fairness of our protocol or game is defined as follows.

Definition 4 (Fairness). A rational QSTS game Γ is called fair if it satisfies the following conditions.

(1) If we treat the election in Subsection 2.1 as a sub-game Γ ′, the strategies of players are publishing

1 or 0 in each round. Then, for any strategy the player Bobj (1 6 j 6 n) chooses, the following holds

Pr[oj(Γ
′, (aj ,a−j)) = Charlie] 6 Pr[o−j(Γ

′, (aj ,a−j)) = Charlie]. (20)

(2) For any Bobi (1 6 i 6 n) and any strategy he chooses, if he is elected as Charlie, compared with

the situation that any other Bobj (j 6= i) is elected as Charlie, the following holds

Pr[oi(Γ, (ai,a−i)) = True state] 6 Pr[oj(Γ, (ai,a−i)) = True state]. (21)

Theorem 2. There exist some values of r and λ that make the protocol achieve fairness.

Proof. (1) The values of all the cj are random, which means that the entropy of cj is H(cj) = 1. Since

C =
⊕N

j=1 cj , we also know that H(C) = 1. Obviously, each player has the same influence on the value

of C.

More importantly, even if N − 1 players colluded except for Pk, the value of C is still unknown and

completely random for them. Suppose that the addition module 2 of their bits are C−k. It is easy to

obtain that the conditional entropy H(C|C−k) = 1.

In this case, the probability of each player being chosen as Charlie is equal. The sub-game Γ ′ is

certainly fair.

(2) If the utility of strategy Cheating is less than that of Cooperating, the player will have no incentive

to cheat. He will always cooperate with the others and publish his measurement results faithfully. Since

all the players will cooperate with each other, the fairness is achieved.

Here, we can say UCheating < UCooperating if UA < UC and UB < UD hold simultaneously, i.e., no

matter what strategy the other player chooses, each tends to cooperate. The conditions of UA < UC and

UB < UD are discussed below:

UA − UC =
r − i

r − i+ 1
(Uf − Ug) +

1

r − i+ 1

n

n+ 1
(Ut − Upe)

=
1

r − i+ 1

[

(r − i)(Uf − Ug) +
n

n+ 1
(Ut − Upe)

]

=
1

r − i+ 1

[

(r − i)

(

− kλ

r − i
− Ug

)

+
n

n+ 1
(Ut − Upe)

]

=
1

r − i+ 1

[

−kλ− (r − i)Ug +
n

n+ 1
(Ut − Upe)

]

. (22)

We know that Uf −Ug < 0 and Ut −Upe > 0. If λ or r− i is large enough, then UA < UC . The dealer

can increase the number of forbidden rounds λ or the number of total rounds r to ensure that

UB − UD =
r − i

r − i+ 1
(Uf − Ug) +

1

r − i+ 1

n

n+ 1
(Ut − Ups)

=
1

r − i+ 1

[

(r − i)(Uf − Ug) +
n

n+ 1
(Ut − Ups)

]

=
1

r − i+ 1

[

−kλ− (r − i)Ug +
n

n+ 1
(Ut − Ups)

]

. (23)

Since Upe = Ups, the condition that ensures UB < UD is the same as ensuring UA < UC .

Thus, we have shown how to ensure the fairness of our protocol.
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4.5 Strict Nash equilibrium

Theorem 3. There exist some values of r and λ that make the protocol achieve strict Nash equilibrium.

Proof. As the designer of a protocol, our aim is for the strategy vector (Cooperating, Cooperating) to

be a strict Nash equilibrium of this game. The corresponding utilities are (UD, UD) in this case.

In this game, if UA < UC and UB < UD hold at the same time, we have u1(Cheating, a2) <

u1(Cooperating, a2) and u2(a1, Cheating) < u2(a1, Cooperating) for Bobi’s any given strategy ai ∈
{Cooperating, Cheating}. The agent will choose to cooperate regardless of which strategy the others

adopt.

Conditions are the same as in Subsection 4.4. The strict Nash equilibrium of our protocol is also

ensured.

4.6 Pareto optimality

Theorem 4. There exist some values of r and λ that make the protocol achieve Pareto optimality.

Proof. Reviewing Table 2, in the following we describe the condition of how to make strategy vector

(Cooperating, Cooperating) Pareto optimal.

Since we know that UB < UD, the strategy vector (Cooperating, Cheating) and (Cheating, Coop-

erating) cannot be the Pareto improvement of (Cooperating, Cooperating). The only possible vector is

(Cheating, Cheating). In other words, if UA < UD, the strategy vector (Cooperating, Cooperating) will

be Pareto optimal.

UA − UD =
r − i

r − i+ 1
(Uf − Ug) +

1

r − i + 1

[
n

n+ 1
(Ut − Ups) +

1

n+ 1
(Ue − Us)

]

=
1

r − i+ 1

[

(r − i)(Uf − Ug) +
n

n+ 1
(Ut − Ups) +

1

n+ 1
(Ue − Us)

]

= UB − UD +
1

r − i+ 1

n

n+ 1
(Ue − Us). (24)

Since Ue < Us and UB < UD, we naturally have UA < UD.

In conclusion, there exist some appropriate r and λ which make the strategy vector (Cooperating,

Cooperating) Pareto optimal. This vector is also the Nash equilibrium. Hence, we say that agents are

all-win in this game.

5 Discussion

Here, we discuss our protocol and the future work we need to do.

First, and most importantly, we assume that the dealer Alice does not know the secret state, while

Maitra et al.’s [15] does know. In fact, if the dealer knows the state, on the one hand, it is more like

an RSP protocol instead of QSTS. On the other hand, she can also share classical information about

the state with agents. Thus, agents can prepare the state by themselves. Sharing of the quantum state

is not necessary. From this aspect, our assumption is more practical and reasonable. Furthermore, this

assumption is the same with most of the QSTS protocol [6, 8–12].

Second, in [15], the dealer could be semi-offline or offline. An offline dealer only needs to distribute

particles at the beginning. A semi-offline dealer also needs to interact with agents when the game is

over [15]. Maitra et al. [15] considered these two kinds of cases successively. In contrast, the dealer in our

protocol is online, so she needs to interact with all the agents in the processes. If the dealer is semi-offline

or offline, she only does a little in the protocol. The protocol will be more dealer-free. This gives us a

direction for our future work, i.e., how to design a rational QSTS protocol with a semi-offline or offline

dealer.

Third, we suppose that the agent Charlie can only choose to recover the secret state in this paper.

Charlie will bargain with cheating agents to agree a suitable price for the real measurement results. This
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is called a Rubinstein bargain model [28]. In fact, refusing is another strategy. He may also refuse to

recover the state when the cheating agents ask too much. If he refuses, he will get nothing, as well all the

other agents. In the future, a different model, such as the ultimatum game model [29] or finite bargain

model [30], can be considered.

Last, but not least, the processes of our protocol is drawn from [11]. Li et al. [11] also generalized their

scheme to share an arbitrary multi-particle state. Our protocol also has the multi-particle counterpart

naturally. In addition, numerous QSTS schemes have been proposed in recent years [12, 13]. A rational

protocol that is learned from other QSTS schemes, or independently designed, should also be studied.

Further, rational protocols are mainly aimed at the SS problem. With the development of computer

science and the corresponding applications [31–36], the security of data has been attracting a lot of

attention. The other branches of secure multi-party computation, such as the multi-party summation

problem [37] and private comparison problem [38], can also be investigated.

6 Conclusion

In this paper, we have proposed a novel rational QSTS protocol based on [11, 15]. Assumptions about

our protocol are more reasonable than Maitra et al.’s [15]. Concretely, on the one hand, the dealer

does not know the information about the quantum state. On the other hand, all the agents are in a

Byzantine setting. At the same time, players in our protocol are also rational. The agents choose to

follow or deviate from the process depending on which choice can maximize their benefit. The security,

correctness, fairness, the existence of Nash equilibrium, and Pareto optimality were each analyzed in

turn. Our protocol is a standard and safe rational QSTS protocol.
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