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In many realistic scenarios, such as political elec-
tion and viral marketing, two opposite opinions,
i.e., positive opinion and negative opinion, spread
simultaneously in the same social networks [1, 2].
Consequently, to achieve good word-of-mouth ef-
fect, it is desired to maximize the spread of posi-
tive opinions while reducing the spread of negative
opinions, i.e., maximizing the difference between
the spread of positive opinions and the spread of
negative opinions.

In this article, we study the relative influence
maximization (RIM) problem, which seeks to se-
lect initial individuals as a positive seed set un-
der the existence of negative individuals, maximiz-
ing the difference between the spread of positive
opinions and the spread of negative opinions, i.e.,
the relative influence. Existing methods approxi-
mately solve this problem either by promoting the
spread of positive influence [1] or by limiting the
spread of negative influence [2]. In this article,
we theoretically analyze the intrinsic complexity
of this problem and empirically develop efficient
method to directly solve the RIM problem in so-
cial networks.

To describe the spread of two competitive opin-
ions, we introduce a competitive independent cas-

cade (CIC) model by extending the classical inde-
pendent cascade (IC) model [3]. In CIC model,
each individual is in one of three states, i.e., in-
active, P-active and N-active. Individuals in inac-
tive states are not influenced. Individuals in P(N)-
active states stand for those who adopt the positive
(negative) opinions. The diffusion process of pos-
itive and negative opinions unfolds independently
as in IC model. When an individual is influenced
by both positive and negative opinions simulta-
neously, negative opinion dominates over positive
opinion, following the empirical observations [1].

Given such a competitive diffusion model, a net-
work G = (V,E), a set of initial adopters of neg-
ative opinions IN , and a positive integer k, RIM
aims to select an optimal positive seed set IP with
k nodes so that P-active individuals are more than
N-active individuals as many as possible in the end
of diffusion. Mathematically, the RIM problem
could be formalized as

IP =arg max
|IP |=k,IP ⊆V \IN

{σP (IP |IN )

− σN (IP |IN )}, (1)

where σP (IP |IN ) and σN (IP |IN ) are the spread
of the positive and negative opinions, respectively.
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To ensure that the objective function (1) is non-
negative, we transform it into an equivalent for-
mulation

IP =arg max
|IP |=k,IP⊆V \IN

{σP (IP |IN )

+ σRN
(IP |IN )}, (2)

where σRN
(IP |IN ) = σN (∅|IN )−σN (IP |IN ). For

convenience, we define f(IP |IN ) = σP (IP |IN ) +
σRN

(IP |IN ).
We first analyze the properties of the RIM prob-

lem. When we remove the early adopters of neg-
ative opinions, CIC model is reduced to IC model
and RIM problem is reduced to influence maxi-
mization problem, which has been proved to be
NP-hard in [3]. Hence, RIM is also NP-hard. Fol-
lowing the practice in [4], we construct a subgraph
Gi in advance and get the final results with a de-
terministic process. In this way, we proved that
the function f(IP |IN ) is monotone and submodu-
lar in subgraph Gi. Limited by space, the details
of the proof are omitted. A combination of mono-
tone and submodular functions also keeps the orig-
inal properties. Hence, f(IP |IN ) is monotone and
submodular in G.

Method. Given that f (IP |IN ) is non-negative,
monotone and submodular, we propose a greedy
algorithm called GreedyRIM that achieves (1 −
1/e) approximation ratio. Referring to [4], we de-
termine diffusion subgraph Gi in advance. For the
selection of ith-node, we scan the subgraph with
CIC to obtain the influence of positive and neg-
ative nodes eventually by adding each node into
the set IP . To get an accurate approximation of
the influence, we generate subgraphs for sufficient
large R times and use the average over these R
subgraphs as the final result. Finally, we add one
node v into the selected set IP such that v together
with IP maximizes f(IP |IN ).

The time complexity of GreedyRIM is O(Rm+
kRnm1), where n is the number of nodes, m is the
number of edges and m1 is the maximum num-
ber of edges in each subgraphs. So this time-
consuming algorithm is not suitable for large-scale
social networks. An efficient solution is to utilize
heuristics [5]. Two widely-used heuristics are ran-
dom and degree based centrality. Random heuris-
tic is the simplest, but is not solid. High-degree
heuristic performs better than other heuristics,
such as “Distance centrality”. However, high-
degree heuristic together with its improvement,
e.g., SingleDiscount, is from the perspective of net-
work topology, neglecting the practical situation
that opposite opinions spread.

In this article, we propose a Distance-Sensitive
heuristic centrality, referred to DS. The main idea
of DS is that it considers the spread of the positive
and negative opinions at the same time. The DS
centrality of v is computed in the following way:

DS(v) = (1 + px) ·
D
∑

d=1

(

logNd(v) · p
d
)

, (3)

where p is the diffusion probability, x is the dis-
tance from node v to set IN , and Nd(v) is the
number of reachable nodes from node v within dis-
tance d. The conceptual justification of DS has two
aspects. In the first aspect, the centrality of v is
inversely proportional to the distance from set IN ,
i.e., it prefers to select the nodes near the set IN
so that it is helpful for limiting the spread of nega-
tive opinions. In the second aspect, the centrality
of v is proportional to the number of neighbors and
the nodes that are close to the v are more likely
be activated. DS is estimated only on the regions
of nodes, guaranteeing its efficiency.

We conduct experiments of algorithms on two
collaboration networks (NetHEPT1) and Geom2))
and synthetic networks. We assign a base diffusion
probability p, such that the diffusion probability
from u to v is puv = 1 − (1− p)cuv , where cuv is
the number of papers that the two authors collabo-
rated. To void randomness of selection of negative
nodes, 50 nodes with the highest degree are set
as individuals with negative opinions initially. For
different algorithm, we compare the relative influ-
ence of different k ranging from 1 to 100. All ex-
periments are run on a Linux server with 2.8 GHz
AMD Opteron(tm) Processor 6320 CPU and 32 G
memory.

We first evaluate the effectiveness of
GreedyRIM in collaboration networks. We elabo-
rate two typical baselines, i.e., the greedy positive
influence maximization algorithm (GreedyPIM)
and the greedy negative influence minimization
algorithm (GreedyNIM). They are general forms
of existing methods on maximizing the positive in-
fluence and minimizing the negative influence [1,2].
Figure 1(a) and (b) show that GreedyRIM out-
performs GreedyPIM and GreedyNIM in two
networks. The results in the inset show that
GreedyRIM algorithm requires fewer number of
initial adopters of positive opinions to defeat neg-
ative influence (relative influence is greater than
zero) than other algorithms. GreedyRIM is su-
perior because it takes into account the spread of
positive opinions and the existing of negative opin-
ions. Existing methods, i.e., promoting the spread

1) http://www.arXiv.org.
2) Jones B. Computational Geometry Database, February 2002. http://jeffe.cs.illinois.edu/compgeom/biblios.html.
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Figure 1 (Color online) Experimental results. (a) Relative influence of greedy algorithms with different k in NetHEPT;
(b) relative influence of greedy algorithms with different k in Geom; (c) relative influence of heuristics with different k in
NetHEPT; (d) relative influence of heuristics with different k in Geom; (e) running times with k =100 in NetHEPT and
Geom; (f) running times with k =100 in synthetic networks.

of positive influence and limiting the spread of
the negative influence, cannot achieve the relative
influence maximization.

Next, we compare DS with SingleDiscount,
which is a state-of-the-art heuristic. The results
of random selection, referred to Random, are also
reported. We subdivide DS into a static one (Stat-
icDS), and dynamic one (DynamicDS), to distin-
guish whether the DS centrality is calculate dy-
namically. As shown in Figure 1(c) and (d),
Random performs poorly in both two networks.
SingleDiscount heuristic does not perform well in
NetHEPT neither. DynamicDS has the best ef-
fectiveness, and StaticDS performs better than
SingleDiscount for the overwhelming majority of
cases. In fact, though SingleDiscount performs
quite well in finding influential nodes [6], it still
ignores that both positive opinions and negative
opinions can diffuse in the networks.

GreedyRIM algorithm is a time consuming pro-
cess, indicating that it is not suitable for large-
scale social networks. All heuristics are orders of
magnitude faster than GreedyRIM algorithm as
shown in Figure 1(e). DS heuristic not only has an
acceptable performance in effectiveness, but also
has a drastic advantage in running time. We fur-
ther test the scalability of DS in synthetic scale-
free networks. The results in Figure 1(f) show that
GreedyRIM reaches its feasibility limit in 32K-
node network. The running time of DynamicDS
could be tolerated in small scale networks, but not
in very large networks. However, StaticDS can
scale up well, so we choose StaticDS as a feasible
and effective solution in large-scale networks.

Conclusion. In this article, we study RIM prob-
lem under CIC model. We propose a greedy al-
gorithm, i.e., GreedyRIM, by utilizing the mono-
tone and submodular properties of the objective
function. We further propose a new Distance-

Sensitive based (DS) heuristic. Experiments show
that GreedyRIM achieves good effectiveness and
DS heuristic gets high efficiency and better effec-
tiveness than other heuristics.
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