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Abstract Finite automata over infinite words (called ω-automata) play an important role in the automata-

theoretic approach to system verification. Different types of ω-automata differ in their succinctness and complex-

ity of their emptiness problems, as a result, theory of ω-automata has received considerable research attention.

Pushdown automata over infinite words (called ω-PDAs), a generalization of ω-automata, are a natural model

of recursive programs. Our goal in this paper is to conduct a relatively complete investigation on the complexity

of the emptiness problems for variants of ω-PDAs. For this purpose, we consider ω-PDAs of five standard

acceptance types: Büchi, Parity, Rabin, Streett and Muller acceptances. Based on the transformation for ω-

automata and the efficient algorithm proposed by Esparza et al. in CAV’00 for verifying the emptiness problem

of ω-PDAs with Büchi acceptance, it is trivial to check the emptiness problem of other ω-PDAs. However, this

naive approach is not optimal. In this paper, we propose novel algorithms for the emptiness problem of ω-PDAs

based on the observations of the structure of accepting runs. Our algorithms outperform algorithms that go

through Büchi PDAs. In particular, the space complexity of the algorithm for Streett acceptance that goes

through Büchi acceptance is exponential, while ours is polynomial. The algorithm for Parity acceptance that

goes through Büchi acceptance is in O(k3n2m) time and O(k2nm) space, while ours is in O(kn2m) time and

O(nm) space, where n (resp. m and k) is the number of control states (resp. transitions and index). Finally,

we show that our algorithms yield a better solution for the pushdown model checking problem against linear

temporal logic with fairness.
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1 Introduction

Background. Automata on infinite words were first introduced in the 1960s by Büchi [1] in order to

provide a decision procedure for the monadic second-order theory of one successor (i.e., SlS), where the

acceptance condition specifies some “good” state that should be visited infinitely often. Muller used

automata on infinite words to describe the behavior of non-stabilizing circuits, in which the acceptance

condition explicitly specifies all the “good” infinity sets [2]. McNaughton proved a fundamental result in

the theory of ω-automata that related different models of automata considered by Büchi and Muller [3],

namely, the classes of languages accepted by nondeterministic Büchi automata and by deterministic Muller
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automata are identical. McNaughton introduced a special case of Muller’s condition when converting any

Büchi automaton into a deterministic Muller automaton which was later formalized by Rabin [4]. The

Rabin acceptance condition is a set of pairs of control states, in which a run is termed as accepting if

and only if there is a pair such that no “bad” state in the pair is visited infinitely often and some good

state in the pair is visited infinitely often. There has been considerable research conducted on the theory

of ω-automata. Many variants of acceptance conditions were introduced for ω-automata such as Streett

condition [5], Parity condition [6] and Emerson-Lei condition [7] (see survey [8]).

ω-automata play an important role in the automata-theoretic approach to system verification, as a

unifying paradigm for the specification, verification, and synthesis of nonterminating systems [9, 10].

The basic idea is that to verify a system against some property, the system is modeled as a finite state

automaton, the property is described by an ω-automaton which may be constructed from a Linear tem-

poral logic (LTL) formula [11], and the verification problem is reduced to the emptiness problem of an

ω-automaton, which is the “product” of the system automaton and the property ω-automaton. Therefore,

considerable effort has already been invested into the theory of ω-automata: in particular, the transfor-

mation, expressiveness and emptiness problems. For example, it was proved that the expressiveness of

deterministic Büchi automata is weaker than that of nondeterministic Büchi automata, while the later

are as expressive as deterministic/nondeterministic ω-automata with Parity, Rabin, Streett or Muller

acceptance [12–14]. Deterministic Rabin/Streett/Muller automata are exponentially more succinct than

deterministic Parity automata, while nondeterministic Streett automata are exponentially more succinct

than nondeterministic Büchi automata. The emptiness problem for nondeterministic Büchi automata

(resp. Parity, Rabin, Streett and Muller automata) can be solved in linear time or NLOGSPACE (resp.

polynomial time) [15–17].

Pushdown automata over infinite words (called ω-PDAs) are a generation of standard ω-automata [18–

22]. The languages recognized by ω-PDAs are called ω-context-free languages. These researches concen-

trated on the relation between ω-grammars and ω-PDAs. It was independently shown in [18, 21] that

ω-PDAs with Muller acceptance can be transformed into one with Büchi acceptance resulting in an ex-

ponential blowup in the size of the automaton. ω-PDAs are a very useful model, in particular, for the

verification of recursive programs [23–25]. Therefore, efficient algorithms for the emptiness problem of

ω-PDAs with Büchi acceptance were developed in [24]. Besides these results, the algorithmic theory of

ω-PDAs has not been thoroughly investigated in the literature.

Contribution. In this work, we investigate the emptiness problem of ω-PDAs with respect to the

five standard acceptance conditions, namely, Büchi, Parity, Rabin, Streett and Muller acceptances. We

use the acronyms in {B,P,R, S,M}× {PDA} to denote the different types of ω-PDAs. The first symbol

stands for the type of acceptance condition: B for Büchi, P for Parity, R for Rabin, S for Streett and

M for Muller. For example PPDAs denote ω-PDAs with Parity acceptance and SPDAs denote ω-PDAs

with Streett acceptance.

The emptiness problem of BPDAs was studied in [23, 24] which was applied to perform LTL model

checking on pushdown systems. One can easily transform ω-PDAs with other acceptance types to BPDAs

by adapting the transformation for ω-automata (e.g., [13, 14]). In a nutshell, the transformation acts

on the control states of ω-PDAs and the stack does not play a role. However, this approach is not

optimal. We propose direct and efficient algorithms to the emptiness problems of PPDAs, RPDAs,

SPDAs and MPDAs. The results are shown in Table 1. For instance, the best known algorithm for

the emptiness problem of BPDAs is in O(n2m) time and O(nm) space, where n (resp. m) denotes the

number of control states (resp. transitions) [24]. The resulting BPDA from an SPDA with n control

states, m transitions and k pairs of accepting control states using the best transformation (to the best

of our knowledge) has O(n2min(k,n)) control states and O(m2min(k,n)) transitions. Therefore, the best

algorithm to the emptiness problem of SPDAs that goes through BPDAs is in O(k3n2m23min(k,n)) time

and O(k2nm22min(k,n)) space. Our efficient algorithm works in O(k3n2m2min(n,k)) time and O(k2nm)

space.

The benefit of using our emptiness checking algorithm is even greater when we consider the model

checking problem with fairness. It was shown that the model checking problem for linear temporal logic
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Table 1 Complexities of the emptiness problem, where n (resp. m and k) is the number of control states (resp. transitions

and index or pairs), {F1, . . . , Fk} is the Muller acceptance

Acceptance Büchi Rabin/Parity Streett Muller

Time O(n2m) O(k3n2m) O(k3n2m23min(k,n)) O(n2m(
∑k

i=1 |Fi|)3)

Space O(nm) O(k2nm) O(k2nm22min(k,n)) O(nm(
∑k

i=1 |Fi|)2)

Our result – Theorem 4 Theorem 5 Theorem 6

Time – O(kn2m) O(k3n2m2min(n,k)) O(m ·max(n2,
∑

i∈[k] |Fi|
5))

Space – O(nm) O(k2nm) O(m ·max{n, |Fi|
3 | i ∈ [k]})

(LTL) on pushdown systems can be reduced to the emptiness problem of BPDAs [23,24]. When fairness

is considered, it is better to solve the model checking problem by reducing to the emptiness problem of

SPDAs rather than BPDAs. In particular, the time complexity is polynomial in the size of the weak

fairness when reducing to the emptiness problem of SPDAs, while it is exponential if we use BPDAs.

Related work. ω-PDAs were first proposed and studied by Linna [18–20], Cohen and Gold [21, 22].

Expressiveness of BPDAs and MPDAs were studied in several works such as [18–20]. After about two

decades later, the emptiness problem of BPDAs and PPDAs were studied for model checking pushdown

systems against linear-time temporal logics such as LTL and linear-time µ-calculus in [23–26]. The

eEmptiness problem of BPDAs was independently studied by Bouajjani et al. [23] and Finkel et al. [26] for

model checking pushdown systems against LTL. Esparza et al. [24] proposed an efficient implementation

algorithm for the emptiness problem of BPDAs which results in a software model checker Moped [25].

Besides the above researches, the emptiness problem of the generalization of ω-PDAs with one letter

(also known as, alphabet-free), called alternating ω-PDAs, was investigated for model checking push-

down systems against branching-time temporal logics such as CTL, CTL∗ and µ-calculus, or equivalent

problems. Walukiewicz [27] investigated the pushdown game with Parity objectives and pushdown model

checking for µ-calculus which are equivalent to the emptiness problem of alternating PPDAs. Hague

and Ong [28, 29] proposed efficient algorithms for winning regions of the pushdown game with Parity

objectives and the model checking problem of pushdown systems against µ-calculus respectively which

lead to the software model checker PDSolver. Another equivalent instance of this problem, the emptiness

problem of pushdown tree automata was studied by Kupferman et al. [30].

Cachat studied the pushdown game with Büchi objectives which is also equivalent to the emptiness

problem of alternating BPDAs. Song and Touili [31,32] proposed an efficient algorithm for the emptiness

problem of alternating BPDAs and applied it to solve the model checking problem for CTL on pushdown

systems. This algorithm was later implemented in the software model checker PuMoC [33].

The remainder of this paper is structured as follows. Section 2 introduces basic notations, and revisits

the results of the transformation of ω-PDAs. In Section 3, we propose efficient algorithms to the emptiness

problems of RPDAs, PPDAs, SPDAs and MPDAs. In Section 4, we propose an alternative approach to

the model checking problem for LTL on pushdown systems while considering fairness, which is reduced

to the emptiness problem of ω-PDAs. Moreover, we discuss the efficiency of the underlying approach.

Finally, Section 5 presents conclusion and future work.

2 Preliminaries

We denote by [k] the set {1, . . . , k} for a natural number k. Given a finite alphabet Σ consisting of letters,

a finite word over Σ is a sequence w = a0 · · · an of letters from Σ, while an infinite word over Σ is an

infinite sequence w = a0a1 · · · of letters from Σ. We denote by Σ∗ and Σω respectively the sets of all the

finite words and infinite words over Σ, ǫ the empty word with |ǫ| = 0. Given a sequence w = a0a1 · · · ,

we use wi to denote the letter ai.

2.1 ω-pushdown automata

Definition 1. An ω-pushdown automaton (ω-PDA for short) is a tuple P = (Σ, P,Γ,∆, p0,⊥,F), where
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Σ is the finite input alphabet, P is a finite set of control states, p0 ∈ P is the initial control state, Γ is a

finite stack alphabet, ⊥ ∈ Γ is the initial stack content, ∆ ⊆ (P ×Γ)×Σ×(P×Γ∗) is a transition relation

such that for every ((p,⊥), a, (p′, u)) ∈ ∆, u is in the form of u′⊥, and F is an acceptance condition that

will be defined below.

A pushdown system (PDS) P = (P,Γ,∆, p0,⊥) is an ω-PDA if the input alphabet Σ and acceptance

condition F are omitted. The transition relation and runs are defined as for ω-PDAs.

A configuration of the ω-PDA P is a tuple 〈p, u〉 ∈ P × Γ∗ and 〈p0,⊥〉 is the initial configuration. Let

CP denote the set P × Γ∗. For every ((p, γ), a, (p′, u)) ∈ ∆, we will use 〈p, γ〉
a

→֒P 〈p′, u〉 instead. Given

a word u ∈ Γ∗, let |u| denote the length of the word u, |〈p, u〉| denote the length |u| of the stack content

u, for p ∈ P, u ∈ Γ∗. For every u′ ∈ Γ∗, if 〈p, γ〉
a

→֒P 〈p′, u〉, the configuration 〈p′, uu′〉 is an immediate

successor of the configuration 〈p, γu′〉, denoted by, 〈p, γu′〉
a

=⇒P 〈p′, uu′〉. Intuitively, if 〈p, γ〉
a

→֒P 〈p′, u〉,

then the ω-PDA P can move into the configuration 〈p′, uu′〉 when it is at the configuration 〈p, γu′〉 and

reads the input letter a. A pair 〈p, γ〉 such that p ∈ P and γ ∈ Γ is called head. We also abbreviate CP ,

→֒P and =⇒P as C, →֒ and =⇒ if P is clear from the context.

Let =⇒+,=⇒∗⊆ C× Σ∗ × C be the smallest relations such that the following conditions hold:

• c
ǫ

=⇒∗ c for every c ∈ C,

• c
aw

=⇒∗ c′′ and c
aw

=⇒+ c′′, if c
a

=⇒ c′ and c′
w

=⇒∗ c′′.

Intuitively, c
w

=⇒∗ c′ denotes that the ω-PDA P can move into the configuration c′ when P is at the

configuration c and reads the input word w.

Let pre∗ : 2C → 2C be a function such that pre∗(C) = {c ∈ C | ∃w ∈ Σ∗
ǫ , ∃c

′ ∈ C : c
w

=⇒∗ c′} for every

C ⊆ C. Given a set of configurations C ⊆ CP and a configuration c ∈ C, the reachability problem is

to determine whether c ∈ pre∗(C) or not. Given a control state p ∈ P and a configuration c ∈ C, the

control state reachability problem is to determine whether c ∈ pre∗({p} × Γ∗).

Given an infinite word w = a0a1 · · · ∈ Σω, a run of the ω-PDA P on w is an infinite sequence

ρ = c0c1 · · · of configurations such that c0 = 〈p0,⊥〉, for every i > 0, there is a′i ∈ Σ with ci
a′

i=⇒ ci+1, and

w = a′0a
′
1 · · · . A path of the ω-PDA P is a finite sequence of configurations which is a prefix of a run.

A path starting from a configuration c and ending with a configuration c′ over a word w is sometimes

abbreviated as c
w

=⇒∗ c′. Given a run ρ, let Inf(ρ) denote the set of control states visited infinitely often in

the run ρ. In this work, we consider the following five well-known acceptance conditions in the literature.

• Büchi acceptance [1]: F ⊆ P is a finite set of accepting control states. A run ρ is accepting if and

only if Inf(ρ) ∩ F 6= ∅.

• Parity acceptance [6]: F : P → [k] is a function that assigns a priority to each control state, where k

is some natural number called index. A run ρ is accepting if and only if min({F(p) | p ∈ Inf(ρ)}) is even.

• Rabin acceptance [4]: F = {(E1, F1), . . . , (Ek, Fk)} is a set of pairs of control states with Ei, Fi ⊆ P

for every i ∈ [k]. A run ρ is accepting if and only if there exists some i ∈ [k] such that Ei ∩ Inf(ρ) = ∅

and Fi ∩ Inf(ρ) 6= ∅.

• Streett acceptance [5]: F = {(E1, F1), . . . , (Ek, Fk)} is a set of pairs of control states with Ei, Fi ⊆ P

for every i ∈ [k]. A run ρ is accepting if and only if for all i ∈ [k], Ei ∩ Inf(ρ) 6= ∅ or Fi ∩ Inf(ρ) = ∅.

• Muller acceptance [2]: F = {F1, . . . , Fk} is a set of sets of control states with Fi ⊆ P for every

i ∈ [k]. A run ρ is accepting if and only if Inf(ρ) ∈ F .

The ω-PDA P accepts an infinite word w ∈ Σω if and only if it has an accepting run over the input

word w. Let L(P) ⊆ Σω denote the set of infinite words accepted by the ω-PDA P , called the language

of P . An ω-PDA P is empty if and only if L(P) = ∅. Two ω-PDAs P1 and P2 are equivalent if

L(P1) = L(P2). Given an ω-PDA P , its emptiness problem is to determine whether L(P) = ∅ or not.

W.l.o.g., we assume that the input alphabet is singleton. Indeed, for the emptiness problem, the finite

alphabet can be abstracted as a singleton set.

We will use P-automata as “data structures” to finitely represent infinite sets of configurations.
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Table 2 Summary of the transformation for ω-PDAs, where n (resp. m and k) is the number of control states (resp.

transitions and index/pairs), ♯Ctrl. (resp. ♯Trans.) denotes the number of control states (resp. transition rules) in the

resulting ω-PDAs, and ‖F‖ =
∑k

i=1 |Fi|

Acceptance R2B P2B S2B M2B

♯Ctrl. O(kn) O(kn) O(kn2min(k,n)) O(n‖F‖)

♯Trans. O(km) O(km) O(km2min(k,n)) O(m‖F‖)

2.2 P-automata

Definition 2 ([23]). Given an ω-PDA P = (Σ, P,Γ,∆, p0,⊥,F), a P-automaton is a tuple A = (Q,Γ, δ,

Q0, F ), where Q is a finite set of control states with P ⊆ Q, Q0 ⊆ Q is a finite set of initial states, F ⊆ Q

is a finite set of final states and δ ⊆ Q× Γ×Q is a transition relation.

We write p
γ

−→ q instead of (p, γ, q) ∈ δ. We define the transition relation −→∗⊆ Q × Γ∗ × Q as the

smallest relation such that

• q
ǫ

−→∗ q, for every q ∈ Q,

• q
γu

−→∗ q′′, if q
γ

−→ q′ and q′
u

−→∗ q′′.

A configuration 〈p, u〉 ∈ C is recognized (accepted) by A if p
u

−→∗ q such that p ∈ Q0 and q ∈ F . Let

L(A) be the set of configurations recognized by A. A set of configurations C ⊆ C is regular if there is a

P-automaton A such that L(A) = C. Given a configuration 〈p, u〉, whether 〈p, u〉 is accepted by A can

be ecided in polynomial time of the size of A and |u|.

Theorem 1 ( [24]). Given an ω-PDA P = (Σ, P,Γ,∆, p0,⊥,F) and a regular set of configurations

C ⊆ C recognized by a P-automaton A = (Q,Γ, δ, Q0, F ), a new P-automaton A′ can be constructed in

O(|Q|2 · |∆|) time and O(|Q| · |∆|+ |δ|) space such that L(A′) = pre∗(C).

The emptiness problem of BPDAs was shown in PTIME by Bouajjani et al. [23]. Later, Esparza et

al. [24] proposed an efficient algorithm for this problem.

Theorem 2 ( [24]). The emptiness problem of BPDAs P = (Σ, P,Γ,∆, p0,⊥,F) can be decided in

O(|P |2 · |∆|) time and O(|P | · |∆|) space.

By leveraging the well-known transformation for ω-automata (e.g., [13,14]), we can obtain the results

shown in Table 2. In a nutshell, the transformation acts on the control states of ω-PDAs and the stack

does not play a role. By applying Theorem 2, we can obtain Theorem 3.

Theorem 3. The emptiness problems of ω-PDAs P = (Σ, P,Γ,∆, p0,⊥,F) (with k index/pairs in F)

can be solved in

• O(k3|P |2 · |∆|) time and O(k2|P | · |∆|) space for RPDAs and PPDAs.

• O(k3|P |2 · |∆| · 23min(k,|P |)) time and O(k2|P | · |∆| · 22min(k,|P |)) space for SPDAs.

• O(|P |2 · |∆| ·
∑k

i=1 |Fi|3) time and O(|P | · |∆| ·
∑k

i=1 |Fi|2) space for MPDAs.

Proof. For self-contained, we present the transformations here. Given an RPDA P = (Σ, P,Γ,∆, p0,⊥,

F) with F = {(E1, F1), . . . , (Ek, Fk)}, one can construct an equivalent BPDA P ′ = (Σ, P ′,Γ,∆′, p0,⊥,F ′)

such that L(P) = L(P ′), where |P ′| = O(k|P |) and |∆′| = O(k|∆|).

P ′ consists of k+1 copies of P in which one copy fully behaves the same as P . The other k copies are

partial and each of them is associated to a pair (Ei, Fi), its control states are labeled by i and it contains

the control states from P \ Ei. A run of P ′ starting from the initial configuration 〈p0,⊥〉 initially runs

at the full copy. During the run, P ′ can nondeterministically choose between staying in the full copy or

moving to one of the other k copies that guesses a proper pair (Ei, Fi) in order to have an accepting run

in P . Once, P ′ enters a copy associated to a pair (Ei, Fi), the run does not go into any configurations

with control states in Ei. The Büchi acceptance F ′ =
⋃k

i=1 Fi × {i} ensures that the run of P ′ will

eventually leave the full copy and move to some configurations labeled by i. Subsequently, it will visit

some configurations with control states in Fi infinitely often.

Formally, for every i ∈ [k], let Pi = (P \ Ei) × {i}. We define P ′ = P ∪
⋃k

i=1 Pi, F ′ =
⋃k

i=1 Fi × {i},

∆′ is the smallest transition relation such that the following conditions hold:

• For every 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆, 〈p, γ〉

a
→֒ 〈p′, u〉 ∈ ∆′ and for every i ∈ [k] with p′ ∈ P \ Ei,

〈p, γ〉
a
→֒ 〈(p′, i), u〉 ∈ ∆′;



Lei Y S, et al. Sci China Inf Sci November 2017 Vol. 60 112102:6

• For every i ∈ [k] and 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆ such that p, p′ ∈ P \ Ei, 〈(p, i), γ〉

a
→֒ 〈(p′, i), u〉 ∈ ∆′.

It is easy to verify that L(P) = L(P ′). Given an PPDA P = (Σ, P,Γ,∆, p0,⊥,F) with F : P → [k], one

can construct an equivalent BPDA P ′ = (Σ, P ′,Γ,∆′, p0,⊥,F
′) such that L(P) = L(P ′), |P ′| = O(k|P |)

and |∆′| = O(k|∆|).

Without loss of generality, we assume that k = 2m + 1 for some natural number m. For the Parity

acceptance F : P → [k], we can construct the Rabin chain F ′ = {(E1, F1), . . . , (Em, Fm)} such that for

every i ∈ [m],

Ei = {p ∈ P | F(p) 6 2i− 1} and Fi = {p ∈ P | F(p) 6 2i}.

Let P ′ = (Σ, P,Γ,∆, p0,⊥,F ′) be the RPDA. Hence, L(P) = L(P ′). We can construct an BPDA

P ′′ = (Σ, P ′,Γ,∆′, p0,⊥,F ′′) such that L(P) = L(P ′′), where |P ′| = O(k|P |) and |∆′| = O(k|∆|). Given

an SPDA P = (Σ, P,Γ,∆, p0,⊥,F) with F = {(E1, F1), . . . , (Ek, Fk)}, we can construct an equivalent

BPDA P ′ = (Σ, P ′,Γ,∆′, p0,⊥,F ′) such that L(P) = L(P ′), where |P ′| = O(k|P | · 2min(k,|P |)) and

|∆′| = O(k|∆| · 2min(k,|P |)).

We guess a subset S ⊆ P of control states such that only control states in S are visited after some

point. To meet the Streett acceptance, we only need to ensure that for every i ∈ [k], if some control

state in S appears in Fi, then some control state from Ei should be infinitely often visited. Intuitively,

suppose that the control state p ∈ S ∩Fi, then some control state in Ei should be visited infinitely often,

irrespective of whether p is visited infinitely often or not. This acceptance is stronger than the Streett

acceptance and can be regarded as the generalized Büchi acceptance which can be transformed into Büchi

acceptance via de-generalization.

Given a set S ⊆ P , let In(S) = {Ei | i ∈ [k], Fi ∩ S 6= ∅}. Let In(P) ⊆ 2P be a set such that the

following conditions hold:

• If there exists some set S ⊆ P with some set In(S), then there exists a set S′ ∈ In(P) such that

In(S) = In(S′) and S ⊆ S′,

• For every two distinct sets S, S′ ∈ In(P), In(S) 6= In(S′).

It is easy to see that |In(P)| is at most 2min(k,|P |). Suppose that In(P) = {S1, . . . , Sn} ⊆ 2P and elements

in In(S) are well-ordered, we use In(S, i) to denote the ith element. We define P ′ = P ∪P ×{S1, . . . , Sn}×

{0, 1, . . . , k}, F ′ = {(p, Si, |In(Si)|) | p ∈ Si, i ∈ [n]}, ∆′ is the smallest transition relation such that the

following conditions hold:

(1) For every 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆,

• 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆′ and

• 〈p, γ〉
a
→֒ 〈(p′, Si, 0), u〉 ∈ ∆′ for every i ∈ [n] with p′ ∈ Si;

(2) For every i ∈ [n], every 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆ with p, p′ ∈ Si and every j ∈ {0, . . . , |In(Si)| − 1},

• 〈(p, Si, j), γ〉
a
→֒ 〈(p′, Si, j + 1), u〉 ∈ ∆′, if p′ ∈ In(Si, j + 1),

• 〈(p, Si, j), γ〉
a
→֒ 〈(p′, Si, j), u〉 ∈ ∆′, if p′ ∈ P \ In(Si, j + 1),

• 〈(p, Si, |In(Si)|), γ〉
a
→֒ 〈(p′, Si, 0), u〉 ∈ ∆′.

Initially, P ′ runs the same as P . P ′ nondeterministically guesses a set Si stored into the control states

with a counter starting from 0. The set Si consists of control states that are potentially visited infinitely.

Once Si is selected, the runs of P ′ can only visit control states from Si. For each configuration with the

counter j, the counter will add 1 if a control state from In(Si, j + 1) is visited and the counter will be

reset to 0 if j is equal to |In(Si)|. At least one control state in each set of In(S) is infinitely often visited if

and only if the counter is set to |In(S)| infinitely often. This implies that for each set Ej , if some control

state p from Ej is visited infinitely often, then p must be in Si. Therefore, some control state in Fj will

be visited infinitely often owing to the condition that the counter is set to |In(S)| infinitely often. Now,

we obtain that L(P ′) ⊆ L(P). L(P) ⊆ L(P ′) is also true, because given an accepting run of P , such a

set Si always exists.

Given an MPDA P = (Σ, P,Γ,∆, p0,⊥,F) with F = {F1, . . . , Fk)}, one can construct an equivalent

BPDA P ′ = (Σ, P ′,Γ,∆′, p0,⊥,F
′) such that L(P) = L(P ′), where |P ′| = O(|P | · ‖F‖) and |∆′| =

O(|∆| · ‖F‖).
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For every i ∈ [k], suppose that Fi = {p1i , . . . , p
|Fi|
i }. P ′ guesses the set Fi and the position in the

accepting run of P from which only configurations with control states in Fi are visited. Runs of P ′

starting from the initial configuration 〈p0,⊥〉 run as in P . The runs can nondeterministically choose

between staying in the copy of P or moving to one of the other copies labeled by i which guess a proper

set Fi. When moving to a copy labeled by i, the runs set a counter j to 0 and increase the counter by 1

when the control state pj+1
i is visited. The counter j will be reset to 0 once j is |Fi| meaning that all the

control states from Fi are visited. If the counter is infinitely often to |Fi|, then the Muller acceptance is

met.

Formally, P ′ = P ∪ {(p, j, i) | p ∈ Fi, 0 6 j 6 |Fi|, i ∈ [k]}, F ′ = {(p, |Fi|, i) | p ∈ Fi, i ∈ [k]} and ∆′ is

the smallest transition relation such that the following conditions hold: For every 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆,

• 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆′;

• 〈p, γ〉
a
→֒ 〈(p′, 0, i), u〉 ∈ ∆′ for every i ∈ [k] such that p′ ∈ Fi;

• 〈(p, j, i), γ〉
a
→֒ 〈(p′, j + 1, i), u〉 ∈ ∆′, if p ∈ Fi and p

′ = p
j+1
i ;

• 〈(p, j, i), γ〉
a
→֒ 〈(p′, j, i), u〉 ∈ ∆′, if p, p′ ∈ Fi, p

′ 6= p
j+1
i and j < |Fi|;

• 〈(p, |Fi|, i), γ〉
a
→֒ 〈(p′, 0, i), u〉 ∈ ∆′, if p, p′ ∈ Fi.

We can see that L(P) = L(P ′).

However, the approach going through BPDAs is not optimal. In the rest of this paper, we propose

more efficient algorithms.

3 Efficient solution to the emptiness problem

In this section, we propose efficient solutions to the emptiness problems of RPDAs, PPDAs, SPDAs and

MPDAs and discuss their lower bounds. For this purpose, we first recall the concept of repeating heads

and some results for the emptiness problem of BPDAs from [24].

3.1 Repeating heads

Given an BPDA P = (Σ, P,Γ,∆, p0,⊥,F), let =⇒B⊆ C × Σ∗ × C be the relation defined as follows:

c
w

=⇒B c′ if and only if c
w1

=⇒∗ cf
w2

=⇒+ c′, for some cf ∈ F × Γ∗ and w = w1w2. Intuitively, c
w

=⇒B c′

denotes that the BPDA P can move into the configuration c′ when P is at the configuration c and reads

the input word w. Furthermore, a configuration whose first component is an accepting control state is

visited.

A head 〈p, γ〉 ∈ P ×Γ is repeating if there exist some u ∈ Γ∗, w ∈ Σ∗ such that 〈p, γ〉
w

=⇒B 〈p, γu〉. Let

RB be the set of repeating heads in P . Let RBΓ
∗ denote the set of configurations {〈p, γu〉 ∈ C | 〈p, γ〉 ∈

RB, u ∈ Γ∗}.

Proposition 1 ( [23, 24]). The BPDA P is empty if and only if 〈p0,⊥〉 6∈ pre∗(RBΓ
∗).

To compute the repeating heads, Esparza et al. proposed a polynomial-time algorithm which is an

adaption of the pre∗ algorithm.

Lemma 1 ([24]). The setRB of repeating heads of an BPDA P = (Σ, P,Γ,∆, p0,⊥,F) can be computed

in O(|P |2 · |∆|) time and O(|P | · |∆|) space.

3.2 Efficient solution to the emptiness problem of RPDAs

We fix the RPDA P = (Σ, P,Γ,∆, p0,⊥,F) with F = {(E1, F1), . . . , (Ek, Fk)}. Our approach is based

on the observation that for every accepting run ρ, there is a position m > 0 and an indicator i ∈ [k]

such that for every n > m, the configuration ρ(n) is from (P \ Ei)× Γ∗, namely, the control states from

Ei do not appear after the position m. In addition, some control states from Fi appear infinitely often

in ρ after the position m. Therefore, the problem can be reduced to compute heads 〈p, γ〉 the form of

〈p, γ〉
w

=⇒+ 〈p, γu〉 such that there exists the indicator i ∈ [k] with no control state from Ei appearing in
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〈p, γ〉
w

=⇒+ 〈p, γu〉, but some control states from Fi appearing in 〈p, γ〉
w

=⇒+ 〈p, γu〉. We show that such

kind of heads can be computed by applying Lemma 1.

For every i ∈ [k], let =⇒∗
i
, =⇒+

i
⊆ C × Σ∗ × C be the smallest relations such that the following

conditions hold:

• 〈p, u〉
ǫ

=⇒∗
i
〈p, u〉, for every control state p ∈ P \ Ei and u ∈ Γ∗;

• 〈p, u〉
aw

=⇒∗
i
〈p′′, u′′〉 and 〈p, u〉

aw

=⇒+
i
〈p′′, u′′〉, if 〈p, u〉

a
=⇒ 〈p′, u′〉 with p, p′ ∈ P \Ei and 〈p′, u′〉

w

=⇒∗
i

〈p′′, u′′〉.

Intuitively, 〈p, u〉
w

=⇒∗
i
〈p′, u′〉 indicates that the PPDA P can move into the configuration 〈p′, u′〉 when

P is at the configuration 〈p, u〉 and reads the input word w. Moreover, no control state from Ei appears

in the path 〈p, u〉
w

=⇒∗
i
〈p′, u′〉.

For every i ∈ [k], a head 〈p, γ〉 ∈ P × Γ is i-repeating if 〈p, γ〉
w1

=⇒∗
i
〈pf , u〉

w2

=⇒+

i
〈p, γv〉 for some

configuration 〈pf , u〉 ∈ Fi × Γ∗. For every i ∈ [k], let Ri
R be the set of all the i-repeating heads in P .

Proposition 2. Let RR denote the set
⋃k

i=1 R
i
R, P is empty if and only if 〈p0,⊥〉 6∈ pre∗(RRΓ

∗).

Proof. (⇒) Suppose that P has an accepting run ρ = c0c1 · · · on the infinite word w = a0a1 · · · , where

c0 = 〈p0,⊥〉. We can construct a subsequence cn1
cn2

· · · of ρ such that

|cn1
| = min{|cj | | j > 0},

|cni
| = min{|cj | | j > ni−1}, ∀i > 2.

We can see that the sequence |cn1
|, |cn2

|, . . . , strictly increases, implying that for every i > 1, once the

configuration cni
is reached, the rest of the run ρ from the position ni will never change the stack content

in cni
except for the topmost of the stack. Because the sets P and Γ are finite (hence the number of

heads is finite), there must exist a pair 〈p, γ〉 that appears in cn1
cn2

· · · infinitely often. Therefore, we

can construct a subsequence cj1cj2 · · · of cn1
cn2

· · · such that for every i > 1, the head of cji is 〈p, γ〉.

Because ρ = c0c1 · · · is an accepting run, let (Em, Fm) be a pair such that Inf(ρ) ∩ Fm 6= ∅ and

Inf(ρ)∩Em = ∅. By the above construction, there exist a position je > j1 and a configuration 〈pf , uu′1〉 ∈

Fm × Γ∗ such that

cje = 〈p, γu1〉
w1

=⇒∗
m 〈pf , uu

′
1〉

w2

=⇒+
m 〈p, γu2u

′′
1〉 = cje+1

.

Since once the configuration cje is reached, the rest of the run ρ from the position je will never change

the stack content in cje except for the topmost of the stack, we obtain that u1 = u′1 = u′′1 and

〈p, γ〉
w1

=⇒∗
m 〈pf , u〉

w2

=⇒+
m 〈p, γu2〉.

Therefore, 〈p, γ〉 ∈ RR. The result immediately follows.

(⇐) Suppose that 〈p0,⊥〉 ∈ pre∗(RRΓ
∗). Let 〈p, γ〉 ∈ RR be the head such that

〈p0,⊥〉
w0

=⇒∗ 〈p, γu〉 and 〈p, γ〉
w1

=⇒∗
i
〈pf , u

′〉
w2

=⇒+
i
〈p, γu′′〉

for some i ∈ [k], pf ∈ Fi. Therefore, we obtain the following accepting run:

〈p0,⊥〉
w0

=⇒∗ 〈p, γu〉
w1

=⇒∗ 〈pf , u
′u〉

w2

=⇒+ 〈p, γu′′u〉
w1

=⇒∗ 〈pf , u
′u′′u〉

w2

=⇒+ 〈p, γu′′u′′u〉 · · · .

Note that no control state from Ei is visited in the path 〈p, γvu〉
w1

=⇒∗ 〈pf , u′vu〉
w2

=⇒+ 〈p, γu′′vu〉 for

every v ∈ {u′′i | i > 0}.

For every i ∈ [k], let Pi = (Σ, Pi,Γ,∆i, p0,⊥, Fi) be the BPDA, where Pi = P \ Ei, ∆i = ∆ ∩ (Pi ×

Γ)× Σ× (Pi × Γ∗), then, Pi does not use any control state from Ei and we obtain Lemma 2.

Lemma 2. For each i ∈ [k], let Ri
B be the set of repeating heads in the BPDA Pi, R

i
B = R

i
R.

Applying Lemma 1, for every i ∈ [k], Ri
R can be computed in O(|P |2 · |∆|) time and O(|P | · |∆|)

space. This implies that RR =
⋃k

i=1 R
i
R can be computed in O(k|P |2 · |∆|) time and O(|P | · |∆|) space.
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Applying Theorem 1, we can compute a P-automaton exactly accepting the set pre∗(RRΓ
∗). Therefore,

for a given configuration c, whether the RPDA has an accepting run starting from c can be decided by

checking whether the P-automaton accepts c or not. Then, we obtain Theorem 4.

Theorem 4. The emptiness problem of RPDAs P = (Σ, P,Γ,∆, p0,⊥,F) with F = {(E1, F1), . . . ,

(Ek, Fk)} can be decided in O(k|P |2 · |∆|) time and O(|P | · |∆|) space.

Notice that RR is computed by computing R
i
R for i ∈ [k]. Because the size of RR does not depend on

k and the space complexity for computing R
i
R also does not depend on k, the space complexity of the

emptiness problem of RPDAs does not depend on k.

3.3 Efficient solution to the emptiness problem of SPDAs

Let us fix an SPDA P = (Σ, P,Γ,∆, p0,⊥,F) with F = {(E1, F1), . . . , (Ek, Fk)}. We propose an efficient

solution to the emptiness problem of SPDAs by guessing the set of control states that can be visited

after some point. Similar to the transformation from Streett automata to Büchi automata, for every set

S ∈ In(P), we compute a head 〈p, γ〉 of the form 〈p, γ〉
w

=⇒+ 〈p, γu〉. Furthermore, only control states

from S are visited in 〈p, γ〉
w

=⇒+ 〈p, γu〉 and for every i ∈ [k], if Fi ∩ S 6= ∅, at least one control state

from Ei is visited in 〈p, γ〉
w

=⇒+ 〈p, γu〉. These heads can be computed by applying Lemma 1 on some

proper BPDAs. Then, by applying pre∗ computation to these heads, we can compute an P-automaton

A recognizing the set of configurations from which the SPDA has an accepting run.

Given a set S ⊆ P , let RS ⊆ P be the repeating heads of the BPDA PS = (Σ, P ′,Γ,∆′, (p0, 0),⊥,F
′),

where F ′ = S×{|In(S)|}, P ′ and ∆′ are defined as follows: for every 〈p, γ〉
a
→֒ 〈p′, u′〉 ∈ ∆ with p, p′ ∈ S,

• 〈(p, i), γ〉
a
→֒ 〈(p′, i+ 1), u〉 ∈ ∆′, for every i ∈ {0, . . . , |In(S)| − 1} with p′ ∈ In(S, i+ 1);

• 〈(p, i), γ〉
a
→֒ 〈(p′, i), u〉 ∈ ∆′, for i ∈ {0, . . . , |In(S)| − 1};

• 〈(p, |In(S)|), γ〉
a
→֒ 〈(p′, 0), u〉 ∈ ∆′.

Proposition 3. Let RS = {〈p, γ〉 ∈ P × Γ | ∃S′ ⊆ P : 〈(p, 0), γ〉 ∈ RS′

}, the SPDA P is empty if and

only if 〈p0,⊥〉 6∈ pre∗(RSΓ
∗).

Proof. (⇒) Suppose P has an accepting run ρ = c0c1 · · · starting from 〈p0,⊥〉 on some infinite word.

Let {k1, . . . , kn} ⊆ [k] be the set of indices such that for every i ∈ [k], i ∈ {k1, . . . , kn} if and only if

Inf(ρ) ∩ Fi 6= ∅. Therefore, Inf(ρ) ∩ Fi = ∅ for every i ∈ [k] \ {k1, . . . , kn} and Inf(ρ) ∩ Ei 6= ∅ for every

i ∈ {k1, . . . , kn}. Let S be the set of control states P \ (
⋃

i∈[k]\{k1,...,kn}
Fi). Since the number of control

states is finite, there exists a configuration cm in ρ such that for every j > m, cj ∈ S × Γ∗. Let ρ>m be

the suffix cmcm+1 · · · of ρ. We can construct a subsequence cn1
cn2

· · · of ρ>m such that

|cn1
| = min{|cj | | j > m},

|cni
| = min{|cj | | j > ni−1}, ∀i > 2.

Since the sets S and Γ are finite (i.e., the number of heads is finite), there must exist a pair 〈p, γ〉 ∈ S×Γ

that appears in cn1
cn2

· · · infinitely often. Therefore, we can construct a subsequence cm1
cm2

· · · of

cn1
cn2

· · · such that for every i > 1, the head of cmi
is 〈p, γ〉.

By the above construction, there exist two positions me′ > me > m1 such that there is a subsequence

〈pk1 , uk1〉 · · · 〈pkn , ukn〉 of cme
cme+1 · · · cm

e′
with pk1 ∈ Ek1

, . . . , pkn ∈ Ekn
. Moreover, for every i ∈ [k],

〈pki , uki〉 is the first configuration from Eki
× Γ∗ that occurs in the path 〈pki−1 , uki−1〉 · · · 〈pki , uki〉.

W.l.o.g., we assume that cme
= 〈p, γu1〉 6= 〈pk1 , uk1〉 and cm

e′
= 〈p, γu2u1〉 6= 〈pkn , ukn〉. Therefore, we

obtain that PS has

〈(p, 0), γu1〉
w1

=⇒+ 〈(pkn , |In(S)|), ukn〉
w2

=⇒+ 〈(p, 0), γu2u
′
1〉.

Since once the configuration cme
is reached, the rest of the run ρ from the position me will never change

the stack content in cme
except for the topmost of the stack, we obtain that u1 = u′1 and PS has

〈(p, 0), γ〉
w1

=⇒+ 〈(pkn , |In(S)|), u′〉
w2

=⇒+ 〈(p, 0), γu2〉.
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Therefore, 〈p, γ〉 ∈ RS. It immediately follows that 〈p0,⊥〉 ∈ pre∗(RSΓ
∗).

(⇐) Suppose that 〈p0,⊥〉 ∈ pre∗(RSΓ
∗), let 〈p, γ〉 ∈ RS be the head such that 〈p0,⊥〉

w1

=⇒∗ 〈p, γu〉 and

PS has 〈(p, 0), γ〉
w2

=⇒+ 〈(p′, |In(S)|), u′〉
w3

=⇒+ 〈(p, 0), γu2〉 for some set S ⊆ P . The following run is an

accepting run ρ:

〈p0,⊥〉
w1

=⇒∗ 〈p, γu〉
w2

=⇒+ 〈p′, u′u〉
w3

=⇒+ 〈p, γu2u〉
w2

=⇒+ 〈p′, u′uu2u〉
w3

=⇒+ 〈p, γu2u2u〉 · · · .

Notice that for every i ∈ [k], if Inf(ρ) ∩ Fi 6= ∅, then Ei ∈ In(S) which implies that Ei ∩ Inf(ρ) 6= ∅.

For each set S ⊆ P , the set RS can be computed in O(|S|2 · |∆| · |In(S)|3) time and O(|S| · |∆| · |In(S)|2)

space by applying Lemma 1. The number of sets S that should be considered is bounded by 2min(k,|P |).

Therefore, RS can be computed in O(k3|P |2 · |∆| · 2min(|P |,k)) time and O(k2|P | · |∆|) space. Applying

Theorem 1, we obtain Theorem 5.

Theorem 5. The emptiness problem of SPDAs P = (Σ, P,Γ,∆, p0,⊥,F) can be decided in O(k3|P |2 ·

|∆| · 2min(|P |,k)) time and O(k2|P | · |∆|) space.

3.4 Efficient solution to the emptiness problem of MPDAs

We fix the MPDA P = (Σ, P,Γ,∆, p0,⊥,F) with F = {F1, . . . , Fk}. Our approach is based on the

observation that the MPDA P has an accepting run ρ on some infinite word if and only if there is a

position m > 0 and an indicator i ∈ [k] such that for every n > m, the set of control states in the

configurations ρ(n) is the set Fi. This observation allows us to reduce the emptiness problem of the

MPDA P to compute heads 〈p, γ〉 ∈ Fi × Γ of the form 〈p, γ〉
w

=⇒+ 〈p, γu〉 such that the set of control

states appearing in 〈p, γ〉
w

=⇒+ 〈p, γu〉 is Fi for some indicator i ∈ [k]. The later problem is solved by

applying Lemma 1 on a BPDA Pi which counts the number of visited control states in Fi.

Given an index i ∈ [k], let Pi = (Σ, Fi×{0, . . . , |Fi|},Γ,∆i, (p0, 0),⊥, Fi×{|Fi|}) be the BPDA, where

∆i is defined as follows: for every 〈p, γ〉
a
→֒ 〈p′, u〉 ∈ ∆ with p, p′ ∈ Fi, every j ∈ {0, . . . , |Fi| − 1},

• 〈(p, j), γ〉
a
→֒ 〈(p′, j + 1), u〉 ∈ ∆i, if p

′ = p
j+1
i ;

• 〈(p, j), γ〉
a
→֒ 〈(p′, j), u〉 ∈ ∆i;

• 〈(p, |Fi|), γ〉
ǫ
→֒ 〈(p′, 0), u〉 ∈ ∆i.

Let R
i
B be the set of repeating heads in the BPDA Pi, RM be the set {〈p, γ〉 ∈ P × Γ | 〈(p, 0), γ〉 ∈

R
i
B, i ∈ [k]}.

Proposition 4. The MPDA P is empty if and only if 〈p0,⊥〉 6∈ pre∗(RMΓ
∗).

Proof. (⇒) Suppose that P has an accepting run ρ = c0c1 · · · on the infinite word w = a0a1 · · · , where

c0 = 〈p0,⊥〉. Let Fm ∈ F be the set of control states such that Inf(ρ) = Fm. Then, there exists a position

m′ > 0 such that the control states appearing in the sequence ρ>m′ = cm′cm′+1 · · · are in Fm. We can

construct a subsequence cn1
cn2

· · · of ρ>m′ such that

|cn1
| = min{|cj | | j > m′},

|cni
| = min{|cj | | j > ni−1}, ∀i > 2.

Since the sets Fm and Γ are finite (i.e., the number of heads is finite), there must exist a pair 〈p, γ〉 ∈

Fm × Γ that appears in cn1
cn2

· · · infinitely often. Therefore, we can construct a subsequence cj1cj2 · · ·

of cn1
cn2

· · · such that for every i > 1, the head of cji is 〈p, γ〉.

By the above construction, there exist two positions je′ > je > j1 such that Pm has

cje = 〈(p, 0), γu1〉
w1

=⇒+ 〈(p′, |Fm|), vu1〉
w2

=⇒+ 〈(p, 0), γu2u
′
1〉 = cj

e′
.

Considering that once the configuration cje is reached, the rest of the run ρ from the position je will

never change the stack content in cje except for the topmost of the stack, we obtain that u1 = u′1 and

Pm has

〈(p, 0), γ〉
w1

=⇒+ 〈(p′, |Fm|), v〉
w2

=⇒+ 〈(p, 0), γu2〉.
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Therefore, 〈p, γ〉 ∈ RM. The result immediately follows.

(⇐) Suppose that 〈p0,⊥〉 ∈ pre∗(RMΓ
∗). Let 〈p, γ〉 ∈ RM be the head such that

〈p0,⊥〉
w0

=⇒∗ 〈p, γu〉 and Pi has 〈(p, 0), γ〉
w1

=⇒+ 〈(p′, |Fi|), v〉
w2

=⇒+ 〈(p, 0), γu′〉

for some i ∈ [k]. Therefore, we obtain the following run:

〈p0,⊥〉
w0

=⇒∗ 〈p, γu〉
w1

=⇒+ 〈p′, vu〉
w2

=⇒+ 〈p, γu′u〉
w1

=⇒+ 〈p′, vu′u〉
w2

=⇒+ 〈p, γu′u′u〉 · · · ,

where only the set Fi of control states are visited infinitely often after 〈p, γu〉.

Applying Lemma 1, the set Ri
B can be computed in O(|Fi|5 · |∆|) time and O(|∆| · |Fi|3) space. This

implies that RM can be computed in O(|∆| ·
∑

i∈[k] |Fi|5) time and O(|∆| · max{|Fi|3 | i ∈ [k]}) space.

Notices that once R
i
B is computed, the space used for computing R

i
B can be deallocated. Applying

Theorem 1, we obtain Theorem 6.

Theorem 6. The emptiness problem of MPDAs P = (Σ, P,Γ,∆, p0,⊥,F) can be decided in O(|∆| ·

max(|P |2,
∑

i∈[k] |Fi|5)) time and O(|∆| ·max{|P |, |Fi|3 | i ∈ [k]}) space.

The time complexityO(|∆|·max(|P |2,
∑

i∈[k] |Fi|5)) is obtained from the fact thatRM can be computed

in O(|∆| ·
∑

i∈[k] |Fi|5) time and pre∗(RMΓ
∗) is computed in O(|∆| · |P |2) time by Theorem 1. Similarly,

the space complexity O(|∆| ·max{|P |, |Fi|
3 | i ∈ [k]}) comes from the fact that RM can be computed in

O(|∆| ·max{|P |, |Fi|3 | i ∈ [k]}) space and pre∗(RMΓ
∗) is computed in O(|∆| · |P |) space by Theorem 1.

The emptiness algorithm presented in this section has a tighter upper bound than the one that goes

through BPDAs. In particular, in the worst-case when the maximum set in F is P and |F| = 2|P |, this

efficient approach works in O(|P |5 · |∆| · 2|P |) time and O(|P |3 · |∆|) space, while the latter works in

O(|P |5 · |∆| · 23|P |) time and O(|P |3 · |∆| · 22|P |) space.

3.5 Lower bounds

It was already known that the context-free-language reachability problem is PTIME-complete [34]. This

implies that the control state reachability problem of PDSs is PTIME-complete. The control state

reachability problem can be reduced to the emptiness problem of ω-PDAs in polynomial time by adding

a self-loop on the target control state and adjusting the acceptance condition. Therefore, the emptiness

problem of ω-PDAs is PTIME-hard. From Theorems 2, 4–6, we obtain that the emptiness problems of

BPDAs, PPDAs, RPDAs and MPDAs are PTIME-complete, while the problem of SPDAs is PTIME-

hard. It remains open whether there exists an optimal algorithm for SPDAs. We leave this to future

work.

4 Model checking linear temporal logic with fairness

In this section, we demonstrate one of the benefits of our efficient algorithms by applying it to the model

checking problem for linear temporal logic on PDAs while considering fairness. We found that it is better

to verify LTL formulae on PDSs by reducing to the emptiness problem of SPDAs rather than that of

BPDAs in term of space complexity.

4.1 Linear temporal logic and Büchi automata

Let us fix the PDA P = (P,Γ,∆, p0,⊥) in this section. Let AP be a finite set of atomic propositions.

Definition 3. Formulae of the Linear Temporal Logic (LTL for short) are defined by the following

rules:

φ ::= σ | ¬φ | φ ∧ φ | X | φUφ,

where σ ∈ AP.
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Given an infinite word w = w0w1 · · · ∈ (2AP)ω , let wi = wiwi+1 · · · be the suffix of w. The satisfaction

relation w |= φ between an infinite word w and an LTL formula φ is inductively defined as follows:

w |= σ ⇐⇒ σ ∈ w0;

w |= ¬φ⇐⇒ w 6|= φ;

w |= φ1 ∧ φ2 ⇐⇒ w |= φ1 and w |= φ2;

w |= Xφ⇐⇒ w1 |= φ;

w |= φ1Uφ2 ⇐⇒ ∃i > 0 such that wi |= φ2 and ∀j : 0 6 j < i, wj |= φ1.

We use abbreviations Fφ ≡ trueUφ, Gφ ≡ ¬F¬φ and φ1 → φ2 ≡ ¬φ1 ∨ φ2. Let l : AP → 2P be a

labeling function that assigns to each atomic proposition a set of control states. Given a run ρ = c0c1 · · ·

of P , let l(ρ) be the infinite word w such that for every i > 0, wi = {σ ∈ AP | ci ∈ l(σ) × Γ∗}. A

run ρ = c0c1 · · · of P satisfies an LTL formula φ if and only if l(ρ) |= φ. A configuration c satisfies an

LTL formula φ if and only if for each run ρ of P starting from c, ρ satisfies φ. Let ‖φ‖P be the set of

configurations that satisfy the formula φ.

The local model checking problem for LTL is to decide whether c ∈ ‖φ‖P for a given LTL formula φ

and a configuration c ∈ C, while the global model checking problem is to compute ‖φ‖P . In this work, we

solve the global model checking problem using an automata-theoretic approach that reduces the problem

to the emptiness problem of ω-PDAs.

Definition 4. A Büchi-automaton (BA) M is a tuple (G,Σ, δ, g0,F) where G is a finite set of states,

Σ is the input alphabet, δ : G×Σ → 2G is a transition function, g0 ∈ G is the initial state and F ⊆ G is

the Büchi acceptance.

A run π of M over an infinite word α0α1 · · · ∈ Σω is an infinite sequence of states π = g0g1 · · · such

that g0 = g0, and for every i > 0, gi+1 ∈ δ(gi, αi). Let Inf(π) be the set of states visited infinitely often

in π. A run π is accepting if and only if Inf(π) ∩ F 6= ∅.

Theorem 7 ([10]). For every LTL formula φ, we can construct a BA M = (G, 2AP, δ, g0, F ) with 2O(|φ|)

states/transitions such that M recognizes all of the infinite words satisfying φ, where |φ| denotes the

number of subformulae of φ.

Theorem 8 ( [24]). Given a PDS P = (P,Γ,∆, p0,⊥) and an LTL formula φ, ‖φ‖P can be computed

in O(|P |2 · |∆| · 2O(|φ|)) time and O(|P | · |∆| · 2O(|φ|)) space.

4.2 Fairness

Fairness is the key to concurrent systems which rules out infinite behaviors that are considered unrealistic,

and are often necessary to establish liveness properties frequently encountered in concurrent systems.

Fairness assumption can be expressed in an LTL formula. In this work, we consider the following fairness

assumptions [35]:

Unconditional fairness : Φ ≡
∧

16i6k

GFφi,

Weak fairness : Φ ≡
∧

16i6k

(FGφi → GFψi),

Strong fairness : Φ ≡
∧

16i6k

(GFφi → GFψi),

where φi and ψi are LTL formulae.

For the sake of simplicity, we assume that the formulae φi and ψi in fairness assumptions are Boolean

combinations of atomic propositions. Given a control state p ∈ P and the labeling function l, p |= ψi

denotes that ψ1 holds when replacing each atomic proposition σ in ψ1 by true (resp. false) if p ∈ l(σ)

(resp. p 6∈ l(σ)). Our approach can be generalized to cope with general fairness assumptions using regular

valuations [36].
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For a PDA P = (P,Γ,∆, p0,⊥) and an LTL formula φ with the fairness assumption Φ, then the global

model checking problem is to compute ‖Φ → φ‖P . By applying Theorem 8, ‖Φ → φ‖P can be computed

in O(|P |2 · |∆| · 2O(|φ|+k)) time and O(|P | · |∆| · 2O(|φ|+k)) space. In the next section, we will present an

alternative approach by reducing the model checking problem to the emptiness problem of SPDAs.

It is well-known that weak fairness
∧

16i6k(FGφi → GFψi) can be written into an unconditional

fairness
∧

16i6k GF (¬φi ∨ ψi) and unconditional fairness
∧

16i6k GFφi can be seen as a special form of

strong fairness
∧

16i6k(GF true → GFφi). Therefore, it is adequate to consider strong fairness.

4.3 A space-efficient model checking approach for LTL with fairness

Inspired by the model checking approach for LTL on PDSs which is reduced to the emptiness problem of

BPDAs, and fairness Φ can be transformed into some Streett acceptance, we can reduce the LTL model

checking problem on PDSs with fairness to the emptiness problem of SPDAs.

Fix a PDS P = (P,Γ,∆, p0,⊥) and an LTL formula φ with the strong fairness assumption Φ ≡∧
16i6k(GFφi → GFψi). Let M¬φ = (G, 2AP, δ, g0, F ) be the NBA that recognizes all of the infinite

words satisfying ¬φ. We define a SPDA P¬φ = ({a}, P ×G,Γ,∆′, [p0, g
0],⊥,F), where

• ∆′ is defined as follows: for every 〈p, γ〉 →֒ 〈p′, u〉 ∈ ∆ and every g′ ∈ δ(g,A) with A = {σ ∈ AP |

p ∈ l(σ)}, 〈[p, g], γ〉
a
→֒ 〈[p′, g′], u〉 ∈ ∆′,

• F = {(E1, F1), . . . , (Ek+1, Fk+1)}, where for every i : 1 6 i 6 k, Ei = {p ∈ P | p |= ψi} × G and

Fi = {p ∈ P | p |= φi} ×G, Fk+1 = P ×G and Ek+1 = F ×G.

Lemma 3. For every configuration 〈p, u〉 ∈ P × Γ∗, 〈p, u〉 6∈ ‖Φ → φ‖P if and only if P¬φ has an

accepting run starting from 〈[p, g0], u〉.

Proof. Suppose that 〈p, u〉 6∈ ‖Φ → φ‖P , then P has a run ρ starting from 〈p, u〉 such that ρ |= Φ, but

ρ 6|= φ. The later implies that ρ |= ¬φ, i.e., M¬φ has an accepting run π on the infinite word l(ρ). Let

ρπ ∈ (P ×G× Γ∗)ω be a run such that the projection of ρπ on P is the run ρ, the projection of ρπ on G

is π. It is easy to see that ρπ is an accepting run of P¬φ.

Suppose P¬φ has an accepting run ρ starting from 〈[p, g0], u〉, let ρP be the projection of ρ on P and

ρG be the projection of ρ on G. For every i : 1 6 i 6 k, since either Fi ∩ Inf(ρ) = ∅ or Ei ∩ Inf(ρ) 6= ∅

holds, then ρP |= Φ. On the other hand, it is easy to verify that ρG is an accepting run of P¬φ over the

infinite word l(ρP) and ρP is a run of P . The result immediately follows.

Applying Theorem 5, we obtain Theorem 9.

Theorem 9. Given an LTL formula φ and a PDS P = (P,Γ,∆, p0,⊥) with the fairness Φ, ‖Φ → φ‖P

can be computed in

• O(k3|P |2 · |∆| · 2O(|φ|)+min(|P |,k)) time and O(k2|P | · |∆| · 2O(|φ|)) space if Φ is a strong fairness,

• O(k3|P |2 · |∆| ·2O(|φ|)) time and O(k2|P | · |∆| ·2O(|φ|)) space if Φ is a weak or unconditional fairness.

The complexity for weak/unconditional fairness is obtained by a careful analysis of the algorithm for

emptiness checking of SPDAs and the fact that the Streett acceptance is F = {(E1, P×G), . . . , (Ek+1, P×

G)}, where for every i : 1 6 i 6 k, Ei = {p ∈ P | p |= ψi} ×G and Ek+1 = F ×G (which is a generalized

Büchi acceptance).

Compared to the approach via BPDAs, our approach has the following advantages. Our approach

reduces the space complexity from an exponential time of k to a polynomial time of k, as well as the

time complexity for weak and unconditional fairness. For strong fairness, our approach has a tight time

complexity when k is greater than |P |.

5 Conclusion and future work

In this paper, we proposed direct and efficient algorithms for the emptiness problems of PPDAs, RPDAs,

SPDAs and MPDAs, which are crucial for model checking recursive programs with fairness. In these

recursive programs with fairness, one thread is recursive, the other threads are finite and all the threads

are executed in some “fair” manner.
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Future work will include the implementation of proposed algorithms, investigation of ω-PDAs in which

the sets in acceptance conditions are sets of configurations rather than control states, and investigation of

the emptiness problem of alternating ω-PDAs (ω-APDAs). Although, the emptiness problem is undecid-

able [37] in general, the problem for alphabet-free ω-APDAs with Büchi or Parity acceptance was already

investigated in many studies [27,29–31,38,39]. There is no direct approach to the emptiness problem for

alphabet-free ω-APDAs with other acceptances. Along these lines, it will also be interesting to investigate

efficient algorithms for the emptiness problem of alphabet-free ω-APDAs with related acceptances, which

are related to the pushdown model checking problem against branching-time temporal logic with fairness.
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