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Here we investigate the fault detection filter de-
sign problems of the dynamics of the high speed
train (HST). Some of the researches have been ad-
dressed the modeling problems of HST [1, 2], but
for handling convenience the nonlinear dynamic
characters of the couplers are ignored, which is
inevitably introducing some uncertainty factors to
the dynamic model of HST. The fault diagnosis
technology has been gaining great development re-
cent years [3–6], but few researches have been con-
ducted to extend its application to the dynamics
of HST. In this article, the nonlinear characters of
couplers are considered. And the disturbance at-
tenuation conditions are considered as H∞ norm
formulation, while the fault sensitivity conditions
are expressed as H− index. We divide the design
process of the fault detection filter into three major
steps, which are respectively addressed as follows.

Dynamics of HST. Consider the dynamics of
HST that are subject to rolling mechanical resis-
tance, aerodynamic drag and wind gust in lon-
gitudinal motion as a cascade of cars connected
with flexible couplers. The stiffness coefficient is
defined as k, k ∈ [k−, k+], where k−, k+ represent
the minimal value and the maximal value of stiff-
ness coefficient of the coupler, respectively. The
dynamic equation of the motion of n-cars HST can
be formulated as































ṗi = vi − vi+1, i = 1, 2, . . . , n− 1,

m1v̇1 = u1 − kp1 − (c0 + c1v1)m1 + w1

−c2

(

∑n
i=1 mi

)

v1
2,

miv̇i = ui + kpi−1 − kpi − (c0 + c1v1)mi,

mnv̇n = un + kpn−1 − (c0 + c1v1)mn,
where pi is the relative displacement between two
adjacent cars i and i + 1, mi is the mass of the i
car, vi and ui is the speed and effort of the i car
respectively. w1 is the wind gust. Apply lineariza-
tion technique at a desired cruising speed where
v̄1 = v̄2 = · · · = v̄n = vr and ˙̄vi = 0, p̄i = 0.
Define the control efforts in the equilibrium state
as ūi and let p̂i = pi − p̄i, v̂i = vi − v̄i, ûi =
ui − ūi, x(t) = [p̂1, p̂2, . . . , p̂n−1, v̂1, v̂2, . . . , v̂n]

T,

u(t) = [ û1(t)
m1

, û2(t)
m2

, . . . , ûn(t)
mn

]T and the faults f(t)
are supposed to occur in the actuators, then we
attain the following linearized equations of the
dynamics of HST:

{

ẋ(t) = Ax(t) +Buu(t) +Bww(t) + Faf(t),

y(t) = Cx(t) +Dww(t),
(

A Bw Bu

Fa C Dw

)

∈

{

z
∑

i=1

αi

(

Ai Bw,i Bu,i

Fa,i Ci Dw,i

)

α ∈ Γ

}

,

Γ :=

{

(α1, . . . , αz) :

z
∑

i=1

αi = 1, αi > 0

}

.
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x ∈ ℜnp , u ∈ ℜnu , y ∈ ℜny , f ∈ ℜnf , ny > nf .
Fa is the distribution matrix of faults f(t) and Γ
is the unitary simplex.

Robustness and sensitivity conditions. We in-
troduce a deconvolution filter based residual gen-
erator having the form of

F :

{

ẋF (t) = AFxF (t) +BF η(t),

r(t) = LFxF (t) +HF η(t),
(1)

and xF (t) ∈ ℜnF , r(t) ∈ ℜp, η(t) = [y(t)T,
u(t)T]T ∈ ℜnu+ny . Define weighting system W1

which has a low pass property in the following

form: W1 :
{

ẋl = Alxl + Blη(t)

ηl(t) = Clxl
andXw , [xT xT

l ]
T ∈

ℜnp+nw , then the system in the augment space is











Ẋw = AwXw +Blww(t)

+Bluu(t) +Blff(t),

ηl(t) = CwXw,

(2)

Aw ,

[

A 0

BlÎny
C Al

]

, Blw ,

[

Bw

BlÎny
Dw

]

,

Ĩnu
=

[

0

Inu

]

, Blu ,

[

Bu

BlĨnu

]

,

Cw ,

[

0

CT
l

]T

, Îny
,

[

Iny

0

]

.

Define Xcl , [XT
w xT

F ]
T, then the composite sys-

tem dynamics satisfies

Ẋcl =

[

Aw 0

BFCw AF

]

Xcl +

[

Blu

0

]

u+

[

Blw

0

]

w

+

[

Blf

0

]

f, r(t) =
[

HFCw LF

]

Xcl.

Theorem 1. Consider systems (1) and (2), for
given rw > 0, ru > 0, the following conditions are
equivalent:

(1) max
α∈Γ

σ̄w∈Ω1(Frw(jw)) < rw, rw > 0,

max
α∈Γ

σ̄u∈Ω1(Fru(jw)) < ru, ru > 0.

(2) There exist symmetric matrices Xw,i > 0,
Xu,i > 0, such that the following matrix inequali-
ties hold:

[N i
s,t]3×3 < 0, i = 1, . . . , z, (3)

[

N
i
s,t

]

3×3
< 0, i = 1, . . . , z. (4)

Ai =

[

Aw,i 0

BFCw AF

]

, C =

[

CT
wH

T
F

LT
F

]

,

N i
1,1 = AT

i Xw,i +Xw,iAi, N i
2,2 = −rwI,

N i
3,3 = −rwI, N i

1,2 = Xw,i

[

Blw,i

0

]

,

N i
1,3 = C, N i

2,3 = 0.

N
i
1,1 = AT

i Xu,i +Xu,iAi, N
i
2,2 = −ruI,

N
i
3,3 = −ruI, N

i
1,2 = Xu,i

[

Blu,i

0

]

,

N
i
1,3 = C, N

i
2,3 = 0.

(3) There exist V̂ , ÂF , B̂F , HF , L̂F , symmetric
matrices X̂wi, X̂ui, and µ > 0, where the first np

columns of matrix B̂F are zero vectors and

[M i
s,t]5×5 < 0, i = 1, . . . , z, (5)

[

M
i
s,t

]

5×5
< 0, i = 1, . . . , z. (6)

F = θCT
wH

T
F +γL̂T

F , E = V̂ TθAw,iθ
T+ΓTK̂, D =

µ(V̂ + V̂ T), M i
1,1 = D, M i

1,2 = X̂w,i + E , M i
1,3 =

V̂ TθBlw,i, M i
1,5 = µV̂ T, M i

2,2 = −X̂w,i, M i
2,4 =

F , M i
3,3 = −rwI, M i

4,4 = −rwI, M i
5,5 = −X̂w,i,

M
i
1,1 = D, Mi

1,2 = X̂u,i+E , Mi
3,3 = −ruI, M

i
4,4 =

−ruI, M
i
1,3 = V̂ TθBlu,i, M

i
1,5 = µV̂ T, M

i
2,2 =

−X̂u,i, M
i
2,4 = F , M

i
5,5 = −X̂u,i; [M i

s,t,M
i
s,t] =

0, otherwise. And N = np + nw, Γ ,

[IN IN ], K̂ , [B̂F ÂF ], θ ,
[

IN
0N

]

, γ ,
[

0N
IN

]

, V̂ ,
[

V̂1 V̂2
V̂3 V̂3

]

, and AF = ÂF V̂
−T
3 , BF = B̂FC

+
w , HF =

HF , LF = L̂F V̂
−T
3 , C+

w is the generalized inverse
matrix of Cw.

(4) There exist matrices L̂, L̂0, Ĉ, Ĉ0 and sym-
metric matrices Xw,i > 0, Xw0,i > 0, Xu,i >
0, Xu0,i > 0 and

[Hi
s,t]4×4 < 0, i = 1, . . . , z, (7)

[

H
i
s,t

]

4×4
< 0, i = 1, . . . , z. (8)

Ãw,i ,
[

Aw,i 0

0 0

]

, B̃w,i ,
[

Blw,i

0

]

, B̃u,i ,
[

Blu,i

0

]

, C̃w ,
[

−Cw 0

0 −I

]

, L̂ ,
[

0 0

BF AF

]

, Ĉ , [HF LF ];

Jq1,i = (Xq,iÃw,i + ÃT
w,iXq,i) + (Xq0,iXq0,i −

Xq,iXq0,i − Xq0,iXq,i) + C̃T
w (L̂

T
0 L̂0 − L̂T

0 L̂ −

L̂TL̂0)C̃w , q = w, u. Hi
1,1 = Jw1,i, H

i
1,1 =

Ju1,i, H
i
1,2 = Xw,iB̃w,i, H

i
1,2 = Xu,iB̃u,i, Hi

1,3 =

−(ĈC̃w)
T, H

i
1,3 = −(ĈC̃w)

T, Hi
1,4 = (Xw,i −

L̂C̃w)
T, H

i
1,4 = (Xu,i − L̂C̃w)

T, Hi
2,2 = −rwI,

H
i
2,2 = −ruI, H

i
3,3 = −rwI, H

i
3,3 = −ruI, H

i
4,4 =

−I, H
i
4,4 = −I, Hi

s,t = 0, H
i
s,t = 0, otherwise.

Multiply the filter Fm(s) = diag{(s + r)/r,
. . . , (s + r)/r} to y to attain a modified output
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ym(t) = (1rCA+C)x(t)+ 1
rCFaf(t)+(1rCBu)u(t)+

(1rCBw +Dw)w(t). Define a weighting system W2

which has a high pass property with the form of

W2 :
{

ẋh = Ahxh + Bhηm

ηh = Chxh + Dhηm
. Let X∗

cl ,

[

x

xh
xF

]

, then the

composite system dynamic satisfies

Ẋ∗
cl =

[

Af 0

BFChf AF

]

X∗
cl +

[

Bhf

BFDhf

]

f

+P(w, u),

r̂ = HFDhff + Pd(w, u).

(9)

Af ,
[

A 0

BhÎny ( 1
r
CA + C) Ah

]

, Bhf ,
[

Fa
1
r
BhÎnyCFa

]

,

Chf , [DhÎny (C + 1
r
CA) Ch], Dhf , 1

rDhÎny
CFa.

Theorem 2. Assume Eq. (9) is asymptotically
stable, then the following conditions are equiva-
lent:

(1) min
α∈Γ

σf∈Ω2
(Fr̂f (jw)) > rf , rf > 0.

(2) There exists matrix P , that P = PT, such
that the following matrix inequalities hold

[Gi
s,t]2×2 > 0, i = 1, . . . , z. (10)

G11,i , Pf,i

[

Af,i 0

BF Chf,i AF

]

+
[

Af,i 0

BF Chf,i AF

]T

Pf,i +
[

CT
hf,i

HT
F

LT
F

]

[HF Chf,i LF ], G12,i , Pf,i

[

Bhf,i

BF Dhf,i

]

+
[

Chf,i
THT

F
LT
F

]

HFDhf,i, G22,i , Dhf,i
THT

FHFDhf,i −

r2f .

(3) There exist matrices L̂, L̂0, Ĉ, Ĉ0 and sym-
metric matrices Pf,i, Pf0,i such that

[W i
s,t]5×5 > 0, i = 1, . . . , z. (11)

Ãf,i ,
[

Af,i 0

0 0

]

, B̃hf,i ,
[

Bhf,i

0

]

, Ĉ , [HF LF ], C̃f,i

,
[

−Chf,i 0

0 −I

]

, D̃f,i ,
[

Dhf,i

0

]

, L̂ ,
[

0 0

BF AF

]

, Gi
1,1

, (Pf,iÃf,i + ÃT
f,iPf,i)+ (2Pf,iPf0,i +2Pf0,iPf,i −

2Pf0,iPf0,i) + 2C̃T
f,i(Ĉ

T
0 Ĉ + ĈTĈ0 − ĈT

0 Ĉ0)C̃f,i +

C̃T
f,i(L̂

TL̂0 + L̂T
0 L̂ − L̂T

0 L̂0)C̃f,i, Gi
2,2 , −r2fI

+2D̃T
f,i(Ĉ

T
0 Ĉ+ ĈTĈ0− ĈT

0 Ĉ0)D̃f,i+DT
f,i(L̂

TL̂0+

L̂T
0 L̂ − L̂T

0 L̂0)D̃f,i, Gi
1,2 = Pf,iB̃hf,i, Gi

1,3 =

(Pf,i + L̂C̃f,i)
T, Gi

1,4 = Pf,i, Gi
1,5 = (ĈC̃f,i)

T,

Gi
2,4 = −(L̂D̃f,i), Gi

2,5 = (ĈD̃f,i)
T, diag{Gi

3,3,

Gi
4,4, G

i
5,5} = diag{I, I, I};Gi

s,t = 0, otherwise.

Algorithm design of fault detection filter. Let
µ1 > 0, γ̂ > 0, l = 0.

Step 1. Choose a proper large µ > 0; Minimize
αwrw+αuru subject to (5) and (6). The solutions
are denoted as Aopt

F , Bopt
F , Lopt

F , Hopt
F .

Step 2. (a) Substitute Aopt
F , Bopt

F , Lopt
F , Hopt

F into
(3), (4) and (10), minimize αwrw + αuru. De-
note the solution as P opt

f,i , X
opt
w,i , X

opt
u,i , i = 1, . . . , z,

roptw , roptu . And L̂opt, Ĉopt can be attained. De-
fine r0w = roptw , Ĉ0 = Ĉopt, L̂0 = L̂opt,
P 0
f,i = P opt

f,i , X
0
w,i = Xopt

w,i , X0
u,i = Xopt

u,i , i =

1, . . . , z. (b) Put l = l + 1, with rlw :=
rl−1
w + µ1, Ĉ0 := Ĉl−1, L̂0 := L̂l−1, Pf0,i :=
P l−1
f,i , Xw0,i := X l−1

w,i , Xu0,i := X l−1
u,i , i = 1, . . . , z,

maximize rf subject to (7), (8) and (11) and

store rlf , r
l
f/r

l
w, L̂

l, Ĉl, X l
w,i, X

l
u,i, P

l
f,i, i = 1, . . . , z.

(c) If rlf/r
l
w < γ̂, repeat Step 2(b); Else, exit.

Step 3. Derive AF , BF , LF , HF from L̂l, Ĉl; With
AF , BF , LF , HF , minimize ru subject to (4); rf =
rlf , rw = rlw.
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