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Optimal feedback design of dynamical systems is a
significant topic in automatic control community
and information science. As for nonlinear systems,
optimal control design always leads to coping with
the nonlinear Hamilton-Jacobi-Bellman equation.
Nevertheless, it is intractable to acquire the an-
alytic solution of the nonlinear Hamilton-Jacobi-
Bellman equation for general nonlinear systems.
As a result, some promising iterative methods have
been established to deal with the optimal control
problems in recent years. Among them, adap-
tive/approximate dynamic programming [1] is re-
garded as a typical method for designing optimal
control adaptively and forward-in-time [2, 3]. In
the last two decades, the methodology of adap-
tive/approximate dynamic programming has pro-
gressed significantly in the aspect of optimal con-
trol for complex nonlinear systems [4–7]. This con-
siderably promotes the development of the adap-
tive critic control designs of complex nonlinear sys-
tems. However, the traditional adaptive critic con-
trol design always depends on the choice of an ini-
tial stabilizing control, which is considerably diffi-
cult to determine in control practices. This high-
light focuses on developing nonlinear adaptive op-

timal regulators through an improved neural learn-
ing mechanism. In this highlight, R stands for
the set of all real numbers. R

n is the Euclidean
space of all n-dimensional real vectors. R

n×m is
the space of all n × m real matrices. Let Ω be
a compact subset of Rn and A (Ω) be the set of
admissible control laws on Ω. Superscript “T” is
considered for representing the transpose opera-
tion and ∇(·) , ∂(·)/∂x is employed to denote the
gradient operator.

Problem description. Consider a class of nonlin-
ear continuous-time systems described by

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x(t) ∈ Ω ⊂ R
n is the state vector, u(t) ∈

Ωu ⊂ R
m is the control vector, and system func-

tions f(·) and g(·) are differentiable in the argu-
ments satisfying f(0) = 0. We let the initial state
at t = 0 be x(0) = x0 and x = 0 be the equilibrium
point of the controlled plant. The internal system
function f(x) is assumed Lipschitz continuous on
a set Ω in R

n and containing the origin. Generally,
the nonlinear plant (1) is assumed controllable.

For designing an infinite horizon optimal feed-
back control law u(x), we let Q(x) > 0 for any
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x 6= 0 and Q(0) = 0, let R ∈ R
m×m be a pos-

itive definite matrix with appropriate dimension,
use U(x(τ), u(τ)) = Q(x(τ))+uT(τ)Ru(τ) to rep-
resent the utility function, and then define the in-
finite horizon cost function as

J(x(t), u) =

∫ ∞

t

U(x(τ), u(τ))dτ. (2)

For simplicity, cost J(x(t), u) is often written as
J(x(t)) or J(x) in the sequel. Our concern is al-
ways the cost function starting from t = 0, which
is denoted as J(x(0)) = J(x0). For an admissi-
ble control law u ∈ A (Ω), if the cost function (2)
with respect to it is continuously differentiable, the
related infinitesimal version is the nonlinear Lya-
punov equation:

0 = U(x, u) + (∇J(x))T[f(x) + g(x)u], J(0) = 0.

Define the Hamiltonian of system (1) as

H(x,u,∇J(x))=U(x, u)+(∇J(x))T[f(x)+g(x)u].

In light of Bellman’s optimality principle, the op-
timal cost function J∗(x), specifically defined as

J∗(x) = min
u∈A (Ω)

∫ ∞

t

U(x(τ), u(τ))dτ,

ensures the Hamilton-Jacobi-Bellman equation

min
u

H(x, u,∇J∗(x)) = 0

holds. Based on optimal control theory, the opti-
mal feedback control law is formulated as follows:

u∗(x) = argmin
u

H(x, u,∇J∗(x))

= −
1

2
R−1gT(x)∇J∗(x). (3)

Using the optimal feedback control expression (3),
the Hamilton-Jacobi-Bellman equation turns to be

0 = U(x, u∗) + (∇J∗(x))T[f(x) + g(x)u∗]. (4)

Note that Eq. (4) is actuallyH(x, u∗,∇J∗(x)) = 0
and it is difficult to get the solution of J∗(x) in
theory. Hence, obtaining the optimal control law
(3) for general nonlinear systems is not easy. This
inspired us to devise an approximate control strat-
egy to overcome the difficulty mentioned below.

Design method. The major contribution of this
highlight lies in that it constructs a simple rein-
forced structure to achieve the nonlinear optimal
regulation design adaptively, without requiring the
initial stabilizing controller.

By incorporating a neural network architecture,
the adaptive-critic-based design provides an im-
portant idea to approximate the optimal controller

of general nonlinear systems [1–3,5,6]. During the
neural network implementation, we denote lc as
the number of neurons in the hidden layer. Con-
sidering the universal approximation property, the
optimal cost function J∗(x) can be expressed by
a neural network with a single hidden layer on a
compact set Ω as J∗(x) = ωT

c
σc(x) + εc(x), where

ωc ∈ R
lc is the ideal weight vector being upper

bounded, σc(x) ∈ R
lc is the activation function,

and εc(x) ∈ R is the reconstruction error. As the
ideal weight is unknown, a critic neural network is
developed to approximate the optimal cost func-
tion as Ĵ∗(x) = ω̂T

c σc(x), where ω̂c ∈ R
lc denotes

the estimated weight vector. Then, we derive the
gradient vector as ∇Ĵ∗(x) = (∇σc(x))

Tω̂c. The
approximate optimal feedback control law is

û∗(x) = −
1

2
R−1gT(x)(∇σc(x))

Tω̂c. (5)

Then, the approximate Hamiltonian is written as

Ĥ(x, û∗(x),∇Ĵ∗(x))

= U(x, û∗(x))+ω̂T
c
∇σc(x)[f(x)+g(x)û∗(x)]. (6)

Owing to the fact that H(x, u∗,∇J∗(x)) = 0, we
acquire ec=Ĥ(x, û∗(x),∇Ĵ∗(x)). Clearly, we have

∂ec
∂ω̂c

= ∇σc(x)[f(x) + g(x)û∗(x)] , φ, (7)

where φ ∈ R
lc and the set composed of elements

φ1, φ2, . . . , φlc is linearly independent.
We train the critic network to minimize the ob-

jective function Ec = 0.5e2c. Traditionally, based
on (6) and (7), we can employ the normalized
steepest descent algorithm

´̂ωc = −αc

1

(1 + φTφ)2

(

∂Ec

∂ω̂c

)

= −αc

ec
(1 + φTφ)2

φ

to adjust the weight vector, where αc > 0 rep-
resents the learning rate to be designed, and
(1+φTφ)2 is implemented for normalization. Note
that in this design technique, we should choose a
specified weight vector to create an initial stabiliz-
ing control law and then start the training process.
Therefore, in this highlight, we introduce an ad-
ditional Lyapunov function Js(x) to improve the
critic learning mechanism and adopt it to facilitate
updating the critic weight in a novel manner.

Now, we observe the feedback control law (5)
and derive a gradient descent operation as

−
∂
[

(∇Js(x))
T(f(x) + g(x)û∗(x))

]

∂ω̂c

=
1

2
∇σc(x)g(x)R

−1gT(x)∇Js(x).
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The importance of this calculation is emphasized
later. When applying the approximate optimal
control (5) to the controlled plant, in order to
exclude the case that the closed-loop system is
unstable, i.e., (∇Js(x))

T[f(x) + g(x)û∗(x)] > 0,
we introduce an additional term to reinforce the
training process by adjusting the time derivative
of Js(x) in the negative gradient direction. There-
fore, the improved critic learning rule of this high-
light is developed by an additive structure,

˙̂ωc =− αc

φ

(1 + φTφ)2
ec

+
1

2
αs∇σc(x)g(x)R

−1gT(x)∇Js(x), (8)

where αs > 0 is the designed constant with respect
to the additional stabilizing term. This parameter
affects the extent of criterion improvement and can
be determined by control practitioners. With two
adjustable learning rates αc and αs, the designers
can conduct more practical control tasks in light
of their engineering experience and intuition. Note
that as a special case of adaptive control, for the
type of adaptive critic design, the persistence of
excitation assumption is still required because we
intend to identify the parameter of the critic net-
work to approximate the optimal cost function.

The learning rule given in (8) stands for an
efficient improvement to the traditional criterion
used in [2, 6] and the updated criterion proposed
in [4]. The primary property lies in that it reduces
the need of an originally stabilizing control law.
Consequently, the weight vector of the critic net-
work can be initialized as zero when running the
control algorithm. Additionally, it can be used
to improve the learning criterion for event-based
adaptive critic control and distributed control de-
signs [8, 9]. As Werbos pointed out, adaptive dy-
namic programming may be the only approach to
be able to achieve truly brain-like intelligence [1].
The novel strategy developed in this highlight is
beneficial to promote the development of adaptive
critic control methods, particularly with an opti-
mality [3, 5] and robustness guarantee [6, 7, 9] and
the construction of higher level learning and intel-
ligent systems [1, 3, 10]. In future, we intend to
obtain solutions to dynamic programming with a

manageable amount of computation and commu-
nication as well as an inclusive guarantee of adap-
tivity, optimality, and robustness.
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