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Abstract Detecting protein complexes is crucial to understand principles of cellular organization. Plenty

evidences have indicated that sub-graphs with high density in protein-protein interaction (PPI) network, espe-

cially dynamic PPI network (DPIN), usually correspond to protein complexes. As a well-known density-based

clustering algorithm, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) has been used in

many areas due to its simplicity and the ability to detect clusters of different sizes and shapes. However, one of

its limitations is that the performance of DBSCAN depends on two specified parameters ε and MinPts, where ε

represents the maximum radius of a neighborhood from an observing point while MinPts means the minimum

number of data points contained in such a neighborhood. In this article, we develop a new method named as

P-DBSCAN to detect protein complexes in DPIN by using Pigeon-Inspired Optimization (PIO) Algorithm to

optimize the parameters ε and MinPts in DBSCAN. The experiments on DIP and MIPS datasets show that

P-DBSCAN outperforms the state-of-the-art methods for protein complex detection in terms of several criteria

such as precision, recall and f-measure.
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1 Introduction

It is well known that proteins are involved in biological process in the form of protein complexes. There-

fore, identifying protein complexes is important in understanding the cellular organizations and func-

tional mechanisms. However, the experimental methods to discover protein complexes are costly and

time-consuming. Fortunately, with the development of high throughput techniques such as yeast-two-

hybrid [1] and proteome chips technologies [2], a large amount of protein-protein interaction (PPI) data

such as DIP [3], MIPS [4] and SGD [5] have been generated and stored in public biological databases,

which has greatly promoted the development of the computational methods for protein complex identifica-

tion. However, due to the time-sensitivity of biological functions, there are vast amount of false-positives
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exiting in the currently available PPI data [6]. Then, a lot of researchers analyze the PPI data combined

with dynamic gene expression profiles [7] which creates Dynamic PPI Network (DPIN). Though protein

complexes can be viewed as clusters in PPI networks, the traditional clustering methods do not perform

so well in detecting protein complexes due to the topological characteristics of small-world and scale-free

properties of PPI networks [8, 9]. Dense subgraphs in PPI networks generally correspond to protein

complexes [10]. Thus, a series of protein complex detection methods emerged based on mining dense

sub-graphs in PPI networks and namely density-based methods.

In recent years, some advanced density-based methods which detect protein complexes based on de-

tecting cliques or dense subgraphs are sprung up continually. In 2005, Palla et al. [11] proposed the

CPM algorithm, which mined adjacent k-cliques chains as protein complexes. In 2006, Adamcsek [12]

developed a software package named CFinder, based on CPM. And at the same year, Altaf-ul-Admin [13]

proposed the DPClus algorithm, which could detect overlapping modules by extending the neighbor nodes

of function modules. IPCA [14] and SPICi [15] were proposed respectively in 2008 and 2010, and they are

all seed-expanding methods, which identifies protein complexes by expanding seeds to density clusters by

recursively adding the qualifying neighbours. In 2009, CMC [16] and COACH [17] were proposed. CMC

algorithm first generated a weighted PPI network by an iterative scoring method and then identified

protein complexes by removing or merging highly overlapped maximal cliques of this weighted PPI net-

work based on their interconnectivity. COACH algorithm first mined dense sub-graphs as complex cores

and then identified protein complex with its core and attachments separately. In 2010, Wang et al. [18]

proposed CP-DR which modified CPM by adding distance restriction. Although the above methods were

shown to effectively identify protein complexes, their results are sensitive to noisy data, which is still a

challenge we have to face.

Density-Based Spatial Clustering of Applications with Noise(DBSCAN) proposed by Ester [19] imple-

mented the density-based strategy with the considerations of noises in network data. It can efficiently

discover the clusters with arbitrary size, shape and number in a large dataset. It is noise tolerant and

independent of ordering of data objects. However, it needs two input parameters, ε—the radius of neigh-

borhood and MinPts—the density threshold, which are domain specific and thus hard to be determined.

Furthermore, DBSCAN uses the same global static parameters, which is not conducive to cluster data

of varying densities. In this paper, we proposed a novel algorithm which employed Pigeon-Inspired Op-

timization Algorithm (PIO) [20], a swarm intelligence optimization algorithm, to adaptively determine

two parameters of DBSCAN in every sub-network of DPIN according to the density based clustering

algorithm.

Swarm intelligence optimization algorithms are commonly used to solve optimization problems by

simulating the collective behavior of social insects. Their applications in detecting protein complexes are

mainly divided into two directions. One is to imitate the intelligent behavior and set up corresponding

clustering model, such as Bacteria Foraging Optimization (BFO) clustering model [21], PMABC-ACE

clustering model [22] and predicting protein backbone based on Ant Colony Optimization Algorithm [23].

BFO clustering model is based on BFO mechanism and intuitionistic fuzzy set while PMABC-ACE is

based on the propagating mechanism of artificial bee colony. The other one is to optimize the parameters

of the clustering methods. Such as in 2014, Lei et al. [24] proposed F-MCL clustering model which

automatically adjusts the parameters of Markov clustering method by using Firefly algorithm. In 2015,

Lei et al. [25] proposed the ISHC clustering method by adopting the firefly algorithm to automatically

determine the optimal threshold of the neighborhood radius of synchronization.

PIO algorithm is a novel swarm intelligence optimization algorithm, which was firstly proposed by

Duan in 2014 [20]. Motivated by the homing characteristics of pigeons, two operators (map and compass

operator and landmark operator) are designed. PIO algorithm was proven to be a worthy competitor to

its well-known rivals [20], and widely applied to many fields such as constraining gliding trajectories [26],

target detection approach for UAVs [27] and Proportion-Integral-Derivative (PID) controller design [28].

In this paper, we proposed a new method named P-DBSCAN which combines DBSCAN and PIO algo-

rithm, for addressing the shortcoming of DBSCAN such as the difficulties of determining the parameters

and the unreasonable strategy of using a set of global static parameters for a large varying dense database.
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In a large DPIN network, we use PIO to optimize ε—the radius of neighborhood andMinPts—the density

threshold in every sub-network. At last we checked the quality of every cluster and chose the optimal

cluster results. For testing the performance of our algorithm, we compared P-DBSCAN with density

based clustering methods such as DBSCAN [19], CFinder [12], DPClus [13], CMC [16], COACH [17],

HC-PIN [29] as well as with traditional clustering methods such as MCL [30], F-MCL [24], RNSC [31].

The rest of the paper is organized as follows. In Section 2, after reviewing the PIO algorithm, basic

DBSCAN and improved DBSCAN, our proposed P-DBSCAN are presented. In Section 3, experiment

results and analysis are described and discussed. Section 4 is with the concluding remarks.

2 Method

2.1 Pigeon-inspired optimization algorithm

The homing pigeon has an inborn homing ability to find its way home over extremely long distances by

using three homing tools: magnetic field, sun and landmarks. Inspired by the above homing behaviors

of pigeons, a novel bio-inspired swarm intelligence optimizer which is named PIO has been proposed in

2014 [20]. In order to idealize some of the homing characteristics of pigeons, two operators are designed

according to some rules. The map and compass operator model is presented based on magnetic field and

sun while the landmark operator model is designed based on landmarks.

(1) Map and compass operator. In the map and compass operator, computer-generated pigeons are

used. The position and the velocity of pigeon i can be denoted by Xi and Vi, which will update in each

iteration in a d-dimensional search space. The new position and velocity of pigeon i at the tth iteration

can be obtained [20] as

Vi(t) = Vi(t− 1) · e−RT + rand · (Xg −Xi(t− 1)), (1)

Xi(t) = Xi(t− 1) + Vi(t), (2)

where R is the map and compass factor, rand is a random number generated from the uniform distribution

on [0,1]. Xg is the current global best position which can be calculated by comparing all the positions

among the whole swarm.

(2) Landmark operator. In the landmark operator, we assume the pigeons are still distant from the

destination, and obviously they are unfamiliar to the landmarks. All pigeons are ranked according their

fitness values. Then half of pigeons (Np/2) is decreased according to

Np(t) =
Np(t− 1)

2
. (3)

We then find the central pigeon from the kept pigeons at the tth iteration, whose position (Xc) is the

desirable destination. This can be described by (4). The new position of other pigeons can be calculated

by (5).

Xc(t) =

∑
Xi(t) · fitness(Xi(t))

Np

∑
fitness(Xi(t))

, (4)

Xi(t) = Xi(t− 1) + rand · (Xc(t)−Xi(t− 1)), (5)

where fitness(Xi(t)) is the fitness value of the each pigeon in the swarm. For the minimum optimization

problems, we can choose fitness(Xi(t)) =
1

fmin(Xi(t))+δ where δ is a small positive number. For maximum

optimization problems, we can choose fitness(Xi(t)) = fmax(Xi(t)).

2.2 DBSCAN and the application in PPI network of its improved version

2.2.1 Basic DBSCAN algorithm

DBSCAN, introduced by Ester et al. [19], is a clustering algorithm based on dense area for spatial

datasets. It assumes that a cluster is a region in the data space with a high density, separated by regions
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of low density in the data space. For each object in the dataset, the algorithm evaluates the number

of neighbours that an object has by counting the number of objects that are within a proximity radius

(minimum ε), specified as an input parameter of the algorithm. Based on this calculation, each object

is labelled core, border or noise according to its number of neighbours. If a given object has more

neighbours than a threshold value (MinPts), it is classified as core. All objects reachable from it, either

directly (direct neighbours) or indirectly (neighbours of neighbours), are classified as border. All other

objects, not reachable from any core, are classified as noise. DBSCAN starts with an arbitrary object P

in data set D and retrieves all objects in D density-reachable from P with respect to ε and MinPts. If P

is a core object, this procedure yields a cluster with respect to ε and MinPts. If P is a border object, no

objects are density-reachable from P and P is assigned to noise temporarily. The algorithm ends with

unvisited objects in the data set D.

DBSCAN is popular because of its capability of discovering clusters with arbitrary shapes without any

preliminary information about the groups present in a dataset. What’s more, DBSCAN can deal with the

noise nodes and is insensitive to noise and does not need the number of clusters as input parameter and

independent of ordering of data objects. In DBSCAN, the cluster number is derived from the parameters

ε and MinPts which also define the density of the clusters to be found. However, there are also some

limitations of DBSCAN. Firstly, the performance of clustering depends on two specified parameters.

One is the maximum radius of a neighborhood from the observing point and the other is the minimum

number of data points contained in such a neighborhood. It is difficult to estimate appropriate values of

these two parameters for various datasets without enough prior knowledge. If the selection of parameters

is inappropriate, it will affect the clustering results. Secondly, adjacent clusters of different densities

cannot be properly identified due to the use of the global density parameters. The clustering of different

data space needs different local density parameters, and the global parameters cannot portray the inner

clustering structure very well. Thirdly, there is no overlap between two different clusters, so DBSCAN

cannot be used to detect overlapping clusters.

2.2.2 Application of DBSCAN to PPI networks

In PPI networks, we cannot directly calculate the distance between two proteins by Euclidean distance.

Therefore we introduce two properties about modularity analysis in PPI networks, node clustering coef-

ficient and edge clustering coefficient.

The node clustering coefficient (NCC) [32] of node v is defined as

NCC(v) =
2nv

kv(kv − 1)
. (6)

In this coefficient, kv is the degree of node v, nv is the number of links connecting the kv neighbors of

node v to each other which indicates the number of triangles that pass through node v, and kv(kv−1)
2

is the total number of triangles that could pass through node v. The clustering coefficient reflects the

degree of aggregation of nodes in the network.

The edge clustering coefficient (ECC) [33] of edge (vi, vj) is defined as

ECC(vi, vj) =
z(vi, vj)

min(di−1, dj−1)
. (7)

where z(vi, vj) stands for the number of triangles which include the edge (vi, vj), and min(di − 1, dj −
1) represents the maximum number of triangles that may contain edge (vi, vj). The edge clustering

coefficient, ECC, which describes the similarity of nodes vi and vj . The higher the value is, the larger

the probability that nodes vi and vj belong to the same protein complex is.

In the basic DBSCAN algorithm, the definition of core points simply depends on the degree. However,

it’s not enough for complex PPI networks because the clustering coefficient of a vertex in a graph measures

the extent of the interconnectivity between the direct neighbors of the vertex. Generally, the clustering

coefficient of vi not only measures the local connectivity around this vertex, but also characterizes the
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Table 1 The corresponding relationships between DBSCAN and PIO algorithms

The PIO algorithm The clustering process of DBSCAN

The abscissa of pigeons’ position The value of parameter ε

The ordinate of pigeons’ position The value of parameter MinPts

The quality of the pigeon individual The clustering result of P-DBSCAN

Pigeon adjust its flying direction by following the specific pigeon Searching for the optimal value of two parameters

The destination of pigeon The best clustering result of DBSCAN

Table 2 The symbols and their meanings in the algorithm of P-DBSCAN

Symbol maxiter xi N bestx

Meaning Maximal iterations of external loop Location of pigeon i The number of pigeons Optimal pigeon

Symbol maxiter1 vi xc minε

Meaning Maximal number of compass operator Speed of pigeon i Location of center pigeon Minimum of ε

Symbol ECC minMinPts t maxε

Meaning Clustering coefficient of edge Minimum of MinPts Iterations of external loop Maximum of ε

Symbol NCC maxMinPts R bestf

Meaning Clustering coefficient of node Maximum of MinPts Map and compass factor Optimal value

Symbol ε bestcluster MinPts

Meaning The radius of neighborhood Optimal cluster result The density threshold

effect of the node vi [34]. So, we redefine the core point as a point p whose ε-neighborhood contains at

least MinPts points and node clustering coefficient is greater than zero.

The DBSCAN algorithm needs to calculate the distance between any two points. However, in some

PPI networks, such as DIP, DPIN are still unweighted. Then we use the aggregation coefficient of edge

to be the weight of interactions. Thus the ε-neighborhood of a point can be redefined as the adjoining

points whose value of ECC is larger than the parameter ε.

2.3 P-DBSCAN algorithm and code design

To overcome the defects of DBSCAN, we proposed a new clustering model by combining with PIO algo-

rithm, named P-DBSCAN, to detect the protein complexes in PPI networks. In our proposed algorithm,

to address the main limitation of DBSCAN that the appropriate values of parameters are difficult to be

obtained, we introduced PIO into DBSCAN in order to find a pair of suitable parameters for getting

better clustering results. Firstly, we set parameter ε as the abscissa of the location of pigeons and MinPts

as the ordinate of the location of pigeons. We also respectively set the range for these two parameters

and randomly locate pigeons in this area. Each paired value (ε, MinPts) is a pigeon’s position. Then

we calculate every pigeon’s fitness by using DBSCAN with parameters ε and MinPts. After finishing the

DBSCAN clustering process, an f-measure is received which is the fitness of pigeon, and will be intro-

duced in Subsection 3.1. After all pigeons’ fitness has been calculated, we get the relative attractiveness.

Then we constantly update all pigeons’ positions and calculate the fitness according to the map and

compass operator. The iteration number meets the specified value for the map and compass operator, we

continue to update all pigeons’ positions and calculate the fitness according to the landmark operator.

This process terminates and outputs the clustering result when the iteration number reaches the specified

value for the process of landmark operator. The global best pigeon’s location is the parameters that we

use to get clustering at last and the parameters also correspond to the best clustering result.

To address the second limitation of DBSCAN that it is not reasonable to use global parameters in a large

dataset, we set up dynamic model (defined in Subsection 3.2) which divides the whole PPI network into

several smaller sub-networks, each for a dynamic time point. Then we find the best parameters obtained

by PIO algorithm in different sub-networks. Although it cannot completely avoid the irrationality of
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global parameters, it effectively attenuates this defect.

To address the third limitation that DBSCAN cannot detect the overlapping clusters, we make the

following changes on the DBSCAN. If protein a is a border point, and node a not only connects with core

node b but also with core node c which does not belong to the same cluster with b, we allow that node a

not only belongs to the cluster b but also to the cluster c. Then the improved DBSCAN algorithm can

detect the protein complexes with overlaps.

The corresponding relationships between DBSCAN and PIO are showed in Table 1.

Algorithm 1 P-DBSCAN

The meanings of the symbols in Table 2.
Input: DIP dataset;

Initialization: calculate the NCC of every protein node, ECC of every edge, randomly set the location of N pigeons

abscissa between minε and maxε, ordinate between minMinPts and maxMinPts ;

1: while t � maxiter do

2: if t � maxiter1 then

3: each pigeon represents a pair of value of ε and MinPts;

4: for i = 1 to N do

5: new DBSCAN(εi,MinPtsi);

6: calculate the f −measure and return it as the fitness of pigeon;

7: end for

8: record the optimal value bestf, the best pigeon’s location bestx and the bestcluster;

9: for i = 1 to N do

10: vi(t)=vi(t − 1) · e−RT + rand · (bestx− xi(t− 1));

11: xi(t)=xi(t − 1) + vi(t);

12: end for

13: t = t+ 1;

14: else

15: if N > 1 then

16: calculate the fitness of every pigeon and rank them according their fitness value;

17: record the optimal value bestf, the best pigeon’s location bestx and the bestcluster;

18: N=N
2
;

19: the half of pigeons which have a lower fitness value are removed;

20: for i = 1 to N do

21: xi(t)=
∑

xi(t)·fitness(xi(t))
N·∑ fitness(xi(t))

;

22: caculate the position of the central pigeon;

23: xi(t)=xi(t − 1) + rand · (xi(t) − xi(t− 1));

24: end for

25: end if

26: t = t+ 1;

27: end if

28: end while

Output: the optimal clustering result bestcluster

3 Experimental simulation and analysis

The operating environment of simulation experiment in this paper is: Windows 7 operating system, the

double cores of Intel TM, the physical memory is 4 GB, the speed of processor is 3.1 GHz. The algorithm

is run on the software Matlab R2011b.

3.1 Evaluating criteria of cluster results

Usually, clustering results are evaluated in terms of precision, recall, and f-measure. Precision [35] is the

ratio of the maximal number of common nodes in both experimental results and the standard dataset to

the number of nodes in experimental results. Recall [35], also termed the true positive rate or sensitivity,

is the ratio of the number of proteins in both experimental results and standard dataset to the number

of proteins in the standard dataset.

Given a clustering result c = c1, c2, . . . , ck which is generated by the algorithm, and the standard

clusters S = s1, s2, . . . , sl, for any predicted cluster ci and known cluster sj , the overlap score OS [36] is
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defined as

OS(ci, sj) =
|ci ∩ sj |2
|ci| × |sj | , (8)

where | ∗ | is the cardinality of the set ∗. The bigger the value of OS(ci, sj) is, the more possible two

clusters ci and sj are matched, and the more accurate predicted cluster ci for sj is. If it is bigger than a

user-specified threshold, we can say that they are matched. Usually we set the threshold as 0.2 [36]. If

OS(ci, sj) = 1, they are perfectly matched.

For the entire clustering result C which contains all clusters whose OS is bigger than the threshold,

we calculate the precision, recall and f-measure by the following formula:

precision =
|C ∩ S|
|C| , (9)

recall =
|C ∩ S|
|S| . (10)

In general, a large module has the higher recall value, while a smaller module has higher precision.

Therefore, in order to balance the precision and recall values, we can define the f-measure [35] value as

f-measure =
2(precision · recall)
precision + recall

. (11)

3.2 Dynamic model construction

In recent years, researchers have tried to inject dynamic information into static PPI networks. The three-

sigma method [36] is a successful example. The three-sigma method identifies active time points of each

protein in a cellular cycle, where three-sigma principle is used to compute an active threshold for each

gene according to its dynamic (time-series) expression profile.

Let EVi(p) be the expression value of gene p at time point i, μ(p) be the algorithmic mean of its

expression values over time points 1 to n and σ2(p) be the standard deviation of its expression values.

μ(p) =
Σn

i=1EVi(p)

n
, (12)

σ2(p) =
Σn

i=1(EVi(p)− μ(p))2

n− 1
, (13)

F (p) =
1

1 + σ2(p)
. (14)

F (p) can reflect the fluctuation of the expression curve of gene p. It is clear that the higher σ2(p) is,

the smaller F is. The value range of F is from 0 to 1.

A protein is considered to be active at the time points with expression values that are above or equal

to its active threshold, denoted as Active Th(p). For gene p, its active threshold can be calculated by

using the three-sigma method as follows:

Active Th(p) = S1(p)× F (p) + S2(p)× (1 − F (p)) = μ(p) + 3σ(p)(1− F (p)), (15)

where S1(p) = μ(p) and S2(p) = μ(p) + 3σ(p).

Then we can use the Active Th to identify the active time points of proteins and construct a DPIN.

In the DPIN, there is a sub-network at each time point, such as the DPIN model in [36], which divides

the static PPI network into n sub-networks according to n time points.

3.3 Experimental result analysis

3.3.1 Experimental datasets

In this paper, we use the unweighted PPI data of S.cerevisiae from DIP database (version DIP 20140427) [3]

and weighted PPI data from MIPS database [4] to investigate the performance of our algorithm. The
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Table 3 The number of proteins and interactions in each sub-network of the DPIN contains

Timestamps 1 2 3 4 5 6

Proteins 797 941 796 623 610 530

Interations 981 1444 1188 745 750 646

Timestamps 7 8 9 10 11 12

Proteins 493 944 1090 591 661 461

Interactions 573 1705 2185 856 974 526

Table 4 General properties of the gold standard protein complexes

Datasets � Complexes Protein coverage Max size Overlapping complex pairs Avg size Min size

CYC2008 408 1628 81 151 4.71 2

MIPS 162 1171 95 401 14.93 4
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Figure 1 Performance of DBSCAN on protein complex detection with different values of ε and MinPts.

static unweighted DIP contains 4995 proteins and 21554 interactions after removing self-interactions and

repeated ones. The average degree is 8.6268. The static MIPS dataset consists of 1376 proteins and 6880

interactions.

Then we download dynamic gene expression data set GSE3431 about the yeast metabolic cycle from

GEO dataset [37]. This dataset includes 6777 genes that cover 95% proteins in the static DIP network. By

using methods for construction, we get the DPIN of DIP which contains 12 static PPI sub-networks [24]

at 12 time points. Different sub-networks have different scales, shown in Table 3.

Two benchmark complex sets which are respectively derived from CYC2008 [38] and MIPS [39] are

chosen as our gold standard. The general properties of them are shown in Table 4.

3.3.2 Parameter selection

In P-DBSCAN algorithm, the parameters are the maximum values of ε and minimum value of MinPts,

which are also the domain of pegions’ position. The codomain of ε is from 0 to 1. If the values of ε

and MinPts are too large, there is no meaningful cluster that satisfies the P-DBSCAN algorithm. For

example, when we set ε to 0.95, MinPts to 8, there is no meaningful cluster that can be identified from the

DIP network. On the other hand, if the values of two parameters are too small, the cluster will include

too many proteins and the precision of clusters is very low. So the setting of these two parameters directly

influence the performance of P-DBSCAN. In this article, the maximum value of ε and minimum value of

MinPts are set according to Figure 1 for DIP database. The x-axis denotes the values of ε which range

from 0 to 1, the y-axis denotes the values of MinPts which range from 0 to 10, and the z-axis denotes

the values of f-measure which are computed from DBSCAN by the corresponding parameters of ε and

MinPts. The colour of this figure changes from dark grey to light grey as the f-measure increases. When

the value of f-measure is very low, the corresponding area is dark grey. The dark grey changes to light
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Table 5 The parameters’ setting of each algorithm on DIP and MIPS datasets

Algorithms Parameters DIP MIPS

CMC Overlap threshold, Merge threshold, min size 0.8, 0.2, 4 0.5, 0.15, 20

CFinder K-clique template 4 4

RNSC Shuffling diversification length, 9 9

Diversification frequency, Experiments number, 20, 3 20, 3

Naive stopping tolerance, Scaled stopping tolerance, 20, 5 20, 5

Tabu length, Tabu tolerance 10, 1 100, 5

MCL Inflation 2.0 2.3

F-MCL Population size, iteration count, step length, 5, 5, 0.05 5, 5, 0.05

Light absorption coefficient, maximal attractiveness 1.0, 1.0 1.0, 1.0

COACH omega 0.225

HC-PIN lamada, min size 0.5, 2 0.5, 2

DPClus cp value, density value 0.8, 0.5

DBSCAN ε, MinPts 0.5, 4 0.3, 4

P-DBSCAN Min ε, Max ε, Min MinPts, Max MinPts, 0.2, 0.9, 2, 8 0.2, 0.7, 2, 8

R, Pig N, Iter1, Iter2 0.3, 5, 30, 20 0.3, 10, 30, 20
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Figure 2 The convergence curves of P-DBSCAN algorithm operated for four sub-networks of dynamic DIP database.

grey, when the f-measure becomes larger. From Figure 1, we observe that the f-measure increases initially

as the value of ε (or MinPts) increases and decreases after reaching the maximum for a fixed value of

MinPts (or ε). Then we chose the area of light grey as the pegions’ location in P-DBSCAN. Overall,

we find that the optimal values of ε ∈ [0.2, 0.9] and MinPts ∈ [2, 8] . So the Min ε = 0.2, Max ε = 0.9,

Min MinPts = 2 and Max MinPts = 8.

The rest of the parameters of DBSCAN and P-DBSCAN are set as in Table 5. In Table 5, the radius of

neighborhood ε and the radius of neighborhood MinPts in DBSCAN algorithm are set according to [19].

In P-DBSCAN, the map and compass factor R, the number of pigeon pig-N, the interactions of map

and compass operator Iter1 and the interactions of mark operator Iter2 are set according to [20]. The

optimal parameters of comparative algorithms on two different test data sets are listed in Table 5.

3.3.3 Parameter optimization process

In this section, we show the parameter optimization process and the optimal parameters based on DIP

database. As pigeons’ location in P-DBSCAN algorithm changes, the performance of clustering is also

constantly changing. As shown in Figure 2, with the increasing of the number of iterations, a pigeon

constantly updates its position and the performance of clustering get better and better. At last, when the

pigeon finds its destination, the performance of clustering also achieves the best. The most appropriate
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Table 6 The value of parameters, precision, recall, and f measure corresponding to the best clustering in every sub-network

of DIP

Timestamps 1 2 3 4 5 6

ε 0.5595 0.6654 0.5669 0.6322 0.6843 0.6364

MinPts 4 2 4 2 2 3

precision 0.7391 0.7671 0.7467 0.8276 0.7317 0.7872

recall 0.6415 0.5545 0.5385 0.6761 0.5882 0.4512

f measure 0.6869 0.6437 0.6257 0.7442 0.6522 0.5736

Timestamps 7 8 9 10 11 12

ε 0.4793 0.5809 0.5123 0.5486 0.2436 0.6521

MinPts 3 4 5 2 3 3

precision 0.5490 0.6311 0.6259 0.6364 0.6842 0.6744

recall 0.5714 0.7196 0.5823 0.7206 0.6964 0.6098

f measure 0.5600 0.6725 0.6033 0.6759 0.6842 0.6472

Table 7 The analysis of seven protein complexes in clustering result of dynamic DIP database

Serial Real complexes DBSCAN DBSCAN P-DBSCAN P-DBSCAN

number contained proteins correct proteins wrong proteins correct proteins wrong proteins

1 YBL037W YJR005W YBL037W YJR005W YBL037W YJR005W

YJR058C YNR056C YJR058C YNR056C YMR119W YJR058C YNR056C

2 YGL153W YLR191W YGL153W YLR191W YGL153W YLR191W

YNL214W YNL214W YNL214W YAR042W

3 YGL075C YLR457C YGL075C YLR457C YHL006C YGL075C YLR457C

YPL255W YPL255W YLR392C YPL255W YLR392C

4 YBR103W YCR033W YBR103W YCR033W YBR103W YCR033W

YGL194C YIL112W YGL194C YIL112W YMR173C YGL194C YIL112W

YKR029C YDR155C YKR029C

YOL068C

5 YBR102C YER008C YBR102C YER008C YBR102C YER008C

YIL068C YJL085W YIL068C YJL085W YIL068C YJL085W

YPR005W YLR166C YPR005W YPR005W YLR166C

YGL233W YPR166C

6 YDR394W YLR457C YDR394W YLR457C YHL006C YDR394W YLR392C

YPL255W YPL255W YLR392C YPL255W YLR392C

7 YHR158C YAL024C YHR158C YAL024C YHR158C YAL024C

YGR238C YGR238C YHR133C YGR238C

parameters and the performance of clustering about 12 sub-networks are shown in Table 6. It is obvious

that different sub-networks have different optimal parameters and the performances of the clustering are

also different. It can be seen that the disadvantage of DBSCAN which uses global density parameters

makes it not suitable in big varying density datasets.

3.3.4 Clustering analysis and overlapping protein complexes

In this section, we analyze the wrong and correct proteins in the cluster modules and show the overlapping

of protein complexes. All those results come from dynamic DIP database. In Table 7, we random choose

seven protein complexes in the DBSCAN and P-DBSCAN to analyze the performance of clustering results.

It is obvious that the clustering result from P-DBSCAN has less wrong proteins and more correct proteins

than DBSCAN. The result from P-DBSCAN is closer to the standard dataset.

In order to more clearly show the clustering effect, we visualize the detected protein complexes. In
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Figure 3 Visualization of a protein complex in the standard dataset and corresponding to the protein complex from

P-DBSCAN and DBSCAN. (a) Standard; (b) P-DBSCAN; (c) DBSCAN.

this paper, we use the software Cytoscape [40] to visualize a protein complex and generated P-DBSCAN

(Figure 3(b)), DBSCAN (Figure 3(c)) and the corresponding cluster in the standard dataset (Figure 3(a)).

In Figure 3(b), the fifteen proteins with background are the correct proteins and the white protein

YBR055C is the wrong protein. It misses proteins YBR119W and YDR235W. In Figure 3(c), there are

twelve proteins with background are the correct proteins while the white proteins YDL098C, YBR152W,

YGR075C are the wrong proteins. It misses five proteins. So, we can see that the P-DBSCAN algorithm

can identify more correct proteins and less wrong proteins than DBSCAN.

Figure 4 shows two overlapping protein complexes by P-DBSCAN. The shaded areas represent the

protein complex detected by P-DBSCAN, the white nodes are the wrong nodes and the dark grey nodes

belong to both protein complexes in the standard.

3.3.5 Performance comparison

In this section, we compare P-DBSCAN clustering algorithm with other algorithms on both unweighted

DIP and weighted MIPS.

We first compare P-DBSCAN with the basic DBSCAN algorithm [19], the typical density based clus-

tering algorithm CMC [16], CFinder [12], DPClus [13], COACH [17] and the typical clustering algorithms

RNSC [31], MCL [30], F-MCL [24], HC-PIN [29]. All those algorithms are compared with each other on

dynamic DIP database using the CYC2008 gold standard. The algorithms which need weighted networks

use the ECC to weight the edges. The performances of all clustering algorithms are reported in Table 8

which contains the category of each algorithm, the number of predicted protein complexes, the average

size of protein complexes, the number of coverage numbers, the precision, recall, f-measure, whether they

need weighted network and whether it can detect overlapping protein complexes. The average size of
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Figure 4 Two overlapping protein complexes by P-DBSCAN.

Table 8 The performance comparisons of various protein complex detection algorithms on DIP dataset using the CYC2008

gold standard

Algorithms Category Clusters Avg. size Coverage Precision Recall F-measure Weighted Overlapping

CMC Density 1263 4.39 2048 0.31 0.59 0.4064 yes yes

CFinder Density 609 6.18 2135 0.5607 0.3528 0.4331 no yes

RNSC Partition 549 3.89 2133 0.4067 0.4696 0.4359 yes no

MCL Flow 623 6.57 4096 0.3569 0.3879 0.3717 yes no

F-MCL Swarm-Flow 1588 4.62 2802 0.6804 0.554 0.6122 yes yes

COACH Core 903 3.89 2133 0.5038 0.5 0.5019 no yes

HC-PIN Hierarchy 273 5.73 1564 0.4316 0.3149 0.3641 no no

DPClus Density 827 5.28 3258 0.43 0.507 0.4653 no yes

DBSCAN Density 492 6.26 1817 0.5463 0.5744 0.56 yes no

P-DBSCAN
Swarm-

Density
642 4.98 1652 0.6888 0.6081 0.6459 yes yes

P-DBSCAN is much more close to the average size of gold standard than other density-based clustering

algorithms. The complexes number of protein complexes generated from P-DBSCAN is larger than that

of from DBSCAN while the average size of protein complexes generated from P-DBSCAN is smaller than

that from DBSCAN due to that P-DBSCAN not only considers the degree of vertices but also measures

the extent of the interconnectivity between the direct neighbors of the vertexes. In Table 8, P-DBSCAN

has the highest value in precision, recall and f-measure. In our algorithm, we use PIO algorithm to opti-

mize the parameters of DBSCAN. After optimization, the P-DBSCAN algorithm produces the clustering

results based on the optimal parameters. So it has a much better performance than the basic DBSCAN

algorithm. What’s more, P-DBSCAN also outperforms other typical clustering algorithms.

To further show P-DBSCAN’s performance, P-DBSCAN is also performed on weighted PPI network

from MIPS. To adopt P-DBSCAN for weighted networks, we replace ECC values with the weights of

interactions in MIPS network. Since COACH and DPClus can only be implemented on unweighted PPI

networks, we compare our method with CMC [16], CFinder [12], RNSC [31], MCL [30], F-MCL [24] and

HC-PIN [29]. The results show that the good performance of P-DBSCAN is not limited to the dynamic

networks, all those algorithms are compared with each other on weighted static MIPS network using the

MIPS gold standard. The relevant results of the algorithms such as CMC, CFinder, HC-PIN and MCL

is obtained from [16], the result of RNSC can be seen in [25] and the other results is coming from our

experiments. In Table 9, the cluster number of P-DBSCAN is still larger than DBSCAN and the average

size of clusters is smaller than DBSCAN. What’s more, P-DBSCAN outperforms other typical clustering

algorithms.
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Table 9 The performance comparisons of various protein complex detection algorithms on weighted MIPS datasets using

the MIPS gold standard

Algorithms Category Clusters Avg size Precision Recall F-measure Weighted Overlapping

CMC Density 121 9.42 0.339 0.315 0.327 yes yes

CFinder Density 95 11.77 0.389 0.302 0.34 no yes

RNSC Partition 88 8.67 0.407 0.469 0.435 yes no

MCL Flow 116 10.31 0.353 0.315 0.333 yes no

F-MCL Swarm-Flow 141 6.5 0.462 0.416 0.437 yes yes

HC-PIN Hierarchy 119 7.76 0.225 0.706 0.341 no no

DBSCAN Density 78 11.95 0.443 0.347 0.389 yes no

P-DBSCAN Swarm-Density 93 9.13 0.595 0.373 0.459 yes yes

4 Conclusion

With the development of high throughput techniques, static and dynamic PPIs are increasing fast and

available conveniently. At the same time, the research on identifying protein complexes are sprung up.

In this article, we have proposed a new approach called P-DBSCAN for identifying protein complexes

in DPIN, which introduced the PIO optimization algorithm to overcome the shortcomings of DBSCAN

that (1) the performance of the algorithm depends on two specified parameters; (2) it not reasonable to

use global parameters in a large dataset; and (3) it cannot detect overlapping clusters. To address the

shortcoming (1), we have used PIO algorithm to adaptively select parameters; To address shortcoming

(2), we have chosen different parameters for different sub-networks; To address shortcoming (3), we

have changed the way to mark proteins and as a result, predicted protein complexes can have some

overlap. After effectively addressing the shortcomings of DBSCAN, the P-DBSCAN clustering algorithm

outperforms other clustering algorithms in detecting protein complexes in terms of precision, recall, and

f-measure. The limitation of P-DBSCAN is that it is complicated and time consuming. As future work,

it would be necessary to enhance the efficiency of P-DBSCAN by designing some parallel algorithms or

by running it on GPU.
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