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Abstract This paper deals with the problem of state feedback control for a class of the distributed parameter

systems with the disturbance term. And the considered distributed parameter systems are composed of the

second order hyperbolic partial differential equations. Two different classes of restrictions on the disturbance

term are given, one is that the disturbance term satisfies the linear growth constraint condition to the state

variables of the system, and the other is that the disturbance term obeys the bound constraint under the

significance of L2. Based on a variable structure method, the state feedback controllers are obtained by means

of constructing appropriate Lyapunov functional. The closed-loop systems are globally asymptotically stable on

W 1,2(0, 1)× L2(0, 1) space under the effect of the state feedback control laws. Simulation results illustrate the

effectiveness of the proposed method.
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1 Introduction

Since many practical problems can be described by the DPSs (distributed parameter systems) governed

by the PDEs (partial differential equations), the applications of DPSs have been involved in many fields

in the last few years, and a series of the research achievements have been obtained [1–9]. In the field of

the control for DPSs, hitherto, two methods are often used: one is the boundary control [1–4], the other

is the distributed control [5–9]. This paper deals with the distributed control problems of DPSs.

Recently, more attention has been paid to the control problem of DPSs based on the variable structure

method. Ref. [4] proposed the sliding mode boundary control problem of a parabolic PDE system with

parameter variations and boundary uncertainties. For a class of parabolic DPSs with the bounded distur-

bance, Ref. [7] constructed a discontinuous sliding-mode feedback controller to guarantee the asymptotic

stability of the tracking errors on L2(0, 1)×L2(0, 1) space. Refs. [8,9] discussed the tracking control prob-

lem for the second order hyperbolic DPSs with the bounded disturbance, and obtained the asymptotic

stability of the tracking errors on W 1,2(0, 1)×L2(0, 1) space based on a discontinuous sliding-mode feed-

back controller. Because of the discontinuity of the controller, the conclusions obtained in [7–9] shared
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something in common: the asymptotic stability of the tracking errors was under the significance of the

generalized solution, no matter whether the system contained the disturbance term or not.

Based on [9], this paper further studies the feedback control problem for second order hyperbolic DPSs.

For the same system as that in [9], two different classes of restrictions on the disturbance term (one is

discussed in [9], the other is not) are given. And by constructing Lyapunov functionals and controllers

which are different from that in [9], two conclusions are obtained, one is that, when the disturbance term

satisfies the linear growth constraint condition to the state variables of the system, which is not discussed

in [9], the strong solution of the closed-loop system is globally asymptotically stable onW 1,2(0, 1)×L2(0, 1)

space; the other is that, when the disturbance term obeys the same bound constraint as that in [9], the

generalized solution of the closed-loop system is globally asymptotically stable on W 1,2(0, 1) × L2(0, 1)

space. Furthermore, when the disturbance term vanishes, the asymptotic stability in this paper is under

the significance of strong solution, which is different from [9]. Therefore, under the same assumptions,

the results obtained in this paper are better than that in [9]. Since tracking problem can be converted

into stabilization problem, for convenience, this paper focuses on the stabilization problem, i.e., set the

given reference yr in [9] to zero.

In this paper, we adopt the following notational conventions: for function z(ς) ∈ L2(a, b), a � b,

denote ‖z(·)‖2 =

√∫ b

a z
2(ς)dς , and W l,2(a, b) stands for the Sobolev space of absolutely continuous

scalar functions on [a, b] with square integrable derivatives of the order l � 1.

2 Problem formulation

First of all, we give a brief description of the work in [9]. Consider the following second order hyperbolic

DPS [9]:

ytt(ξ, t) = v2yξξ(ξ, t) + u(ξ, t) + ψ(ξ, t), (1)

where ξ ∈ [0, 1] is the one-dimensional space variable, t > 0 is the time variable, and (y, yt) ∈ L2(0, 1)×
L2(0, 1), t � 0, is the state vector. The coefficient v2 ∈ R+ stands for elasticity, u(ξ, t) is the distributed

control input, and ψ(ξ, t) represents a distributed uncertain disturbance source term.

The system (1) satisfies the following homogeneous Neumann BCs:

yξ(0, t) = yξ(1, t) = 0, (2)

or Dirichlet BCs:

y(0, t) = y(1, t) = 0. (3)

The initial conditions (ICs)

y(ξ, 0) = ϕ0(ξ) ∈W 2,2(0, 1), yt(ξ, 0) = ϕ1(ξ) ∈W 2,2(0, 1) (4)

are assumed to meet the boundary conditions (BCs) imposed on the system (1).

Assume the disturbance term ψ satisfy the following condition:

‖ψ‖2 =

√∫ 1

0

ψ2(ξ, t)dξ �M, ∀t � 0, (5)

where M is a prior known constant. By constructing the following variable structure distributed con-

troller:

u(y, yt, ξ, t) = −λ1 y(ξ, t)

‖y(·, t)‖2
− λ2

yt(ξ, t)

‖yt(·, t)‖2
, (6)

and the two different Lyapunov functionals:

V (t) = λ1

√∫ 1

0

y2(ξ, t)dξ +
1

2

∫ 1

0

y2t (ξ, t)dξ +
1

2
v2

∫ 1

0

y2ξ (ξ, t)dξ, (7)
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VR(t) = V (t) +KR

∫ 1

0

y(ξ, t)yt(ξ, t)dξ, (8)

Ref. [9] obtained that: when λ2 > M , λ1 > λ2 + M , the generalized solution of the system (1) is

globally asymptotically stable onW 1,2(0, 1)×L2(0, 1) space (see Theorem 1 in [9], where yr = 0). Where

Eq. (7) is used to prove the stability, Eq. (8) is used to prove the asymptotic convergence, Eq. (6) is

referred to as the distributed twisting controller (see [9]), where “ y(ξ,t)
‖y(·,t)‖2

” and “ yt(ξ,t)
‖yt(·,t)‖2

” are called as

the unit feedback signals (see [10]), whose norms are 1 everywhere with the exception of the discontinuity

manifold, ‖y(·, t)‖2 =
√∫ 1

0 y
2(ξ, t)dξ, and ‖yt(·, t)‖2 =

√∫ 1

0 y
2
t (ξ, t)dξ.

As mentioned in Remark 1 of [9], generally speaking, the disturbance term ψ may depend on the state

variables y and yt. When ψ satisfies the linear growth constraint condition to y and yt, that is

|ψ(y(ξ, t), yt(ξ, t), t)| �M1 |y(ξ, t)|+M2 |yt(ξ, t)| , (9)

how to design the feedback controller of the system (1) is not discussed in [9].

This paper studies the feedback control problem of the system (1) under the ICs (4) and the homoge-

neous BCs (2) (or (3)). By constructing the Lyapunov functional which is different from (7), (8) and the

feedback controller which is different from (6), we conclude that when the disturbance term ψ satisfies the

linear growth constraint condition (9), the strong solution of the closed-loop system is globally asymptot-

ically stable, and when the disturbance term ψ satisfies the bound constraint (5), the generalized solution

of the closed-loop system is globally asymptotically stable. For the definitions of strong solution and

generalized solution, see [9].

3 Main results

Theorem 1. Assume that the homogeneous BCs (2) (or (3)) and ICs (4) are satisfied and the distur-

bance term ψ satisfies the linear growth constraint condition (9). Construct the following state feedback

controller for the system (1):

u(y, yt) = −λ1y(ξ, t)− λ2yt(ξ, t), (10)

then the strong solution of the closed-loop system (1) is globally asymptotically stable on W 1,2(0, 1) ×
L2(0, 1) space, i.e., lim

t→∞
∫ 1

0
(y2(ξ, t) + y2ξ (ξ, t) + y2t (ξ, t))dξ = 0, under the condition that

λ1 > M1 +max {M1,M2} , λ2 > M2 + 1 +max {M1,M2} . (11)

Proof. Construct the following Lyapunov functional:

V (t) =
1

2

∫ 1

0

{
(λ1 + λ2)y

2(ξ, t) + 2y(ξ, t)yt(ξ, t) + y2t (ξ, t)
}
dξ +

v2

2

∫ 1

0

y2ξdξ. (12)

It follows from (11) that λ1 + λ2 > 1. So V is positive definite for (y, yt) ∈ W 1,2(0, 1) × L2(0, 1), i.e.,

there exists β2(λ1, λ2, v
2) � β1(λ1, λ2, v

2) > 0 such that

β1

∫ 1

0

(y2 + y2ξ + y2t )dξ � V (t) � β2

∫ 1

0

(y2 + y2ξ + y2t )dξ. (13)

Taking the derivative of V , we have

dV

dt
=

∫ 1

0

{
(λ1 + λ2)yyt + y2t + yytt + ytytt

}
dξ + v2

∫ 1

0

yξytξdξ.

Integrating by parts and combining with (1) and (10), it yields

dV

dt
=

∫ 1

0

{
(λ1 + λ2)yyt + y2t + y(v2yξξ − λ1y − λ2yt + ψ) + yt(v

2yξξ − λ1y − λ2yt + ψ)
}
dξ
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+v2
∫ 1

0

yξytξdξ

=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t + v2yyξξ + v2ytyξξ + yψ + ytψ
}
dξ + v2

∫ 1

0

yξytξdξ

=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ − v2ytξyξ + yψ + ytψ
}
dξ + v2yyξ

∣∣1
0
+ v2ytyξ

∣∣1
0

+v2
∫ 1

0

yξytξdξ

=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ + yψ + ytψ
}
dξ + v2yyξ

∣∣1
0
+ v2ytyξ

∣∣1
0
.

Taking into account the BCs (2) (or (3)), it yields

dV

dt
=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ + yψ + ytψ
}
dξ

=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t + yψ + ytψ
}
dξ − v2

∫ 1

0

y2ξdξ

�
∫ 1

0

{−λ1y2 − (λ2 − 1)y2t + |y| |ψ|+ |yt| |ψ|
}
dξ − v2

∫ 1

0

y2ξdξ.

From the linear growth constraint condition (9), we have

dV

dt
�

∫ 1

0

{−(λ1 −M1)y
2 + (M1 +M2) |y| |yt| − (λ2 − 1−M2)y

2
t

}
dξ − v2

∫ 1

0

y2ξdξ. (14)

It follows from (11) that

(M1 +M2)
2 � 4 (max {M1,M2})2 < 4(λ1 −M1)(λ2 − 1−M2).

So the right-hand side term of (14) is negative definite for (y, yt) ∈ W 1,2(0, 1)×L2(0, 1), i.e., there exists

γ(λ1, λ2,M1,M2, v
2) > 0 such that

∫ 1

0

{−(λ1 −M1)y
2 + (M1 +M2) |y| |yt| − (λ2 − 1−M2)y

2
t

}
dξ − v2

∫ 1

0

y2ξdξ

� −γ
∫ 1

0

(y2 + y2ξ + y2t )dξ. (15)

From (13)–(15), we obtain
dV

dt
� − γ

β2
V.

So

V (t) � e−
γ
β2

tV(0).

Combining with (13) and the above expression, we have

∫ 1

0

(y2(ξ, t) + y2ξ (ξ, t) + y2t (ξ, t))dξ �
1

β1
V (t) � 1

β1
e
− γ

β2
t
V(0)

� β2
β1

e
− γ

β2
t
∫ 1

0

(y2(ξ, 0) + y2ξ(ξ, 0) + y2t (ξ, 0))dξ,

which implies that the strong solution of the closed-loop system (1) is globally asymptotically stable on

W 1,2(0, 1)× L2(0, 1) space. This completes the proof.
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Remark 1. From [9], if the distributed control input u(ξ, t) is sufficiently smooth, then the system (1)

possesses a unique strong solution y(ξ, t), and if the distributed control input u(ξ, t) is discontinuous,

then the solution of the system (1) is generalized.

Theorem 2. Assume that the homogeneous BCs (2) (or (3)) and ICs (4) are satisfied and the distur-

bance term ψ satisfies the bound constraint condition (5). Construct the following variable structure

state feedback controller for the system (1):

u(y, yt) = −λ1y(ξ, t)− λ2yt(ξ, t)− 3M
y(ξ, t)

‖y(·, t)‖2
−M

yt(ξ, t)

‖yt(·, t)‖2
, (16)

then the generalized solution of the closed-loop system (1) is globally asymptotically stable onW 1,2(0, 1)×
L2(0, 1) space, when

λ1 > 0, λ2 > 1.

Proof. It follows from λ1 + λ2 > 1 that the Lyapunov functional V in (12) is positive definite for

(y, yt) ∈ W 1,2(0, 1)× L2(0, 1). Therefore (13) still holds.

Taking the derivative of V , we have

dV

dt
=

∫ 1

0

{
(λ1 + λ2)yyt + y2t + yytt + ytytt

}
dξ + v2

∫ 1

0

yξytξdξ.

Integrating by parts and combining with (1) and (16), we obtain

dV

dt
=

∫ 1

0

{
(λ1 + λ2)yyt + y2t + y(v2yξξ − λ1y − λ2yt − 3M

y

‖y‖2
−M

yt
‖yt‖2

+ ψ)

}
dξ

+

∫ 1

0

{
yt(v

2yξξ − λ1y − λ2yt − 3M
y

‖y‖2
−M

yt
‖yt‖2

+ ψ)

}
dξ + v2

∫ 1

0

yξytξdξ

=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t + v2yyξξ + v2ytyξξ + yψ + ytψ
}
dξ + v2

∫ 1

0

yξytξdξ

−3M

∫ 1

0

y2

‖y‖2
dξ −M

∫ 1

0

yyt
‖yt‖2

dξ − 3M

∫ 1

0

yyt
‖y‖2

dξ −M

∫ 1

0

y2t
‖yt‖2

dξ

=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ − v2ytξyξ + yψ + ytψ
}
dξ + v2yyξ

∣∣1
0
+ v2ytyξ

∣∣1
0

+v2
∫ 1

0

yξytξdξ − 3M

∫ 1

0

y2

‖y‖2
dξ −M

∫ 1

0

yyt
‖yt‖2

dξ − 3M

∫ 1

0

yyt
‖y‖2

dξ −M

∫ 1

0

y2t
‖yt‖2

dξ.

Taking into account the BCs (2) (or (3)), it yields

dV

dt
=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ + yψ + ytψ
}
dξ

−3M ‖y‖2 −M

∫ 1

0

yyt
‖yt‖2

dξ − 3M

∫ 1

0

yyt
‖y‖2

dξ −M ‖yt‖2.

Applying the Cauchy-Schwarz inequality, we have

∫ 1

0

yψdξ � ‖y‖2 ‖ψ‖2 ,
∫ 1

0

ytψdξ � ‖yt‖2 ‖ψ‖2 ,
∣∣∣∣
∫ 1

0

yytdξ

∣∣∣∣ �
∫ 1

0

|y| |yt|dξ � ‖y‖2 ‖yt‖2 .

Combining with the bound constraint condition (5), it follows that

dV

dt
�

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ
}
dξ + ‖y‖2 ‖ψ‖2 + ‖yt‖2 ‖ψ‖2
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−3M ‖y‖2 +
M

‖yt‖2

∣∣∣∣
∫ 1

0

yytdξ

∣∣∣∣− 3M

∫ 1

0

yyt
‖y‖2

dξ −M ‖yt‖2

�
∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ
}
dξ +M ‖y‖2 +M ‖yt‖2

−3M ‖y‖2 +M ‖y‖2 − 3M

∫ 1

0

yyt
‖y‖2

dξ −M ‖yt‖2

=

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ
}
dξ − 3

M

‖y‖2

∫ 1

0

yytdξ −M ‖y‖2 .

Since
1

‖y‖2

∫ 1

0

yytdξ =
1

2 ‖y‖2

∫ 1

0

∂

∂t

{
y2
}
dξ =

1

2
√∫ 1

0 y
2dξ

d

dt

{∫ 1

0

y2dξ

}

=
d

dt

⎧
⎨
⎩

√∫ 1

0

y2dξ

⎫
⎬
⎭ =

d

dt
{‖y‖2} ,

we can obtain

dV

dt
�

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ
}
dξ − 3M

d

dt
{‖y‖2} −M ‖y‖2 .

Denoting α = min
{
λ1, λ2 − 1, v2

}
, we have

dV

dt
+ 3M

d

dt
{‖y‖2} �

∫ 1

0

{−λ1y2 − (λ2 − 1)y2t − v2y2ξ
}
dξ −M ‖y‖2

� −α
∫ 1

0

(y2 + y2ξ + y2t )dξ −M ‖y‖2 � 0. (17)

Firstly, we prove the stability. From (17) we know

V (t) + 3M ‖y(·, t)‖2 � V (0) + 3M ‖y(·, 0)‖2 .

Denoting E(t) =
∫ 1

0 (y2 + y2ξ + y2t )dξ and combining with (13), it yields

β1E(t) = β1

∫ 1

0

(y2 + y2ξ + y2t )dξ � V (t) � V (t) + 3M ‖y(·, t)‖2 � V (0) + 3M ‖y(·, 0)‖2

� β2

∫ 1

0

(y2(ξ, 0) + y2ξ (ξ, 0) + y2t (ξ, 0))dξ+3M

√∫ 1

0

y2(ξ, 0)dξ

� β2

∫ 1

0

(y2(ξ, 0) + y2ξ (ξ, 0) + y2t (ξ, 0))dξ+3M

√∫ 1

0

(y2(ξ, 0) + y2ξ (ξ, 0) + y2t (ξ, 0))dξ

= β2E(0)+3M
√
E(0).

So

E(t) � β2
β1
E(0)+

3M

β1

√
E(0).

For any given ε > 0, taking

∫ 1

0

(y2(ξ, 0) + y2ξ (ξ, 0) + y2t (ξ, 0))dξ = E(0) < δ(ε) =

⎛
⎜⎜⎝
− 3M

β1
+

√(
3M
β1

)2

+ 4β2

β1
ε

2β2

β1

⎞
⎟⎟⎠

2

,
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then we have

∫ 1

0

(y2(ξ, t) + y2ξ(ξ, t) + y2t (ξ, t))dξ = E(t) � β2
β1
E(0)+

3M

β1

√
E(0) < ε, ∀t � 0.

Therefore the generalized solution of the closed-loop system (1) is stable on W 1,2(0, 1)× L2(0, 1) space.

Next, we prove the global asymptotic convergence. From (13) and (17), we have

dV

dt
+ 3M

d

dt
{‖y‖2} � −α

∫ 1

0

(y2 + y2ξ + y2t )dξ −M ‖y‖2 � − α

β2
V −M ‖y‖2

= − α

β2
V − 1

3
3M ‖y‖2 � −θ(V + 3M ‖y‖2),

where θ = min
{

α
β2
, 13

}
. Denoting V̄ = V + 3M ‖y‖2, it yields

dV̄

dt
� −θV̄ .

Further we have

V̄ (t) � V̄ (0)e−θt.

So

lim
t→∞ V̄ (t) = 0.

From V̄ = V + 3M ‖y‖2, we have

lim
t→∞V (t) = 0. (18)

It follows from (13) that

1

β2
V (t) �

∫ 1

0

(y2 + y2ξ + y2t )dξ �
1

β1
V (t),

which together with (18) implies

lim
t→∞

∫ 1

0

(y2(ξ, t) + y2t (ξ, t) + y2ξ (ξ, t))dξ = 0.

Combining with the stability and the global asymptotic convergence above, we conclude that the

generalized solution of the closed-loop system (1) is globally asymptotically stable onW 1,2(0, 1)×L2(0, 1)

space. This completes the proof.

Remark 2. For the same system, Theorem 2 acquires the same conclusion with that in Theorem 1 of

[9] under the same conditions. For the differences of both the controllers ((16) and (6)) and the Lyapunov

functionals ((12) and (7), (8)), the proof of Theorem 2 is different from that of Theorem 1 in [9]. When

the disturbance term vanishes (M=0), the controller (16) is transformed into

u(y, yt) = −λ1y(ξ, t)− λ2yt(ξ, t),

and it is continuous differentiable. So the asymptotic stability in Theorem 2 is under the significance of

strong solution. From the controller (6), we know that it is discontinuous even if the disturbance term

vanishes (M=0). So the asymptotic stability in Theorem 1 of [9] is always under the significance of

generalized solution. Therefore, it is obvious that the result obtained in Theorem 2 is better than that

in Theorem 1 of [9].

Combining with Theorems 1 and 2, we have the following corollary.

Corollary 1. Assume that the homogeneous BCs (2) (or (3)) and the ICs (4) are satisfied. And the

disturbance term ψ satisfies the following constraint:

|ψ(y(ξ, t), yt(ξ, t), t)| �M1 |y(ξ, t)|+M2 |yt(ξ, t)|+M.
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Figure 1 Trajectory of E(t), M = 0. Figure 2 Trajectory of E(t), M = 20.

Constructing the following state feedback controller for the system (1):

u(y, yt) = −λ1y(ξ, t)− λ2yt(ξ, t)− 3M
y(ξ, t)

‖y(·, t)‖2
−M

yt(ξ, t)

‖yt(·, t)‖2
.

We can conclude that the strong solution is globally asymptotically stable on W 1,2(0, 1)×L2(0, 1) space

whenM = 0, and the generalized solution is globally asymptotically stable on W 1,2(0, 1)×L2(0, 1) space

when M > 0, under the condition that

λ1 > M1 +max {M1,M2} , λ2 > M2 + 1 +max {M1,M2} .

4 Simulation examples

Construct the following system:

ytt(ξ, t) = yξξ(ξ, t) + u(ξ, t) + 30 sin(2πξ)y(ξ, t) + 10 cos(2πt)yt(ξ, t) +M sin(2πξ) sin(2πt),

with the homogeneous Dirichlet BCs (3). Set the ICs

y(ξ, 0) = sin(2πξ), yt(ξ, 0) = 0.

According to Corollary 1, take λ1 = 61, λ2 = 42 and construct the state feedback controller as follows:

u(y, yt) = −61y(ξ, t)− 42yt(ξ, t)− 3M
y(ξ, t)

‖y(·, t)‖2
−M

yt(ξ, t)

‖yt(·, t)‖2
.

By using the mathematical software Mathematica, we have

Case 1. M = 0. The simulation result of E(t) =
∫ 1

0
(y2 + y2t + y2ξ )dξ with the change of time is shown

in Figure 1.

Case 2. M = 20. The simulation result of E(t) =
∫ 1

0
(y2 + y2t + y2ξ )dξ with the change of time is shown

in Figure 2.

5 Conclusion

This paper studies the feedback control problem of a class of uncertain distributed parameter systems.

These systems are governed by second order hyperbolic partial differential equations and have well-posed

ICs and BCs (first BCs or second BCs). Under the effect of the feedback control laws, we conclude that

the strong solution of the closed-loop system is globally asymptotically stable on W 1,2(0, 1) × L2(0, 1)

space when the disturbance term ψ satisfies the linear growth constrain condition, and the generalized

solution of the closed-loop system is globally asymptotically stable on W 1,2(0, 1) × L2(0, 1) space when

the disturbance term ψ satisfies the bound constraint condition. This paper extends the conclusion in [9]

and the results obtained are better than that in [9], and it is verified by simulations.
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