
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

December 2016, Vol. 59 122902:1–122902:13

doi: 10.1007/s11432-016-0582-y

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Quaternion-based robust trajectory tracking control
for uncertain quadrotors

Tianpeng HE1 , Hao LIU2* & Shu LI1

1School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
2School of Astronautics, Beihang University, Beijing 100191, China

Received August 30, 2016; accepted September 28, 2016; published online November 4, 2016

Abstract This paper presents a robust nonlinear controller design approach for uncertain quadrotors to imple-

ment trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics

in order to avoid the singularity problem existing in the Euler angle representation. A nonlinear robust con-

troller is proposed, which consists of an attitude controller to stabilize the rotational motions and a position

controller to control translational motions. The quadrotor dynamics involves uncertainties such as parameter

uncertainties, nonlinearities, and external disturbances and their effects on closed-loop control system can be

guaranteed to be restrained. Simulation results on the quadrotor demonstrate the effectiveness of the designed

control approach.
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1 Introduction

Unmanned aerial vehicles have attracted much attention in the control and robotics circles as shown

in [1–3]. Quadrotors are increasingly popular unmanned aerial vehicle platforms, because of four fixed-

pitch rotors instead of complex mechanical control linkages as stated in [4]. Therefore, quadrotors could

be widely used in various fields including exploration, surveillance, and inspection. Therefore, these un-

manned vehicles have also received much attention in the control scientific circle. Traditional proportional-

integral-derivative (PID) control approach [5, 6], nested saturation control method [7], flatness-based

control algorithm [8], cascade control scheme by singular perturbation theory [9] were researched to

achieve the automatic control of the six degrees of freedom (6DOF) quadrotors. However, the effects of

various uncertainties on the closed-loop control systems were not fully discussed in the aforementioned

published work.

Actually, the quadrotor dynamics involves multiple uncertainties including parameter perturbations,

coupled and nonlinear dynamics, and external unknown disturbances. Therefore, many efforts have been

devoted to achieve the robust control of the uncertain quadrotors. In [10, 11], sliding modebased control

methods were discussed to achieving robustness properties for quadrotors with a transient estimation
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Figure 1 Quadrotor schematic.

process. New types of adaptive control schemes were studied in [12, 13] to achieve the robust tracking

performances for uncertain robotic quadrotors. In [14], a robust suboptimal control algorithm was de-

signed by the mixed H2 and H∞ performance analysis. However, much previously published work (see,

for example, Refs. [3–16]) mainly focused on robust controller design by the Euler angle representation

which suffers from the singular problems, as shown in [17].

As shown in [18], quaternion-based representations can be used to avoid the singularity problem in the

attitude representation approaches, especial when the aerial vehicles are required to implement aggressive

maneuvers. But the quaternion-based representations with a unit length constraint are complicated and

thereby it is not easy to design a robust trajectory tracking controller directly on these representations.

In [18–20], new developed adaptive controllers were proposed for the quadrotors with nonlinear motion

equations described by the quaternions. However, for these proposed adaptive closed-loop systems, their

dynamical tracking performances cannot be specified. The nonlinear feedback control laws based on

quaternion representations were studied in [17,21], but the effects of multiple uncertainties on the closed-

loop control system were not discussed in the stability analysis. Other kinds of control methods were

discussed in [22–25]. The controllers by sliding mode method are good choices to achieve asymptotic

tracking properties for the quadrotors. In [26], a sliding mode observer was introduced with filters

to reduce chattering. In [27], a non-smooth controller by the sliding mode approach was designed to

stabilize the quadrotor dynamics. Furthermore, in [28], a smooth nonlinear controller was proposed with

a comparatively long transient process for uncertain quadrotors.

In this paper, a quaternion-based robust nonlinear control method is proposed to achieve the trajec-

tory tracking control for 6DOF uncertain robotic quadrotors. The designed trajectory tracking controller

consists of an attitude controller and a position controller. The attitude controller is employed to sta-

bilize the rotational motion, while the position controller to control translational motions. Compared

to previous studies on the robust control problem for quadrotors involving uncertainties, the influences

of various uncertainties on the closed-loop control system can be restrained and the singular problem

in the attitude presentations can be avoided. Besides, the proposed control scheme leads to a smooth

control law.

The following parts of the current paper are organized as follows: in Section 2, the translational

and rotational motions of the quadrotor are briefly described by nonlinear equations based on the unit

quaternion representations; in Section 3, a new robust trajectory tracking controller is proposed for the

uncertain quadrotor and the robust tracking performances of the closed-loop control system are discussed.

Simulation results are given in Section 4 and Section 5 concludes the whole work of this paper.

2 Quadrotor model

As depicted in Figure 1, the quadrotor is an aerial robotic unmanned vehicle equipped with four rotors

powered by electronic motors. Let EI = {EIx, EIy, EIz} and EB = {EBx, EBy, EBz} denote an inertial

frame and a frame attached to the quadrotor body. Let the vectors pI = [ pIx pIy pIz ]
T and vI =
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[ vIx vIy vIz ]
T be the position and translational velocity of the vehicle mass center expressed in the frame

EI , respectively. Let ωB = [ ωBx ωBy ωBz ]
T be the angular velocity depicted in the frame EB . The

following mathematical equations can be obtained to describe the translational and rotational motions

of the 6DOF quadrotor (see, for example, Ref. [20])

ṗI = vI ,

mv̇I = RfB + df ,

Ṙ = RS(ωB),

Jω̇B = −S(ωB)JωB + τB + dτ ,

(1)

where m, J , fB, τB , and R ∈ SO(3) represent the vehicle mass, the inertia tensor of the quadrotor body,

the external force and torque acting on quadrotor in the frame EB , the rotational matrix mapping vectors

expressed in the frame EB into the vectors expressed in the frame EI . J is a symmetric and positive

definite constant matrix and df = [dfi]3×1 and dτ = [dτi]3×1 are external bounded and continuously

differentiable disturbances, and

S(ωB) =

⎡
⎢⎢⎣

0 −ωBz ωBy

ωBz 0 −ωBx

−ωBy ωBx 0

⎤
⎥⎥⎦ .

Four unit quaternions are applied to describe the rotational motion here. Let q = [ q0 q̄T1 ]T be the four

unit quaternions, and q0 and q̄1 = [ q1 q2 q3 ]
T indicate the quaternion scalar and vector parts of the unit

quaternions. q0 and q̄1 satisfy the constraint: q20 + ‖q̄1‖22 = 1. R = [Rij ]3×3 can be expressed by the

following unit quaternion representations (see, Ref. [20] to mention a few)

R =

⎡
⎢⎢⎣
1− 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 1− 2q21 − 2q23 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 1− 2q21 − 2q22

⎤
⎥⎥⎦ .

It follows that the quaternion propagation equations can be expressed without any nonlinear uncertain

terms as follows

q̇0 = −0.5q̄T1 ωB,

˙̄q1 = 0.5 [q0I3 + S(q̄1)]ωB,
(2)

where In is an n×n unit matrix. The external force fB = [fBx fBy fBz]
T and torque τB = [τBx τBy τBz ]

T

for the quadrotor are different from those acting on the regular helicopters. τBx, τBy, and τBz are torques

around eBx, eBy, and eBz and can be obtained by the following expressions

τBx = lrc(f2 − f4),

τBy = lrc(f1 − f3),

τBz = kfm(f1 − f2 + f3 − f4),

(3)

where lrc > 0 and kfm > 0 indicate the distance from each rotor to the mass center and the scaling

constant, and fi (i = 1, 2, 3, 4) are the lift thrusts produced by the four rotors respectively. fB can be

given as follows

fB =

⎡
⎢⎢⎣

0

0

−fT

⎤
⎥⎥⎦+RT

⎡
⎢⎢⎣

0

0

mg

⎤
⎥⎥⎦ ,
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where fT =
∑4

i=1 fi and g is the gravitational constant. The lift thrusts fi (i = 1, 2, 3, 4) can be given by

fi = kfωω
2
ri, i = 1, 2, 3, 4, (4)

where ωri (i = 1, 2, 3, 4) are the rotational velocities of each rotor, and kfω is a positive constant. Design

the control inputs ui (i = 1, 2, 3, 4) as

u1 = ω2
r1 + ω2

r2 + ω2
r3 + ω2

r4,

u2 = ω2
r2 − ω2

r4,

u3 = ω2
r1 − ω2

r3,

u4 = ω2
r1 − ω2

r2 + ω2
r3 − ω2

r4.

(5)

Remark 1. From (2), one can see that quaternion propagation equations are nonlinear. The advantage

of the quaternion-based representations is that the singularity problem in the attitude representation ap-

proaches can be avoided, especially when the quadrotors implement aggressive maneuvers. However, the

disadvantage is that the quaternion-based representations with a unit length constraint are complicated,

which leads to difficulties in designing a robust trajectory tracking controller directly on these repre-

sentations. Since the quadrotor is aimed to implement the aggressive maneuvers, the quaternion-based

representations are used instead of the Euler angle based representations here.

In this paper, the outputs are selected as: the longitudinal position pIx, the lateral position pIy,

and the vertical position pIz and their desired references are denoted by prIx, p
r
Iy, and prIz, respectively.

Let prI = [ prIx prIy prIz ]
T. These desired references and their derivatives are assumed to be piecewise

uniformly bounded. The position tracking error is defined as ep = [epi]3×1 = pI − prI . Define the

translational velocity tracking error ev = [evi]3×1 as

ev = ėp = vI − vrI , (6)

where vrI = [ vrIx vrIy vrIz ]
T are the desired translational velocity. Let af1 = 2/m, af2 = 2/m, and

af3 = kfω/m. From the second equation in (1), one can obtain

ėv1 = −aNf1(q1q3 + q0q2)fT +Δf1,

ėv2 = −aNf2(q2q3 − q0q1)fT +Δf2,

ėv3 = −aNf3(1− 2q21 − 2q22)u1 +Δf3,

(7)

where

Δf1 = −aΔf1(q1q3 + q0q2)fT − p̈rIx + df1,

Δf2 = −aΔf2(q2q3 − q0q1)fT − p̈rIy + df2,

Δf3 = −aΔf3(1− 2q21 − 2q22)u1 − p̈rIz + df3.

(8)

In this paper, the superscript N is used to stand for the nominal values of parameters and the superscript

Δ for the parameter uncertainties satisfying afi = aNfi + aΔfi. It can be seen that aNfi (i = 1, 2, 3) are

positive and aNfi (i = 1, 2, 3) are assumed to satisfy |Δafi| < aNfi (i = 1, 2, 3).

Let qr = [ qr0 qr1 qr3 qr4 ]
T be the desired attitude references, which are generated based on the longitu-

dinal and lateral position tracking errors and will be discussed in the following controller design section

in details. As shown in [18], the attitude tracking error can be given by a nonlinear function Q̃(q, qr) as

Q̃(q, qr) = 2sgn(qr0q0 + qr1q1 + qr2q2 + qr3q3)

⎡
⎢⎢⎣
−qr0q1 + qr1q0 + qr2q3 − qr3q2

−qr0q2 − qr1q3 + qr2q0 + qr3q1

−qr0q3 + qr1q2 − qr2q1 + qr3q0

⎤
⎥⎥⎦ .
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Figure 2 The block diagram of the control system.

Let eq = [eqi]3×1 = Q̃(q, qr) and eω = [eωi]3×1 = ωB − ωr
B, where ωr

b represents the desired rotational

speeds in the frame EB. From [18], one can have

ėq = eω. (9)

Let Aτu = diag (lrckfω, lrckfω, kfmkfω) and Aτ = J−1Aτu. Combining the fourth equation in (1) and

(3)–(5) yields

ėω = AN
τ uτ +Δτ , (10)

where uτ = [ u2 u3 u4 ]
T and

Δτ = AΔ
τ τB − J−1S(ωB)JωB + J−1dτ − ω̇r

B. (11)

AN
τ is invertible, since the matrix AN

τ is a symmetric and positive definite matrix. Therefore, one can

assume that AN
τ and AΔ

τ satisfy the inequality ‖(AN
τ )

−1
AΔ

τ ‖1 < 1.

Remark 2. Actually, by combining (6), (7), (9), and (10), one can obtain the whole quaternion-based

nonlinear model.

The control goal in this paper is to achieve the trajectory tracking of prIx, p
r
Iy, and prIz for pIx, pIy, and

pIz respectively, while stabilizing the attitude dynamics. All of the errors ep, ev, eq, and eω are needed

to converge into given neighbourhoods of the origin in a finite time.

3 Robust trajectory tracking controller design

In this section, a robust trajectory tracking controller consisting of a position controller and an attitude

controller is designed for a 6DOF uncertain quadrotor. First, the vertical position controller will be

designed for the height tracking, followed by the stability analysis in this channel. Second, the longitudinal

and lateral position controllers will be designed, followed by the attitude controller design. Last, it will

be shown that the longitudinal and lateral position errors and the attitude errors can also ultimately

converge into the neighborhood of origin by given bounds. The block diagram of the whole control

system is depicted in Figure 2.

3.1 Vertical position controller design

From (6) and (7), the vertical dynamics can be described by the following equation as

ëp3 = −aNf3(1− 2q21 − 2q22)u1 +Δf3. (12)

Design the preliminary height control law as

u1 = −−kdp3ėp3 − kpp3ep3 + v1

aNf3(1− 2q21 − 2q22)
, (13)
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where kdp3 and kpp3 are positive constants and v1 is an additional control input to be defined. Then, the

equation describing the vertical dynamics can be rewritten as

ëp3 = −kdp3ėp3 − kpp3ep3 + v1 +Δf3. (14)

From (14), it can be seen that if v1 is designed to cancel the term Δf3, it yields the following vertical

closed-loop control system

ëp3 + kdp3ėp3 + kpp3ep3 = 0,

which is defined as the nominal vertical closed-loop system here. The tracking performance of the nominal

system can be specified by designing the system with desired poles.

Since the uncertainty Δf3 cannot be obtained directly in practical applications, the additional control

input v1 is constructed based on the RCT (robust compensating technique) as shown in [29–31]. The

model (14) is a two-dimensional system with relative degree 2, therefore a second order filter Φp3(p) is

introduced: Φp3(p) = g2p3/(p+ gp3)
2, where p is the Laplace operator and gp3 is a positive constant to be

determined.

Remark 3. The robust filter has the property, that is, if the robust filter parameter gp3 has a sufficiently

large value, the filter frequency bandwidth would be sufficiently wide and thus the filter gain would be

close to be 1. In this case, more interested signals with low frequency would pass the filter, while more

noise with high frequency would be rejected.

Therefore, design the control input v1 as

v1 = −Φp3(p)Δf3. (15)

Remark 4. One can observe that the additional control input v1 would get close to −Δf3 and thereby

restrain the influence of Δf3, if gp3 is sufficiently large.

Since Δf3 cannot be measured directly, a good choice is to replace Δf3 in (15) by the vertical tracking

error ep3. Actually, from (14) and (15), one can obtain

v1 = −g2p3
(p2 + pkdp3 + kpp3)ep3 − v1

(p+ gp3)
2 .

Therefore, in practical applications, the additional control input v1 can be implemented as

v1 = −p2 + pkdp3 + kpp3
p2 + 2pgp3

g2p3ep3. (16)

Define the vertical position error vector ev = [ ep3 ėp3 ]. Then, combining (14) and (15), one can have

ėv = Avev +Bv(1− Φp3)Δf3, (17)

where

Av =

[
0 1

−kpp3 −kdp3

]
, Bv =

[
0

1

]
.

3.2 Stabilization analysis of the vertical dynamics

The tracking properties of the vertical closed-loop control system can be summarized by the following

theorem.

Theorem 1. For a given positive constant εv and the given bounded vertical initial tracking error ev(0),

there exist positive constants T ∗
v and g∗p3, such that for gp3 > g∗p3 and t � T ∗

v , the vertical position error

ev is bounded and satisfies |ev(t)| � εv.
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Proof. From (14), one can have

‖ev‖∞ � ηv(0) + δv‖Δf3‖∞, (18)

where ηv(0) = supt�0 |eAvtev(0)|, δv = ‖(pI2 −Av)
−1

Bv(1− Φp3)‖1, and In is an n × n identity matrix.

Substituting (13) into (8), one can obtain

Δf3 = −aΔf3(k
d
p3ėp3 + kpp3ep3)/a

N
f3 + aΔf3v1/a

N
f3 − p̈rIz + df3.

It follows

‖Δf3‖∞ � πef3‖ev‖∞ + ρv1‖v1‖∞ + πcf3, (19)

where ρv1, πef3, and πcf3 are positive constants satisfying ρv1 = |aΔf3|/aNf3 < 1, πef3 = ρv1|kdp3|+ρv1|kpp3|,
and πcf3 � |df3 − p̈rIz|, respectively. From (15), one can obtain

‖v1‖∞ � ‖Δf3‖∞. (20)

Combining (19) and (20) leads to

‖Δf3‖∞ � π′
ef3‖ev‖∞ + π′

cf3, (21)

where π′
ef3 = πef3/(1 − δv1) and π′

cf3 = πcf3/(1 − δv1). If the positive parameter gp3 is larger and thus

the frequency bandwidth of the filter Φp3(p) is wider, the filter gain is more approximate to 1. In this

case, one can obtain a positive constant g∗1p3 such that for gp3 > g∗1p3 , δv < 1/(2π′
ef3). In this case, from

(19) and (21), one can have

‖ev‖∞ � 2ηv(0) + π′
cf3/π

′
ef3,

‖Δf3‖∞ � 2ηv(0)π
′
ef3 + 2π′

cf3.
(22)

From (22), it can be observed that for the given initial state, ‖ev‖∞ and ‖Δf3‖∞ are bounded; that is,

there exist positive constants ηev and ηΔf3 such that

‖ev‖∞ � ηev,

‖Δf3‖∞ � ηΔf3.
(23)

Finally, from (14), (15), and (23), one can obtain the following expression as

max
j

|ev,j(t)| � max
j

∣∣cT2,jeAvtez(0)
∣∣+ δvηΔf3, (24)

where cn,j is an n × 1 vector with 1 on the element and 0 elsewhere. Therefore, from (24), it can be

seen that for a given positive constant εv and the given bounded initial state ev(0), there exist positive

constants T ∗
v and g∗p3 � g∗1p3 , such that for gp3 > g∗p3 and t � T ∗

v , ev satisfies |ev(t)| � εv.

3.3 Longitudinal and lateral position controller design

From (6) and (7), the longitudinal and lateral dynamics can be described by the following equations as

ëp1 = −aNf1(q1q3 + q0q2)fT +Δf1,

ëp2 = −aNf2(q2q3 − q0q1)fT +Δf2.
(25)

Let up1 = qr1q
r
3 + qr0q

r
2 and up2 = qr2q

r
3 − qr0q

r
1 denote the virtue control inputs for the longitudinal and

lateral positions, respectively. Define the preliminary feedback control laws upi (i = 1, 2) as

upi = −−kdpiėpi − kppiepi + vpi

aNfifT
, i = 1, 2, (26)

where kdpi and kppi (i = 1, 2) are positive parameters and vpi (i = 1, 2) are additional control inputs to

attenuate the influence of Δ′
fi (i = 1, 2). Construct vpi (i = 1, 2) with robust filters as follows

vpi = −Φpi(p)Δfi, i = 1, 2, (27)

where Φpi(p) = g2pi/(p+ gpi)
2 (i = 1, 2) and gpi (i = 1, 2) are positive parameters to be determined.

These additional control inputs can be implemented in a similar way to that in the vertical channel.
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3.4 Attitude controller design

In this subsection, the robust controller is designed to achieve the practical tracking of the desired attitude

reference qr for q. Since the yaw angle is required to be stabilized at 0, one can obtain qr1q
r
2 + qr0q

r
3 = 0

from [32]. From (9) and (10), the attitude dynamics can be described by the following expression

ëq = AN
τ uτ +Δτ . (28)

Let eA = [ eTq eTω ]T. Design the preliminary attitude control law as

u = −(AN
τ )−1(KτeA − vA), (29)

where Kτ = diag(Kd
τ ,K

p
τ ), K

i
τ = diag(kiτx, k

i
τy, k

i
τz) (i = d, p), and vA is the additional control input to

restrain the effects of Δτ . k
d
τi and kpτi (i = x, y, z) are selected to be positive constants. Substituting (29)

into (28), one has

ëq = −Kd
τ ėq −Kp

τ eq + vA +Δτ . (30)

Similarly with the vertical channel, construct the additional control input vA as

vA = −Φτ (p)Δτ , (31)

where Φτ (p) = diag(Φτx(p),Φτy(p),Φτz(p)), Φτi(p) = g2τi/(p+ gτi)
2 (i = x, y, z), and gτi (i = x, y, z)

are positive parameters to be determined. vA can also be implemented in a similar way with v1 in the

vertical channel.

3.5 Stabilization analysis of the longitudinal, lateral, and attitude dynamics

Define the longitudinal and lateral position error vectors epi = [ epi ėpi ] (i = 1, 2). If the decay of the

attitude tracking error eq to 0 is much faster than the convergence of the translational position errors

epi (i = 1, 2) to 0 and thereby the attitude error dynamics can be ignored in the translational dynamics

analysis, one can obtain the following expressions by substituting (26) and (27) into (25) as

ėpi = Apiepi +Bpi(1− Φpi)Δfi, i = 1, 2, (32)

where

Api =

[
0 1

−kppi −kdpi

]
, Bpi =

[
0

1

]
.

The details on how to achieve the condition that the convergence of eq to 0 is much faster than that of

eq will be discussed at the end of this subsection. Now, the tracking properties of the longitudinal and

lateral control systems can be summarized by the following theorem.

Theorem 2. For given positive constants εpi (i = 1, 2) and the given bounded initial tracking errors

epi (i = 1, 2), there exist positive constants T ∗
pi and g∗pi (i = 1, 2), such that for gpi > g∗pi and t � T ∗

pi, the

position tracking errors epi (i = 1, 2) are bounded and satisfy |epi(t)| � εpi (i = 1, 2).

Theorem 2 can be proven by a similar way to Theorem 1. Therefore, there also exist positive constants

ηepi and ηΔfi (i = 1, 2), such that

‖epi‖∞ � ηepi,

‖Δfi‖∞ � ηΔfi, i = 1, 2.
(33)

Let eτ = [ eTq ėTq ]T. From (30) and (31), one can have

ėτ = Aτeτ +Bτ (I3 − Φτ )Δτ , (34)
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where

Aτ =

[
0 I3

−Kp
τ −Kd

τ

]
, Bτ =

[
0

I3

]
.

The robustness properties of the closed-loop attitude control system can be summarized as follows.

Theorem 3. For a given positive constant ετ and the given bounded initial tracking error eτ (0), there

exist positive constants T ∗
τ and g∗τi (i = x, y, z), such that for gτi > g∗τi and t � T ∗

τ , the attitude tracking

error eτ is bounded and satisfies |eτ (t)| � ετ .

Proof. From (34), one can have

‖eτ‖∞ � ητ(0) + δτ‖Δτ‖∞, (35)

where ητ(0) = supt�0 |eAτ teτ (0)| and δτ = ‖(pI6 −Aτ )
−1

Bτ (I3 − Φτ )‖∞. Similarly to Theorem 1, there

exist positive constants πeτ1, πeτ2, and πcτ such that

‖Δτ‖∞ � πeτ1‖eτ‖∞ + πeτ2 ‖eτ‖2∞ + πcτ . (36)

If the following inequalities hold

(
√

δτ + δτ )
−1 � πeτ1 + πeτ2‖eτ‖∞, (37)

from (35) and (36), one obtains

‖Δτ‖∞ �
√
δ−1
τ ητ(0) + (1 +

√
δτ )πcτ . (38)

In this case, combining (35) and (38), one has

‖eτ‖∞ � ητ(0) +
√
δτ (ητ(0) +

√
δτπcτ + δτπcτ ). (39)

From the above expression, it can be seen that the tracking error eτ is bounded. Actually, the inequal-

ity (37) results in the attractive region of eτ as

{
eτ : ‖eτ‖∞ � π−1

eτ2(
√

δτ + δτ )
−1 − π−1

eτ2πeτ1

}
. (40)

It can be observed that there exist positive constants g∗1τi (i = x, y, z), such that for gτi > g∗1τi , the
following inequalities hold

‖eτ (0)‖∞ � π−1
eτ2(

√
δτ + δτ )

−1 − π−1
eτ2πeτ1,

ητ(0) +
√
δτ (ητ(0) +

√
δτπ

′
cτ + δτπ

′
cτ ) � π−1

eτ2(
√
δτ + δτ )

−1 − π−1
eτ2πeτ1,

(41)

then eτ can remain inside this attractive region and thus (40) holds. In this case, from (34) and (38),

one can obtain

max
j

|eτ,j| � max
l

∣∣cT6,jeAτ teτ (0)
∣∣+√

δτ (ητ(0) +
√
δτπcτ + δτπcτ ). (42)

Therefore, it can be seen from the above inequality that, for a given positive constant ετ and a given

initial state eτ (0), there exist positive constants T ∗
τ and g∗τi (i = x, y, z), such that for gτi > g∗τi � g∗1τi ,

the attitude tracking error eτ is bounded and satisfies maxj |eτ,j| � ετ , ∀t � T ∗
τ .

4 Simulation results

In this section, the vehicle is required to track the sine wave references with approximate 20 deg. amplitude

for the three positions, simultaneously. The helicopter nominal parameters are selected as (standard
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Figure 3 (Color online) Position responses with RCT. (a) Longitudinal response; (b) latitudinal response; (c) height

response.
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Figure 4 (Color online) Attitude responses with RCT. (a) Response of q0(t); (b) response of q1(t); (c) response of q2(t);

(d) response of q3(t).

unit): mN = 2, JN = diag(1.25, 1.25, 2.5), lNrc = 0.2, and kNfm = 1. The robust controller parameters

are selected as: kpp1 = 2, kpp2 = 2, kpp3 = 10, kdp1 = 1, kdp2 = 1, kdp3 = 25, kpτx = 20, kpτy = 20,

kpτz = 10, kdτx = 100, kdτy = 100, kdτz = 25, gp1 = 50, gp2 = 50, gp3 = 50, gτx = 500, gτy = 500,

and gτz = 100. Vehicle parameters are assumed to be 40% larger than the nominal parameters, and

quadrotor is subject to external bounded disturbances as: dτ1= 0.2 sin(t), dτ2= 0.2 sin(t), dτ3= 0.2 sin(t),

df1= 0.2 sin(t), df2= 0.2 sin(t), and df3=sin(t).

The unmanned vehicle starts from pI(0) = (0, 0, 0) and pIx, pIy, and pIz are needed to track prIx,

prIy, and prIz, respectively. The position responses and attitude responses are depicted in Figure 3 and

Figure 4, respectively. In contrast, the corresponding attitude and position responses without the RCT

are given in Figure 5 and Figure 6, respectively. Position tracking errors and attitude errors are compared

in Figure 7 and Figure 8, respectively. It can be observed that the tracking errors are improved especially

in the longitudinal and latitudinal position channel by the additive inputs based on the RCT.
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Figure 5 (Color online) Position responses without RCT. (a) Longitudinal response; (b) latitudinal response; (c) height

response.
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Figure 6 (Color online) Attitude responses without RCT. (a) Response of q0(t); (b) response of q1(t); (c) response of

q2(t); (d) response of q3(t).

5 Conclusion

Robust trajectory tracking control was achieved for uncertain quadrotors based on the unit quaternion

representations to avoid the singularity problem. A robust nonlinear controller was constructed consisting

of an attitude controller and a position controller. Although the quadrotor is subject to parameter

uncertainties, nonlinearities, and external disturbances, the tracking errors of the closed-loop system are

proven to converge into given neighborhoods of the origin ultimately. Simulation results demonstrated

the effectiveness of the designed control method.

This paper only presents the simulation results for the proposed closed-loop control system. The

designed robust control approach will be implemented in the quadrotor experimental platform to validate

its advantages.
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Figure 7 (Color online) Position tracking error comparison. (a) Tracking error in the longitudinal channel; (b) tracking

error in the latitudinal channel; (c) tracking error in the height channel.
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Figure 8 (Color online) Control inputs. (a) Control inputs in the pitch channel; (b) control inputs in the roll channel;

(c) control inputs in the height channel; (d) control inputs in the yaw channel.
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