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Abstract In propositional normal default logic, given a default theory (∆, D) and a well-defined ordering of

D, there is a method to construct an extension of (∆, D) without any injury. To construct a strong extension of

(∆, D) given a well-defined ordering of D, there may be finite injuries for a default δ ∈ D. With approximation

deduction ⊢s in propositional logic, we will show that to construct an extension of (∆,D) under a given well-

defined ordering of D, there may be infinite injuries for some default δ ∈ D.

Keywords default, extension, strong extension, finite/infinite injury priority method, recursively enumerable

sets

Citation Li W, Sui Y F, Wang Y H. The propositional normal default logic and the finite/infinite injury priority

method. Sci China Inf Sci, 2017, 60(9): 092107, doi: 10.1007/s11432-016-0551-5

1 Introduction

Finite injury priority method was firstly given by Friedberg [1] and Muchnik [2], who solved Post problem

independently. To construct a recursively enumerable set, the conditions that the set should satisfy are

represented by an infinite set of requirements which are decomposed into the positive ones (putting

elements in the set) and the negative ones (restraining elements from entering the set). The requirements

are ordered by a priority ranking, so that the satisfaction of a requirement may injure those with lower

priority and cannot injure those with higher priority [3, 4].

Traditional logics are monotonic, which means that the deduction in traditional logics are monotonic,

that is, for any theories Γ,∆ and formula ϕ, if ϕ is deducible from Γ and Γ is a subtheory of ∆ then

ϕ is deducible from ∆. Nonmonotonic logics [5, 6] are a class of logics in which the deductions are

nonmonotonic. For example, in default logic [7–10], an extension E of a default theory (∆, D) may not

be an extension of (∆′, D), where ∆′ ⊃ ∆, and may not be an extension of (∆, D′), where D′ ⊃ D, where

∆ is a theory and D is a set of defaults.
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To deduce an extension E of a default theory (∆, D) under a well-defined ordering on D, the process

is a construction with finite injuries [11–13]. Even though for propositional normal default logic, finite

injuries occurs in the following two ways.

• The deduction is an approximate one ⊢s, so that some default δ = ϕ ψ with higher priority may

require attention after some δ′ = ϕ′  ¬ψ with lower priority does, so that ¬ψ having been enumerated

in an extension E may be extracted from E, to enumerate ψ in E instead.

• To construct a strong extension S of a default theory (∆, D), receiving attention of a default δ =

ϕ  ψ may result in some ψ′ s extracted from E to make the constructed E be an extension. Here, a

strong extension is the one with highest priority, that is, for any extension E of (∆, D), there is the least

δ = ϕ ψ such that for any δ′ = ϕ′  ψ′ ≺ δ, ψ′ ∈ E iff ψ′ ∈ S and ψ ∈ S − E.

In this paper we will give three constructions of extensions, given a propositional normal default theory

(∆, D).

⋄ To construct an extension E with deduction ⊢ of propositional logic, where the construction is

without finite injuries [14].

⋄ To construct a strong extension S under an well-defined ordering ≺ on D, where the construction is

with finite injuries.

⋄ To construct an extension E with approximate deduction ⊢s. Even though deduction ⊢ in proposi-

tional logic is recursive (computable), approximate deduction provides a deduction with which approxi-

mate complexity can be considered. Here, the construction is with infinite injuries.

The paper is organized as follows: Section 2 gives basic definitions in default logic and introduces finite

injury priority method in recursion theory; Section 3 gives a construction with oracle for an extension of

a default theory; Section 4 gives a construction for a strong extension of a default theory; Section 5 gives

a recursive construction with approximate deduction and infinite injury priority method, and Section 6

concludes the whole paper.

2 Basic definitions in default logic

Let L be a logical language of propositional logic.

A normal default δ is any expression of form
ϕ : ψ

ψ
, denoted by ϕ  ψ, where ϕ, ψ are formulas in

propositional logic. Here ϕ is called the prerequisite, ψ the justifications, and the consequent of δ.

A default theory is a pair (∆, D), where ∆ is a set of closed formulas and D is a set of defaults.

Given a default theory (∆, D), an extension of (∆, D) can be derived by applying as many defaults as

consistently possible. Given a default theory (∆, D), assume that there is a well-founded ordering ≺ on

D and D≺ = {ϕ0  ψ0, ϕ1  ψ1, . . .}. Define

E0 = ∆, Ei+1 = Ei ∪ {ψj}, E =
⋃

i∈ω

Ei,

where j is least such that Ei ⊢ ϕj and Ei 6⊢ ¬ψj . Then, E is an extension of (∆, D), denoted by

E = f(∆, D≺).

A normal default theory has at least one extension.

Proposition 1. Let E be an extension of a default theory (∆, D). Then, E is ⊆-maximal, that is,

there is no consistent superset E′ ⊇ E such that each formula ϕ ∈ E′ is produced by formulas in ∆ and

defaults in D.

Definition 1. Given a default theory (∆, D), a theory Θ is a pseudo-extension of (∆, D) if Θ is the

⊆-least theory such that

(i) ∆ ⊆ Θ, and

(ii) for any δ =
ϕ : ψ

θ
∈ D, if Θ ⊢ ϕ and Θ 6⊢ ¬ψ imply Θ ⊢ θ.

We define an ordering on the set of all the pseudo-extensions of a default theory, assuming that there

is an ordering 6 on the set D = {δ0, δ1, . . .} of defaults. Without loss of generality, we assume that

δ0 < δ1 < · · · . For simplicity, we say that ψ0 < ψ1 < · · · .
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Given two pseudo-extensions E1 = {θ10, θ11, θ12, . . .} and E2 = {θ20, θ21, θ22, . . .}, we say that E1 has

higher priority than E2, denoted by E1 ≺ E2, if there is i such that for each j < i, θ1j = θ2j and θ1i < θ2i.

A pseudo-extension E of a default theory (∆, D) is of the highest priority if for any pseudo-extension

E′ of (∆, D), E � E′.

Before giving a construction of extensions, we give the following classical construction in recursion

theory by finite injury priority method.

Theorem 1 (Friedberg-Muchnik, [4], p111). There is a simple set A which is low (A′ ≡T ∅′).

Proof. It suffices to construct a coinfinite recursively enumerable set A to meet for all e the requirements:

Pe :We infinite ⇒We ∩ A 6= ∅;

Ne : ∃∞s({e}As
s (e) ↓) ⇒ {e}A(e)↓.

Let As consist of the elements enumerated in A by the end of stage s, and A =
⋃

sAs.

The priority ranking is assumed to be

N0, P0, N1, P1, . . . .

The requirements {Ne}e∈ω guarantee A′ 6T ∅′. Define recursive function g by

g(e, s) =

{

1, if {e}As
s (e) ↓,

0, otherwise.

If requirement Ne is satisfied for all e then ĝ(e) = lims g(e, s) exists for all e, and ĝ 6T ∅′. Because

ĝ = χA′ , A′ 6T ∅′.

The restraint function is defined by

r(e, s) = u(As; e, e, s).

To meet Ne we attempt to restrain with priority Ne any elements x 6 r(e, s) from entering As+1.

Construction of A.

Stage s = 0. Let A0 = ∅.

Stage s+ 1. Given As we have r(e, s) for all e. Choose the least i 6 s such that

(1) Wi,s ∩ As = ∅;

(2) ∃x(x ∈Wi,s & x > 2i & ∀e 6 i(r(e, s) < x)).

If i exists, choose the least x satisfying (2). Enumerate x in As+1, and say that requirement Pi receives

attention. Hence, Wi,s ∩ As+1 6= ∅, so Pi is satisfied, (1) fails for stages > s + 1, and Pi never again

receives attention. If i does not exist, do nothing, so As+1 = As.

Let A =
⋃

sAs. This ends the construction.

We say that x injures Ne at stage s+ 1 if x ∈ As+1 −As and x 6 r(e, s).

Define the injury set for Ne as follows:

Ie = {x : ∃s(x ∈ As+1 −As & x 6 r(e, s))}.

Lemma 1. For any e, Ie is finite.

Proof. Each positive requirement Pi contributes at most one element to A by (1). By (2), Ne can be

injured by Pi only if i < e. Hence, |Ie| 6 e.

Lemma 2. For every e, requirement Ne is met and r(e) = lims r(e, s) exists.

Proof. Fix e. By Lemma 1, choose stage se such that Ne is not injured at any stage s > se. However, if

{e}As
s (e) converges for s > se then by induction on t > s, r(e, t) = r(e, s) and {e}At

t (e) = {e}As
s (e) for all

t > s, so As ↾ r(e, s) = A ↾ r(e, s), and hence {e}A(e) is defined.

Lemma 3. For every i, requirement Pi is met.
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Proof. Fix i such that Wi is infinite. By Lemma 2, choose s such that

∀t > s∀e 6 i(r(e, t) = r(e)).

Choose s′ > s such that no Pj , j < i, receives attention after stage s′, and t > s′ such that

∃x(x ∈Wi,t & x > 2i & ∀e 6 i(r(e) < x)).

Now either Wi,t ∩ At 6= ∅ or Pi receives attention at stage t+ 1. In either case Wi,t ∩ At+1 6= ∅, so Pi is

met by the end of stage t+ 1.

Ā is infinite by (2), hence A is simple and low.

3 Construction of an extension without injury

Let D = {δ0, δ1, . . .}, where δe = ϕe  ψe. We construct in stages a set Θ of formulas such that Θ0 = ∆,

and Θ =
⋃

iΘi is a pseudo-extension of (∆, D).

It suffices to meet for each e the following requirements:

Pe : Θe ⊢ ϕe&Θe 6⊢ ¬ψe ⇒ Θe ⊢ ψe,

Ne : Θe is consistent.

Define

Θs ↾ e = {ψe′ ∈ Θs : e
′ < e}.

The priority ranking of requirements is defined by

P0, N0, P1, N1, . . . , Pe, Ne, . . . .

A requirement Pe requires attention at stage s + 1 if Θs ⊢ ϕe,Θs⌈e 6⊢ ¬ψe and Θs⌈e 6⊢ ψe, where ⊢ is

approximation deduction of ⊢ .

A requirement Pe is satisfied at stage s+ 1 if Θs ⊢ ϕe and Θs 6⊢ ¬ψe imply Θs ⊢ ψe.

The construction.

Stage s = 0. Define Θ0 = ∆.

Stage s+ 1. Find the least e 6 s such that Pe requires attention. Set Θs+1 = Θs ∪ {ψe}. We say that

Pe receives attention.

Define

Θ = lim
s→∞

Θs.

This ends the construction.

Lemma 4. For each e, if Θ ⊢ ϕe and Θ 6⊢ ψe then there is a stage se at which Pe is satisfied.

Proof. Assume that Θ ⊢ ϕe and Θ 6⊢ ¬ψe. There is a stage se such that Pe requires attention at stage

s > se, Θse+1 ⊢ ψe, and Pe is satisfied, and for any t > se, Pe never require attention. That is, Pe is

eventually satisfied.

Lemma 5. Θ is an extension of (∆, D).

Proof. By Lemma 4, each positive requirement Pe is satisfied. Θ is an extension of (∆, D), because for

any δ = ϕ ψ ∈ D, if Θ ⊢ ϕ and Θ 6⊢ ¬ψ then there is a stage s such that each Pe with higher priority

than δ is satisfied eventually, Θ ⊢ ϕ, and Pδ receives attention at stage s+ 1. That is, ψ ∈ Θs+1, and for

any t > s, ψ ∈ Θt+1, i.e., ψ ∈ Θ.

In the following we give a Gentzen-typed deduction system for default logic: assume that for any

ϕ ψ ∈ D1, either ∆ 6⊢ ϕ,∆ ⊢ ¬ψ, or ∆ ⊢ ψ.
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The deduction system L consists of the following rules:

(A)
∆ ⊢ p ∆ 6⊢ ¬q

∆|D1, p q,D2 ⇒ ∆, q|D1,D2

(∧L)

∆|D1, ϕ1  ψ,D2 ⇒ ∆, ψ|D1,D2

∆|D1, ϕ2  ψ,D2 ⇒ ∆, ψ|D1,D2

∆|D1, ϕ1 ∧ ϕ2  ψ,D2 ⇒ ∆, ψ|D1,D2

(∧R)

∆|D1, ϕ  ψ1,D2 ⇒ ∆, ψ1|D1, D2

∆|D1, ϕ  ψ2,D2 ⇒ ∆, ψ2|D1, D2

∆|D1, ϕ  ψ1 ∧ ψ2,D2 ⇒ ∆, ψ1 ∧ ψ2|D1, D2

(∨L

1
)

∆|D1, ϕ1  ψ,D2 ⇒ ∆, ψ|D1,D2

∆|D1, ϕ1 ∨ ϕ2  ψ,D2 ⇒ ∆, ψ|D1, D2

(∨R

1
)

∆|D1, ϕ ψ1,D2 ⇒ ∆, ψ1|D1,D2

∆|D1, ϕ ψ1 ∨ ψ2,D2 ⇒ ∆, ψ1 ∨ ψ2|D1,D2

(∨L

2
)

∆|D1, ϕ2  ψ,D2 ⇒ ∆, ψ|D1,D2

∆|D1, ϕ1 ∨ ϕ2  ψ,D2 ⇒ ∆, ψ|D1, D2

(∨R

2
)

∆|D1, ϕ ψ2,D2 ⇒ ∆, ψ2|D1,D2

∆|D1, ϕ ψ1 ∨ ψ2,D2 ⇒ ∆, ψ1 ∨ ψ2|D1,D2

;

and
(A′)

∆ ⊢ p ∆ ⊢ ¬q

∆|D1, p q,D2 ⇒ ∆|D1, D2

(∧1

L
)

∆|D1, ϕ1  ψ,D2 ⇒ ∆|D1,D2

∆|D1, ϕ1 ∧ ϕ2  ψ,D2 ⇒ ∆|D1, D2

(∧1

R
)

∆|D1, ϕ  ψ1,D2 ⇒ ∆|D1,D2

∆|D1, ϕ ψ1 ∧ ψ2,D2 ⇒ ∆|D1,D2

(∧2

L
)

∆|D1, ϕ2  ψ,D2 ⇒ ∆, |D1,D2

∆|D1, ϕ1 ∧ ϕ2  ψ,D2 ⇒ ∆|D1, D2

(∧2

R
)

∆|D1, ϕ  ψ2,D2 ⇒ ∆|D1,D2

∆|D1, ϕ ψ1 ∧ ψ2,D2 ⇒ ∆|D1,D2

(∨L)

∆|D1, ϕ1  ψ,D2 ⇒ ∆|D1,D2

∆|D1, ϕ2  ψ,D2 ⇒ ∆|D1,D2

∆|D1, ϕ1 ∨ ϕ2  ψ,D2 ⇒ ∆|D1,D2

(∨R)

∆|D1, ϕ  ψ1,D2 ⇒ ∆|D1, D2

∆|D1, ϕ  ψ2,D2 ⇒ ∆|D1, D2

∆|D1, ϕ  ψ1 ∨ ψ2,D2 ⇒ ∆|D1, D2.

Definition 2. ∆|D ⇒ Θ is provable in L, denoted by ⊢L ∆|D ⇒ Θ, if there is a sequence ∆1|D1 ⇒

∆′
1|D

′
1, . . . ,∆n|Dn ⇒ ∆′

n|D
′
n such that ∆n|Dn ⇒ ∆′

n|D
′
n = ∆|D ⇒ Θ, and for each i 6 n, there is j < i

such that
∆j |Dj⇒∆′

j|D
′

j

∆i|Di⇒∆′

i
|D′

i

is a deduction rule.

Proposition 2. Assume that for any ϕ  ψ ∈ D1, either ∆ 6⊢ ϕ,∆ ⊢ ¬ψ, or ∆ ⊢ ψ. If ∆ ⊢ ϕ then

either

⊢L ∆|D1, ϕ ψ,D2 ⇒ ∆, ψ|D1, D2

or

⊢L ∆|D1, ϕ ψ,D2 ⇒ ∆|D1, D2.

Theorem 2 (The soundness theorem). For any default theory (∆, D), if there is a theory Θ such that

∆|D ⇒ Θ is provable in L then Θ is an extension of (∆, D).

Theorem 3 (The completeness theorem). For any default theory (∆, D) and an extension E of (∆, D),

there is an ordering � such that

⊢L ∆|D� ⇒ Θ.

4 Construction of a strong extension with finite injury priority method

Consider the following example.

Example 1. Let ∆ = {p, r} and D = {s q, p ¬q, r  s}. Assume that

s q ≺ p ¬q ≺ r s.

Traditionally we have

p, r|s q, p ¬q(∗), r  s

⇒ p, r,¬q|s q, p ¬q, r  s(∗)

⇒ p, r,¬q, s|s q(∗), p ¬q, r  s;

and {p, r,¬q, s} is a pseudo-extension, where (∗) marks the default active at the current stage.

We hope to have

p, r|s q, p ¬q(∗), r  s

⇒ p, r,¬q|s q, p ¬q, r  s(∗)

⇒ p, r,¬q, s|s q(∗), p ¬q, r  s

⇒ p, r, q, s|s q(∗), p ¬q, r  s,
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and {p, r,¬q, s} is a pseudo-extension. We think that under ordering ≺, {p, r, q, s} is better than {p, r,

¬q, s}.

Definition 3. Given an ordering ≺ on D, an extension S of default theory (∆, D) is strong if S is an

extension of (∆, D) and for any other extension E of (∆, D), there is an e such that for any e′ < e, ψe′ ∈ E

iff ψe′ ∈ S, and ψe ∈ S − E.

Let D = {δ0, δ1, . . .}.We will construct in stages a set Θ of formulas such that Θ0 = ∆, and Θ =
⋃

iΘi

is a strong pseudo-extension of (∆, D).

It suffices to meet for each e the following requirements:

Pe : Θ ⊢ ϕe&Θ 6⊢ ¬ψe ⇒ Θ ⊢ ψe,

Ne : Θe is consistent,

where δe = ϕe  ψe.

The priority ranking of requirements is defined by

P0, N0, P1, N1, . . . , Pe, Ne, . . . .

A requirement Pe requires attention at stage s+ 1 if there are e1, . . . , ek > e such that

(i) Θs − {ψe1 , . . . , ψek} ⊢ ϕe,Θs − {ψe1 , . . . , ψek} 6⊢ ¬ψe and Θs − {ψe1 , . . . , ψek} 6⊢ ψe, and

(ii) for each k′ 6 k,Θs ∪ {ψe} − {ψe1 , . . . , ψek} ⊢ ¬ψek′
.

A requirement Pe is satisfied at stage s+ 1 if Θs ⊢ ϕe,Θs 6⊢ ¬ψe and Θs ⊢ ψe.

The construction.

Stage s = 0. Define Θ0 = ∆.

Stage s + 1. Find the least e 6 s such that Pe requires attention. Define Θs+1 = (Θs ∪ {ψe}) −

{ψe1 , . . . , ψek}, and we say that Pe receives attention.

Define

Θ = lim
s→∞

Θs.

This ends the construction.

We say that Pe is injured at stage s+ 1 if ψe ∈ Θs −Θs+1.

Define the injury set of Pe:

Ie = {s : ∃i(ψi ∈ Θs −Θs+1&ϕe ∈ Θs+1 −Θs)}.

Lemma 6. Ie is finite.

Proof. By definition of requiring attention, for any s, if s ∈ Ie then there is an i < e such that

ψi ∈ Θs −Θs+1.

Lemma 7. For each e, there is a stage se such that for any s > se, if Pe requires attention at s + 1

then Pe is satisfied eventually.

Proof. Assume that Θ ⊢ ϕe and Θ 6⊢ ¬ψe. By Lemma 6, there is a stage se such that Pe′ for no e
′ < e

requires attention after se. Then, Pe requires attention at stage s > se such that Θ ⊢ ϕe, and Pe is

satisfied, and for any t > s, Pe never require attention. That is, Pe is eventually satisfied.

Lemma 8. Θ is an extension of (∆, D).

Proof. By Lemma 8, each positive requirement Pe is satisfied. Θ is an extension of (∆, D), because for

any δ = ϕ ψ ∈ D, if Θ ⊢ ϕ and Θ 6⊢ ¬ψ then there is a stage s such that each Pe with higher priority

than δ is satisfied eventually, Θ ⊢ ϕ, and Pδ receives attention at stage s+ 1. That is, ψ ∈ Θs+1, and for

any t > s, ψ ∈ Θt+1, i.e., ψ ∈ Θ.

Lemma 9. Θ has the highest priority, that is, for any pseudo-extension E of (∆, D), Θ � E, that

is, there is a formula ϕ such that E[≺ ϕ] = Θ[≺ ϕ] and ϕ ≺ ψ for any ψ ∈ E − E[≺ ϕ], where

E[≺ ϕ] = {ψ ∈ E : ψ ≺ ϕ}.

Proof. By the construction.
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5 Construction with infinite injury priority method

When we use approximate deduction ⊢s instead of ⊢, we have a construction of a pseudo-extension with

infinite injury priority method.

The Gentzen deduction system for approximation reasoning.

• Axiom:

Γ, ϕ⇒0 ϕ,∆.

• Logical rules:

Γ, ϕ⇒s ∆

Γ, ϕ ∧ ψ ⇒s+1 ∆
(∧L1)

Γ ⇒s ϕ,∆ Γ ⇒s ψ,∆

Γ ⇒s+1 ϕ ∧ ψ,∆
(∧R)

Γ, ψ ⇒s ∆

Γ, ϕ ∧ ψ ⇒s+1 ∆
(∧L2)

Γ, ϕ⇒s ∆ Γ, ψ ⇒s ∆

Γ, ϕ ∨ ψ ⇒s+1 ∆
(∨L)

Γ ⇒s ψ,∆

Γ ⇒s+1 ϕ ∨ ψ,∆
(∨R2)

Γ ⇒s ϕ,∆

Γ ⇒s+1 ϕ ∨ ψ,∆
(∨R1)

Γ ⇒s ϕ,∆ Γ, ψ ⇒s ∆

Γ, ϕ→ ψ ⇒s+1 ∆
(→L)

Γ, ϕ⇒s ψ,∆

Γ ⇒s+1 ϕ→ ψ,∆
(→R)

Γ ⇒s ϕ,∆

Γ,¬ϕ⇒s+1 ∆
(¬L)

Γ, ϕ⇒s ∆

Γ ⇒s+1 ¬ϕ,∆
(¬R).

Definition 4. A sequent Γ ⇒ ∆ is s-deducible, denoted by ⊢s Γ ⇒ ∆, if there is a sequence Γ ⇒i0

∆, . . . ,Γn ⇒in ∆n which is a proof and Γn = Γ,∆n = ∆, and for each i 6 n, in 6 s.

Intuitively, a sequent Γ ⇒ ∆ is s-deducible if there is a deduction tree for Γ ⇒ ∆ with depth 6 s.

Proposition 3. (i) For any sequent Γ ⇒ ∆, if ⊢s Γ ⇒ ∆ then ⊢ Γ ⇒ ∆.

(ii) For any sequent Γ ⇒ ∆, if ⊢ Γ ⇒ ∆ then there is an s ∈ ω such that

⊢s Γ ⇒ ∆.

Therefore, ⊢ is the limit of {⊢s: s ∈ ω}, i.e., ⊢= lims→∞ ⊢s .

Assume that at stage s + 1,Θs ⊢s ¬ϕe,Θs 6⊢s ¬ψe, and Pe receives attention by putting ψe in Θs+1.

At a stage t+1 > s+1, we find that Θs ⊢t ¬ψe, and then we need extract ψe out of Θt+1 to ensure that

the constructed Θ is consistent. In this case, we say that Pe is injured by itself.

There is the following case in which Pe is injured infinitely often.

At some stage s0+1, Pe requires attention and ψe is put in Θs0+1, because Θs0 ⊢s0 ϕe and Θs0 6⊢s0 ¬ψe.

At some stage t0 + 1 > s0 + 1, some ψ in Θs0+1 is extracted out of Θs0+1 so that Θs0+1 6⊢t0+1 ϕe, and

ψe is extracted out of Θt0+1 at stage t0 + 1.

At some stage s1 + 1 > t0 + 1, Pe requires attention again and ψe is put in Θs1+1, because Θs1 ⊢s1 ϕe

and Θs1 6⊢s1 ¬ψe.

At some stage t1 + 1 > s1 + 1, some ψ in Θs1+1 is extracted out of Θs1+1 so that Θs1+1 6⊢t1+1 ϕe, and

ψe is extracted out of Θt1+1 at stage t1 + 1.

And so on.

In this way, ψe is put in and extracted out of Θ infinitely often. In this case, Pe is injured infinitely

often by other requirements.

Define

Θ = lim
s→∞

Θs = {ψe : ∃s∀t > s(ψe ∈ Θt)}.

Hence, ψe 6∈ Θ iff ∀s∃t > s(ψe 6∈ Θt).

Example 2. Let

∆ = {r1, r2, . . . , s1, s2, . . .}, D = {p q, r1  p ∧ q1, r2  p ∧ q2, . . .},
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where

s1 = r1 → ¬q1, s2 = r1 → (r2 → (r3 → ¬q2)), si = r1 → (· · · (r2i−2 → (r2i−1 → ¬qi)) · · · ).

Then,

∆ ⊢0 r1,∆ 6⊢0 ¬(p ∧ q1)

∆ ⊢1 ¬q1;

∆ ⊢2 r2,∆ 6⊢1 ¬(p ∧ q2)

∆ ⊢3 ¬q2;

∆ ⊢2i ri,∆ 6⊢2i−1 ¬(p ∧ qi)

∆ ⊢2i+1 ¬qi;

· · ·

Let

[ϕ] : ϕ is enumerated in Θ, 〈ϕ〉 : ϕ is extracted from Θ.

At stage s = 0,Θ0 = ∆; at stage s = 1,Θ0 ⊢1 r1,Θ0 6⊢1 ¬(p ∧ q1), and [p ∧ q1], [q], i.e., Θ1 =

Θ0 ∪ {p ∧ q1, q}; at stage s = 2,Θ1 ⊢2 ¬q1, and 〈p ∧ q1〉, 〈q〉, i.e., Θ2 = Θ1 − {p ∧ q1, q}; at stage

s = 3,Θ2 ⊢3 r2,Θ2 6⊢3 ¬(p∧ q2), and [p∧ q2], [q], i.e., Θ3 = Θ2∪{p∧ q2, q}; at stage s = 4,Θ3 ⊢4 ¬q2, and

〈p∧ q2〉, 〈q〉, i.e., Θ4 = Θ3 −{p∧ q1, q}; at stage s = 2i− 1,Θs−1 ⊢s ri,Θs−1 6⊢s ¬(p∧ qi), and [p∧ qi], [q],

i.e., Θs = Θs−1 ∪ {p ∧ qi, q}; at stage s = 2i,Θs−1 ⊢s ¬qi, and 〈p ∧ qi〉, 〈q〉, i.e., Θs = Θs−1 − {p ∧ qi, q}.

Then, Θ = lims→∞ Θs = ∆, that is, p is enumerated in Θ and extracted out of Θ infinitely often.

Given a default theory (∆, D), we will construct a theory Θ in stages such that for any default ϕ  

ψ ∈ D, if Θ ⊢ ϕ and Θ 6⊢ ¬ψ then ψ ∈ Θ.

The construction is in stages with approximation deductions Θs ⊢s ϕi and Θs 6⊢s ¬ψi.

It suffices to meet for each e the following requirements:

Pe : Θ ⊢ ϕe&Θ 6⊢ ¬ψe ⇒ ϕe ∈ Θ;

Ne : Θ ⊢ ϕe&Θ ⊢ ¬ψe ⇒ ϕe¬ ∈ Θ.

The priority ranking of requirements is defined by

P0, N0, P1, N1, . . . , Pe, Ne, . . .

If {Θs : s ∈ ω} is a sequence satisfying all the requirements then Θ =
⋃

s Θs is an extension of (∆, D).

A requirement Pe requires attention at stage s+ 1 if Θs ⊢s+1 ϕe,Θs 6⊢s+1 ¬ψe and ψe 6∈ Θs.

By the condition of Pe requiring attention, for any i with ψi ∈ Θs,Θs ∪ {ψe} 6⊢ ¬ψi, otherwise,

Θs ⊢ ¬ψe, a contradiction.

A requirement Pe is satisfied at stage s+1 if Θs ⊢s+1 ϕe and ψe ∈ Θs; and a requirement Ne requires

attention at stage s+ 1 if Θs ⊢s+1 ¬ψe.

The construction.

Stage s = 0. Define Θ0 = ∆.

Stage s+ 1. Find the least e such that Pe or Ne requires attention.

If Pe requires attention then define Θs+1 = Θs ∪ {ψe}, and we say that Pe receives attention.

If Ne requires attention then let se be the stage at which ψe is enumerated in Θse+1, and {ψi1 , . . . , ψin}

be the set of all the ψs enumerated in Θ between se and s, define

Θs+1 = Θs − {ψi1 , . . . , ψin},

and we say that Ne receives attention.

Define

Θ = lim
s→∞

Θs = {ψ : ∃s∀t > s(ψ ∈ Θt)}.
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Table 1 R-calculus and default logic

Condition Consequence

R-calculus
∆ ⊢ ¬ϕ ∆|ϕ,Γ ⇒ ∆|Γ

∆ 6⊢ ¬ϕ ∆|ϕ,Γ ⇒ ∆, ϕ|Γ

Default logic
E ⊢ ϕ&E ⊢ ¬ψ E|ϕ ψ ⇒ E

E ⊢ ϕ&E 6⊢ ¬ψ E|ϕ ψ ⇒ E,ψ

This ends the construction.

We say that Pe is injured at stage s+ 1 if ϕe ∈ Θs −Θs+1. Define the injury set for Pe as follows:

Ie = {s+ 1 : ϕe ∈ Θs −Θs+1)}.

Lemma 10. Ie may be infinite.

Proof. By Example 2.

Lemma 11. Θ = lims→∞ Θs+1 exists, and requirement Pe is met.

Proof. Fix e. Either ψe is enumerated in Θs+1 eventually or finitely often, or infinitely often. In the

first case, ψe ∈ Θ, and Θ ⊢ ϕe; in the second case, Pe requires attention only finitely often, and either

Θ 6⊢ ϕe or Θ ⊢ ¬ψe; and in the third case, Θ 6⊢ ϕe.

Lemma 12. For every e, requirement Ne is met.

Proof. Fix e. Either ψe is enumerated in Θs+1 eventually, or finitely often, or infinitely often. In the

first case, ψe ∈ Θ, Θ ⊢ ϕe, and Ne is satisfied eventually; in the second case, Pe requires attention only

finitely often, and either Θ 6⊢ ϕe or Θ ⊢ ¬ψe, and Ne is satisfied eventually; and in the third case, Θ 6⊢ ϕe,

and Ne is satisfied eventually.

6 Conclusion

In this paper we use finite injury priority method and infinite injury priority method in recursion theory

to construct extensions, pseudo-extensions and approximate extensions of default theories to show the

versatility of the famous methods.

The similarity of R-calculus and default logic consists in that both are non-monotonic; and differences

between them are shown in Table 1.

In R-calculus, ϕ being put in ∆ does not interfere the satisfaction of other formulas in Γ; and in default

logic, ψ being put in E may make the satisfaction of other defaults ϕ′  ψ′ unsatisfied, because E 6⊢ ¬ψ′

becomes E ⊢ ¬ψ′.

Therefore, in the propositional case, deductions in R-calculus have no injury; and ones in default logic

may have injuries. We conjecture that in each nonmonotonic logic, there is a corresponding finite injury

priority method to construct deduction in that logic.
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