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Abstract In this paper, a resource allocation algorithm for maximizing the weighted sum energy efficiency

(EE) is investigated in orthogonal frequency division multiple access (OFDMA) heterogeneous networks (Het-

Nets). We aim to balance the EE of macro cell and low power nodes by subchannel and power allocations. We

formulate the problem as a nonlinear sum-of-ratios programming issue, and guarantee data rate requirements of

users by using minimum rate constraints. Due to the nonconvexity of the problem, we develop a heuristic sub-

channel assignment algorithm, and then solve the power allocation problem by parameterized transformations

and a first-order approximation based on an iterative algorithm. Numerical results illustrate the convergence

and the effectiveness of the proposed algorithm.
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1 Introduction

Recently, the information and communication technology (ICT) industry is responsible for about 3%–5%

of the worldwide energy consumption, where the mobile communication system is one of the major con-

tributors [1]. The energy-efficient design in wireless networks has therefore attracted increasing attention.

On the other hand, heterogeneous network (HetNet) has been promoted as a key technology to provide

higher throughput and wider coverage, which consists of various radio access nodes such as high power

base stations (BSs) (e.g., macro or micro BSs) and low power BSs (e.g. pico, femto or relay stations) [2].

Also, HetNet can improve system energy efficiency (EE), since the users serviced by the low power BSs

generally suffer lower path losses than macrocell users [3, 4]. However, the low power BSs embedded in

the conventional macro-cellular networks may lead to cross-tier interferences, resulting in more complex

interference management and resource allocation.
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The issue of radio resource allocation in HetNets has been investigated extensively, especially for or-

thogonal frequency division multiple access (OFDMA) multi-tier cellular network. Aiming to maximize

the network capacity, some effective resource allocation and interference management schemes have been

proposed. In [5], a fractional frequency reuse and power control method is proposed to coordinate the

interference and maximize the long term log-scale throughput in HetNet. In [6], a resource allocation

scheme for spectrum-sharing femtocell is investigated, where an interference temperature limit is intro-

duced to protect the macro users from cross-tier interference. In [7], a joint of subchannel and power

allocation is studied for maximizing the sum-rate of femto users with a total throughput guarantee of

macro users. In [8], three distributed resource allocation approaches using different mathematical models

for the heterogeneous multi-tier 5G network are presented. However, most of these works focus merely

on achieving higher system throughput or spectral efficiency, ignoring the EE.

For energy-aware HetNet strategies, Ref. [9] minimizes the total energy consumption of the cellular

system while satisfying users’ data-rate requirements. Based on the high fluctuations in traffic demand

over space and time in HetNets, Refs. [10–12] investigate the BS sleep strategies as well as the partial

spectrum reuse scheme and the BS cooperation methods to reduce the energy cost. In [13], bit-per-

Joule as a metric of EE is introduced to evaluate the system performance, where the authors consider a

heterogeneous cloud radio access network architecture and then propose a soft fractional frequency reuse

scheme. In [14], a game-theoretic power control algorithm for the multisource multirelay cooperative

communication systems has been proposed, where the quality of service (QoS) constraint is formulated

as an energy-efficient utility function. In [15], an interference migration strategy is proposed to deal

with the interference non-uniform distribution phenomenon for maximizing EE. In [16–18], the energy-

efficient user scheduling and power allocation are investigated in homogeneous and heterogeneous cellular

networks. However, we note that different types of BSs have different roles to play in cellular networks,

may be deployed in different scenarios and may have different EE requirements. The macro BSs are

mainly used to provide larger coverage range while the low power BSs are deployed to achieve higher

data rate and EE. Therefore, the weighted sum EE [19], may be a more appropriate EE criterion for the

HetNets than the existing EE criteria used in [9, 13, 15–18].

In this paper, we propose a resource allocation strategy in OFDMA HetNets for maximizing the

weighted sum EE. Such schemes can allow different BSs to have different EE weight factors, and can

also balance the EE between macro BS and low power BSs. We formulate the optimization problem

as a nonlinear sum-of-ratios programming issue [20], which is a mixed nonconvex problem and hard to

be solved in general. Also, we consider the minimum data rate requirement of each user, making the

problem more complex. To make the problem tractable, we first present a heuristic subchannel allocation

algorithm to maximize the weighted sum-EE, and then solve the power allocation problem by some

transformations and an iterative algorithm. Numerical results indicate that the convergence of proposed

algorithm and the tradeoff between the macro BS and low power BSs.

The rest of this paper is organized as follows. In Section 2, we introduce the systemmodel and formulate

the optimization problem. Section 3 presents the solution of the optimization problem and provides an

energy-efficient resource allocation algorithm. Section 4 describes the simulation and numerical results.

Section 5 concludes the paper.

2 System model and problem formulation

Consider the downlink of a two-tier cellular network shown in Figure 1, where M pico BSs are overlaid

on a macrocell with universal frequency reuse. Denote the set of all BSs as M = {0, 1, . . . ,M}, where the

macro BS is indexed by 0. For the pico BSs, closed access is assumed. That is, only subscribing users can

connect to the pico BSs. Denote the set of users associated with BS m as Km, and K = K0 ∪ · · · ∪ KM .

The system bandwidth is divided into N OFDMA subchannels, and we denote the set of subchannels

as N .

The marcocell user equipments (MUEs) suffer cross-tier interference, while the picocell user equipments
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Figure 1 System model with M = 2.

(PUEs) suffer both cross-tier and inter-picocell interference, due to the cochannel deployment. The

received signal to interference and noise ratio (SINR) at user k ∈ Km on subchannel n is given by

γm,k(n) =
pm(n)|hm,(m,k)(n)|

2

∑M

l=0,l6=m pl(n)|hl,(m,k)(n)|2 + σ2
z

, k ∈ Km, m ∈ M, (1)

where pm(n) is the BS m transmit power on subchannel n, and hl,(m,k)(n) is the fading coefficient between

BS l and user k in cell m on subchannel n. σ2
z represents the variance of additive white Gaussian noise

(AWGN) at the receivers.

The overall data rate of cell m can be expressed as

Rm =
∑

k∈Km

∑

n∈N

sm,k(n)B log2 (1 + γm,k(n)) , m ∈ M, (2)

where B is the subchannel bandwidth, and sm,k(n) is the subchannel assignment index. If subchannel n

is allocated to user k in cell m, sm,k(n) = 1, and otherwise sm,k(n) = 0.

For each macrocell or picocell, the power consumption of BS consists of a radio frequency (RF) transmit

power and a fixed circuit power. The power consumption for BS m can be modeled as

Pm =
1

ξm

∑

n∈N

pm(n) + PC
m , m ∈ M, (3)

where ξm and PC
m represent the power amplifier efficiency and the circuit power consumption at BS m,

respectively. In general, the power consumption at macro BS P0 is much larger than that of the pico BSs

Pm, ∀m 6= 0, because the macro BS needs to provide a larger coverage range.

To balance the EE among the macorcell and the picocells, we define a weighted sum-EE as

UWEE =

M
∑

m=0

ωmUEE
m =

M
∑

m=0

ωm

Rm

Pm

. (4)

In (4), ωm denotes the EE weight factor for BS m, which means the level of importance and is determined

by network operators, and UEE
m is the EE of cell m.

Let P = {pm(n) > 0, ∀m,n} and S = {sm,k(n) ∈ {0, 1}, ∀m,n, k} be the power and subchannel

allocation policies, respectively. The BSs jointly determine the P and S to maximize the weighted
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sum-EE. The optimization problem can be formulated by

max
P,S

M
∑

m=0

ωmUEE
m (P ,S)

s.t. C1 :
∑

n∈N

sm,k(n)B log2 (1 + γm,k(n)) > Rmin
m,k, ∀m ∈ M, k ∈ Km,

C2 :
∑

n∈N

pm(n) 6 Pmax
m , ∀m ∈ M,

C3 : pm(n) > 0, ∀m ∈ M, n ∈ N ,

C4 :
∑

k∈Km

sm,k(n) = 1, ∀m ∈ M, n ∈ N ,

C5 : sm,k(n) ∈ {0, 1}, ∀m ∈ M, k ∈ Km, n ∈ N ,

(5)

where Pmax
m is the maximum power constraint for BS m, and Rmin

m,k is the minimum rate constraint for

user k in cell m. C4 and C5 can guarantee that each subchannel is used by only one user in each cell

to avoid intracell interference. Note that there still exist cross-tier interference and co-tier inter-picocell

interference.

3 Solution to the optimization problem

In the problem (5), the objective function is a nonlinear sum-of-ratios function, which is nonconvex.

Also, the constraints are nonconvex due to the existence of cochannel interference. And this problem is

a mixed optimization problem incorporating both integer and continuous optimization variables. Such

an optimization problem is computationally intractable in general, thus difficult to solve with traditional

optimization methods.

To make the problem tractable, we apply a two-step approach. Note that the two-step algorithm

will lead a suboptimal solution for the joint optimization problem (5). However, the convergence of the

conventional iterative algorithms (e.g. [16]) can not be guaranteed due to the minimum rate constraint C1

in (5), and these algorithms also have a higher computational complexity due the iterations between the

subproblems. Considered the realizability and low-complexity, we therefore adopt the following two-step

method. We first present a heuristic subchannel allocation scheme to maximize weighted sum-EE, and

then solve the problem by some effective transformations for the given subchannel allocation.

3.1 Subchannel allocation optimization problem

By simplifying the power allocation P as {pm(n) = Pmax
m /N, ∀m,n}, we can derive an effective subchannel

allocation scheme (i.e., finding S). In this case, the constraints in C2 and C3 are satisfied. Now the

optimization problem in (5) is reduced to

max
S

M
∑

m=0

ωm

Pm

∑

k∈Km

∑

n∈N

sm,k(n)Rm,k(n)

s.t. C1, C4, C5,

(6)

where Rm,k(n) = B log2 (1 + γm,k(n)). When the power allocation P is given, the problem in (6) is

equivalent to a sum-rate maximization problem.

Therefore, each BS needs to maximize sum-rate of the cell by assigning subchannels to users, while

satisfying the minimum rate requirement of each user.

To this end, a heuristic subchannel allocation algorithm is adopted. Let ZN
m be the set of remaining

subchannels in cell m, which is initialized to N . To satisfy the minimum rate requirements of users,

we select the user whose rate is the farthest from its requirement, and allocate the subchannel with the

highest SINR in ZN
m to the user. After the rate requirements of all users are satisfied, we then allocate

subchannels from ZN
m based on maximizing sum-rate of each cell.
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3.2 Power allocation optimization problem

For a given available S (which satisfies C4 and C5), the optimization problem (5) can be rewritten as

max
P

M
∑

m=0

ωmUEE
m (P) s.t. C1, C2, C3. (7)

The problem (7) is a nonlinear sum-of-ratios optimization problem. Define the vectors θ = (θ0, θ1, . . . , θM )

and φ = (φ0, φ1, . . . , φM ). It is known from [20] that if P∗ is the optimal solution to (7), then there exist

θ∗ and φ∗ such that P∗ is a solution to the following problem for θ = θ∗ and φ = φ∗,

max
P

M
∑

m=0

θm(ωmRm − φmPm) s.t. C1, C2, C3, (8)

and P∗ also satisfies the following equations for θ = θ∗ and φ = φ∗,

θm =
1

Pm

,

ωmRm − φmPm = 0, m = 0, 1, . . . ,M.

(9)

Therefore, we can find the optimal P∗ by solving the optimization problem (8). However, the problem

(8) is still a nonconvex problem even for a given (θ,φ), due to the existence of cochannel interference.

We now stack all power variables into a power vector as p = (p0(1), . . . , p0(N), . . . , pM (0), . . . , pM (N)),

and express the objective function in (8) as

F (p, θ,φ) =

M
∑

m=0

θm(ωmRm − φmPm) =

M
∑

m=0

θm

(

ωm

∑

k∈Km

(gm,k − fm,k)− φmPm

)

, (10)

where

gm,k(p) =
∑

n∈N

sm,k(n)B log2

(

M
∑

l=0

pl(n)|hl,(m,k)(n)|
2 + σ2

z

)

, (11)

fm,k(p) =
∑

n∈N

sm,k(n)B log2





M
∑

l=0,l6=m

pl(n)|hl,(m,k)(n)|
2 + σ2

z



 . (12)

Then we use the following first-order Taylor expansion to linearize the objective function and the con-

straints [21]:

fm,k(p) ≈ fm,k(p̄) + ▽fT
m,k(p̄)(p− p̄), (13)

where ▽fT
m,k(p̄) denotes the gradient at an arbitrary p̄. ▽fT

m,k(p) is a vector of length N(M + 1) with

(Nj + n)-th entry as

▽fT
m,k(p)Nj+n =







Bsm,k(n)|hj,(m,k)(n)|
2

(
∑

M
l=0,l 6=m

pl(n)|hl,(m,k)(n)|2+σ2
z) ln 2

, ∀j 6= m;

0, j = m.
(14)

Such that

▽fT
m,k(p̄)(p− p̄) =

M
∑

j=0,j 6=m

∑

n∈N

Bsm,k(n) (pj(n)− p̄j(n)) |hj,(m,k)(n)|
2

(

∑M
l=0,l6=m p̄l(n)|hl,(m,k)(n)|2 + σ2

z

)

ln 2
. (15)

From (13), the optimization problem (8) can be rewritten as

max
P

M
∑

m=0

θm

(

ωm

∑

k∈Km

(

gm,k(p)− fm,k(p̄)− ▽fT
m,k(p̄)(p− p̄)

)

− φmPm(p)

)

s.t. C1 : gm,k(p)− fm,k(p̄)− ▽fT
m,k(p̄)(p− p̄) > Rmin

m,k, ∀m ∈ M, k ∈ Km,

C2, C3.

(16)
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As proven in Appendix A, for a given (p̄, θ,φ), the problem (16) is a standard concave maximization

problem with respect to P . In the next subsection, we will develop an algorithm to find the optimal

(θ∗,φ∗) and determine p̄ for (16).

3.3 Iterative algorithm for finding auxiliary parameters

Define a vector χ(θ,φ) = [χ0(θ,φ), χ1(θ,φ), . . . , χ2M+1(θ,φ)], where

χm(θ,φ) = θmPm(p)− 1,

χM+1+m(θ,φ) = ωm

∑

k∈Km

(

gm,k(p)− fm,k(p̄)− ▽fT
m,k(p̄)(p− p̄)

)

− φmPm(p), (17)

for m = 0, 1, . . . ,M . It is easy to see that optimal (θ∗,φ∗) can be achieved if and only if

χ(θ,φ) = 0, (18)

and the optimal (θ∗,φ∗) is unique for (16). The proof is similar to [20]. The Eq. (18) can be solved by

the Newton method as

θ(t+1) = θ(t) − [χ′(θ(t),φ(t))]−1χ(θ(t),φ(t)),

φ(t+1) = φ(t) − [χ′(θ(t),φ(t))]−1χ(θ(t),φ(t)),
(19)

where t is the iteration index. From (19), we have

θ(t+1)
m =

[

1

Pm(p)

](t)

, m = 0, 1, . . . ,M, (20)

φ(t+1)
m =





ωm

∑

k∈Km

(

gm,k(p)− fm,k(p̄)− ▽fT
m,k(p̄)(p− p̄)

)

Pm(p)





(t)

, m = 0, 1, . . . ,M. (21)

The iterative algorithm for finding the optimal (θ∗,φ∗) is summarized in Algorithm 1. For a given

(θ(t),φ(t)) in the t-th iteration, we solve the optimization problem (16) sequentially. p̄ is initialized to

p(0,0) and updated by p(i,t) in an inner iteration (with index i). In this case, Eq. (13) shows that the inner

iteration is a descent method. As proven in Appendix B, the Algorithm 1 can guarantee convergence.

The computational complexity of the proposed algorithm is acceptable. The problem (16) is a standard

convex optimization and can be solved by the subgradient method, which generally has a polynomial con-

vergence rate [22]. The complexity of the dominant calculations to solve the problem is O (2δ0(M + 1)N),

where δ0 is the iterations of the subgradient method to converge. The outer loop is a sum-of-ratios opti-

mization and needs δ1 iterations to converge, which has a superlinear or quadratic convergence rate [20].

The inner loop is based on a descent method (with δ2 iterations), which has a local linear convergence

rate. Therefore, the total complexity of the algorithm is O (2δ0(M + 1)Nδ1δ2).

Algorithm 1 Iterative algorithm for finding auxiliary parameters

1: Initialize t = 0, maximum iterations tmax; p(0,0) =
(

p
(0,0)
0 (1), . . . , p

(0,0)
M

(N)
)

, where p
(0,0)
m (n) = Pmax

m /N ;

θ(0) = (θ
(0)
0 , θ

(0)
1 , . . . , θ

(0)
M

) and φ(0) = (φ
(0)
0 , φ

(0)
1 , . . . , φ

(0)
M

), where θ
(0)
m = 1

Pm(p
(0)
m )

and φ
(0)
m =

ωmRm(p
(0)
m )

Pm(p
(0)
m )

;

2: while θ and φ convergence = false, and t < tmax do

3: Initialization i = 0, maximum iterations imax;

4: while p convergence = false, and i < imax do

5: Compute the optimal p∗ by solving (16) with p̄ = p(i,t) for a given (θ(t),φ(t));

6: p(i+1,t) = p∗ and i = i+ 1;

7: end while

8: Updating θ(t+1) and φ(t+1) according to (20) and (21);

9: t = t+ 1;

10: end while
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3.4 Solution to transformed power allocation subproblem

The problem (16) is a standard concave maximization problem, and can be solved by Lagrangian dual

method [23]. We denote the non-negative dual variables associated with the maximum power constraints

at BSs as λ, and with the minimum rate constraints of users as α. The Lagrangian can be written as

L(i+1,t)(P ,α,λ) =

M
∑

m=0

∑

k∈Km

(

ωmθ(t)m + αm,k

)(

gm,k(p)− fm,k(p
(i,t))− ▽fT

m,k(p
(i,t))(p− p(i,t))

)

−
M
∑

m=0

(

λm +
θ
(t)
m φ

(t)
m

ξm

)

∑

n∈N

pm(n) +

M
∑

m=0

λmPmax
m −

M
∑

m=0

∑

k∈Km

αm,kR
min
m,k. (22)

The corresponding dual problem is

min
λ�0,α�0

max
P

L(i+1,t)(P ,α,λ). (23)

From the Karush-Kuhn-Tucker (KKT) conditions, we can find the optimal power allocation solution.

The dual variables λ and α can be obtained by the subgradient method. The first-order derivative of

(22) is given by

∂L(i+1,t)(P ,α,λ)

∂pm(n)
=

M
∑

c=0,c 6=m

∑

k∈Kc

sc,k(n)Ac,k





|hm,(c,k)(n)|
2

pc(n)|hc,(c,k)(n)|2 + Ξc,k(n)(p−c)
−

|hm,(c,k)(n)|
2

Ξc,k(n)
(

p
(i,t)
−c

)





+
∑

k∈Km

sm,k(n)Am,k|hm,(m,k)(n)|
2

pm(n)|hm,(m,k)(n)|2 + Ξm,k(n)(p−m)
−

(

λm +
θ
(t)
m φ

(t)
m

ξm

)

(a)
=

M
∑

c=0,c 6=m

Ac,k∗





|hm,(c,k∗)(n)|
2

pc(n)|hc,(c,k∗)(n)|2 + Ξc,k∗(n)(p−c)
−

|hm,(c,k∗)(n)|
2

Ξc,k∗(n)
(

p
(i,t)
−c

)





+
Am,k∗ |hm,(m,k∗)(n)|

2

pm(n)|hm,(m,k∗)(n)|2 + Ξm,k∗(n)(p−m)
−

(

λm +
θ
(t)
m φ

(t)
m

ξm

)

,

(24)

where

Am,k = B(ωmθ(t)m + αm,k)/ ln 2, (25)

Ξm,k(n)(p−m) = σ2
z +

M
∑

l=0,l6=m

pl(n)|hl,(m,k)(n)|
2, (26)

and k∗ = argk{sm,k(n) = 1} is the optimal user at subchannel n in cellm, which is given in Subsection 3.1.

The equality (a) holds, since sm,k(n)|k=k∗ = 1 and sm,k(n)|k 6=k∗ = 0. From the stationary condition
∂L(i+1,t)(P,α,λ)

∂pm(n) = 0, we can obtain the optimal power allocation as

pm(n) =





B(ωmθ
(t)
m + αm,k∗)

(

λm + θ
(t)
m φ

(t)
m

ξm

)

ln 2− Ψm(n)
−

Ξm,k∗(n)(p−m)

|hm,(m,k∗)(n)|2





+

, (27)

where

Ψm(n) =

M
∑

c=0,c 6=m

B(ωcθ
(t)
c + αc,k∗)





|hm,(c,k∗)(n)|
2

pc(n)|hc,(c,k∗)(n)|2 + Ξc,k∗(n)(p−c)
−

|hm,(c,k∗)(n)|
2

Ξc,k∗(n)
(

p
(i,t)
−c

)



 . (28)

The dual variables can be updated by

λm(u+ 1) =

[

λm(u)− ζ1(u)

(

Pmax
m −

∑

n∈N

pm(n)

)]+

, (29)
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Figure 2 (Color online) Convergence of the Algorithm 1. Figure 3 (Color online) Weighted sum-EE versus macro-

cell weight factor ω0 for different algorithms.

αm,k(u+ 1) =

[

αm,k(u)− ζ2(u)

(

gm,k(p)− fm,k(p
(i,t))−Rmin

m,k

−
M
∑

j=0,j 6=m

∑

n∈N

Bsm,k(n)
(

pj(n)− p
(i,t)
j (n)

)

|hj,(m,k)(n)|
2

(

∑M

l=0,l6=m p
(i,t)
l (n)|hl,(m,k)(n)|2 + σ2

z

)

ln 2

)

]+

, (30)

where [x]+ denotes max{x, 0}; u is the iteration index of the subgradient method; ζ1 and ζ2 are positive

step sizes.

4 Simulation results

In this section, simulation results are given to evaluate the performance of the proposed resource allocation

algorithms. In the simulation results, a macro BS is located at the center of the macrocell with 500-m

radius. M = 4 pico BSs are placed with uniform intervals around a 300-m circle, and each picocell

radius is 50 m. Assume the number of MUEs is K0 = 10, and the number of PUEs in each picocell is

Km = 5, ∀m 6= 0. The users are uniformly distributed in the coverage area of their serving cells. The

system bandwidth is 5 MHz, and the number of subchannels is N = 16. The power spectral density

(PSD) of AWGN is −174 dBm. The pathloss models for macro BS and pico BSs are based on [2], and

the small scale fading channel is modeled as the Rayleigh distribution. The maximum transmit power at

macro BS is Pmax
0 = 46 dBm, whereas at pico BS is Pmax

m = 33 dBm, ∀m 6= 0. The fixed circuit power

consumption at macro BS is PC
0 = 50 W, whereas at pico BS is PC

m = 3 W, ∀m 6= 0. The power amplifier

efficiencies at the macro BS and pico BSs are ξ0 = 0.2 and ξm = 0.35, ∀m 6= 0, respectively. We assume

that the minimum rate requirements of MUEs and PUEs are Rmin
m = Rmin = 2 Mbit/s, m = 0, 1, . . . ,M .

In Figure 2, we study the convergence of weighted sum-EE for the proposed power allocation algorithm

versus the number of iterations for different macrocell weight factors. We set the picocell weight factor

ωm = (1 − ω0)/M, ∀m 6= 0. It can be observed that the proposed scheme converges within 5 iterations.

On the other hand, the higher weighted sum-EE will be achieved with smaller macrocell weight factor ω0,

since the picocells are more energy-efficient than the macrocell. Note that, the proposed power allocation

algorithm has two-tier loops. Here, we only give the iterative results for the outer loop. The inner loop

based on the descent method has an acceptable local linear convergence rate.

Figure 3 shows the weighted sum-EE versus macrocell weight factor. In this figure, we compare the

proposed weighted sum-EE maximization (WEEM) algorithm with some other resource allocation algo-

rithms, such as WEEM without considering users’ minimum rate requirements, global EE maximization

(EEM), spectral efficiency maximization (SEM), and round-robin scheduling with equal power allocation
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Figure 4 (Color online) Subchannel allocation among the users (K0 = 8 and Km = 4, ∀m 6= 0).

(RR-EP). The objective function in the EEM method is maxS,P(
∑M

m=0 Rm/
∑M

m=0 Pm), while in SEM

method is maxS,P
∑M

m=0 Rm. We observe that the proposed WEEM algorithm outperforms all these

methods except the WEEM without rate constraint.

Figure 4 displays the subchannel allocation among the users for different algorithms. The results

indicate that if we take no account of users’ rate constraints (i.e., set Rmin = 0), a few users will almost

take up all the system resources while the others have no resource. In this case, the users with unfavorable

channel conditions will have no data rate.

Figure 5 illustrates weighted sum-EE, EE and sum rate versus the maximum transmit power at the

macro BS Pmax
0 . For studying the relationships between the maximum transmit power and the above

performance indicators, we set Pmax
m = Pmax

0 /20, ∀m 6= 0. As shown in the subplots, different performance

indicators lead to different resource allocation strategies and system performance. On the other hand,

the WEEM and EEM algorithms achieve a floor (corresponding to the optimal weighted sum-EE or EE)

as Pmax
0 increases. And then no more power is consumed to further increase the rate, since now a little

increase of rate needs much more power consumption, resulting in the weighted sum-EE or EE dropping

rapidly.

Figure 6 demonstrates the EE tradeoff between the macrocell and the picocells. We provide the results

of picocell EE versus the macrocell EE, by adjusting the macrocell weight factor ω0. We also study

the impacts of fixed circuit power consumption and noise power on the weighted sum-EE performance.

Take ω0 = 0.2 as an example, the weighted sum-EEs UWEE in Figures 6(a)–(c) are 20.1, 12.4 and

18.9 Mbit/J, respectively. It indicates that the weighted sum-EE decreases as both the circuit power and

the noise power increase, which is similar to the conclusion in [16]. In addition, although the picocells

have different EEs due to insufficient numbers of Monte-carlo simulation times, the results in these figures

come to a same conclusion that the picocell EE UEE
m decreases as the macrocell EE UEE

0 increases, and

there exists a tradeoff between the UEE
0 and UEE

m . The proposed algorithm can achieve the flexible EE

tradeoff between macrocell and picocells, based on the system configurations and the channel conditions.
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5 Conclusion

We have studied the resource allocation issue in the downlink of an OFDMA two-tier network for max-

imizing weighted sum-EE of macrocell and picocells. We formulated the optimization problem as a

nonlinear sum-of-ratios programming, where the data rate requirements of users were protected with

minimum rate constraints. Due to the nonconvexity of the problem, we developed a heuristic subchannel

assignment algorithm, and then solved the power allocation problem by parameterized transformations

and a first-order approximation based on an iterative algorithm. Simulation results show that the pro-

posed algorithm converges within a small number of iterations. Also, the proposed method can achieve

a higher weighted sum-EE performance than the EE maximization and the SE maximization methods.

An EE tradeoff exists between the macrocell and picocells for the proposed method.
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Appendix A Proof of the concavity of the optimization problem

To prove the concavity of the optimization problem (16), we first define function gm,n,k(p(n)) as

gm,n,k(p(n)) = log2

(

M
∑

l=0

pl(n)|hl,(m,k)(n)|
2 + σ2

z

)

, (A1)

and then derive the Hessian matrix of gm,n,k(p(n)) as

∇2gm,n,k (p(n)) =
−1

(

∑M
l=0 pl(n)|hl,(m,k)(n)|2 + σ2

z

)2
ln 2

·













|h0,(m,k)(n)|
4 |h0,(m,k)(n)|

2|h1,(m,k)(n)|
2 · · · |h0,(m,k)(n)|

2|hM,(m,k)(n)|
2

|h1,(m,k)(n)|
2|h0,(m,k)(n)|

2 |h1,(m,k)(n)|
4 · · · |h1,(m,k)(n)|

2|hM,(m,k)(n)|
2

· · · · · · · · · · · ·

|hM,(m,k)(n)|
2|h0,(m,k)(n)|

2 |hM,(m,k)(n)|
2|h1,(m,k)(n)|

2 · · · |hM,(m,k)(n)|
4













=−
vvT

(

∑M
l=0 pl(n)|hl,(m,k)(n)|2 + σ2

z

)2
ln 2

, (A2)

where v =
(

|h0,(m,k)(n)|
2, |h1,(m,k)(n)|

2, . . . , |hM,(m,k)(n)|
2
)T

. For arbitrary M × 1 dimensional vector x, we have

xT∇2gm,n,k (p(n))x = −
(xTv)2

(

∑M
l=0 pl(n)|hl,(m,k)(n)|2 + σ2

z

)2
ln 2

6 0, (A3)

which means the Hessian matrix is negative semidefinite and therefore gm,n,k(p(n)) is concave. We also know from (15)

and (3) that both −▽fT
m,k

(p̄)(p− p̄) and −φmPm(p) are affine functions. The objective function in problem (16) is jointly

concave in p, since it is a non-negative linear combination of concave functions. Similarly, we can also prove that the

constraints are convex. Thus the problem (16) is a standard concave optimization problem.

Appendix B Proof of the algorithm convergence

We now prove the convergence of the Algorithm 1. This algorithm is a two-loop iterative algorithm. As indicated in [20],

the outer loop (i.e., sum-of-ratios algorithm) can guarantee convergence. For the inner loop, we have in i-th iteration:

F (p(i,t), θ(t),φ(t)) =
M
∑

m=0

θ
(t)
m

(

ωmRm(p(i,t))− φ
(t)
m Pm(p(i,t))

)

(a)
>

M
∑

m=0

θ
(t)
m



ωm

∑

k∈Km

(

gm,k(p)
(i,t) − fm,k(p

(i−1,t))

−▽fT
m,k(p

(i−1,t))(p(i,t) − p(i−1,t))
)

− φ
(t)
m Pm(p(i,t))

)

(b)
>

M
∑

m=0

θ
(t)
m

(

ωmRm(p(i−1,t))− φ
(t)
m Pm(p(i−1,t))

)

. (B1)

The inequality (a) holds, since fm,k is concave and then fm,k(p
(i,t)) 6 fm,k(p

(i−1,t)) + ▽fT
m,k

(p(i−1,t))(p(i,t) − p(i−1,t)).

The inequality (b) also holds, since the left hand side of the inequality is the optimal solution for all feasible p obtained

from the problem (16) in the i-th iteration. Therefore, F (p,θ,φ) is either unchanged or improved after the i-th iteration,

and the inner loop can also guarantee convergence.
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