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Abstract Satisfiability problem (SAT) is a central problem in artificial intelligence due to its computational

complexity and usefulness in industrial applications. Stochastic local search (SLS) algorithms are powerful to

solve hard instances of satisfiability problems, among which CScoreSAT is proposed for solving SAT instances

with long clauses by using greedy mode and diversification mode. In this paper, we present a randomized variable

selection strategy to improve efficiency of the diversification mode, and thus propose a new SLS algorithm.

We perform a number of experiments to evaluate the new algorithm comparing with the recently proposed

algorithms, and show that our algorithm is comparative with others for solving random instances near the phase

transition threshold.
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1 Introduction

The Boolean satisfiability problem (SAT) is a basic NP-complete problem. It is one of the most frequently

studied problems among combinatorial problems; it plays an important role in both computer science

and artificial intelligence, since a number of academic and industrial problems can be transformed into

SAT problems and then solved by a number of efficient SAT solvers. The task of solving SAT problem is

to find an assignment to all Boolean variables of a given instance. In general cases, this task is extremely

difficult for most instances due to the computational complexity reason.

To solve the SAT problems, there have been two main kinds of search algorithms: complete algorithms

and local search algorithms. Usually, Davis-Putnam-Logemann-Loveland (DPLL) [1, 2] is a basic and

efficient algorithm among the complete approaches, and in recent studies clause learning techniques [3,4]

have been employed to improve efficiency of complete search algorithms. Those algorithms can find a

solution or all solutions if the SAT instance is satisfiable; otherwise, it can prove that the given instance

is unsatisfiable. They may be comparatively slow when they are used to solve large-scaled instances and
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random instances at phase transition point. On the contrary, another kind of algorithm, usually called

local search algorithm [5, 6], may probably find a solution of satisfiable hard instances in a reasonable

time though the drawback of them is that they are not able to prove unsatisfiability.

To evaluate search algorithms for SAT problems, industrial instances and randomly generated instances

are usually employed as benchmarks. To solve those SAT instances from industrial areas, backtrack algo-

rithms with sophisticated heuristics have been proposed to deal with special structures in the instances.

However, random instances are generated with uniform distribution, which are often hard to solve by

systemic backtrack algorithms because there is little structure information in the instances that can be

explored. Moreover, some of those random instances have a few solutions so that it is difficult for the

algorithms to find a solution [7].

In fact, the number of solutions in a randomly generated instance is determined by control parameters

in a generation model, and control parameters are chosen based on phase transition theory [8–10], which

specifies hardness of random instances. Random instances are also used to investigate theory analysis

of computational complexity, which is another significant topic in SAT problems [7, 9, 10], attracting

much attention as it is of great interest. The most referred phase transition in SAT problems is the

solutionable phase transition, which separates soluble-to-insoluble areas on the phase transition point.

It is also associated with an easy-hard-easy pattern [11], i.e., algorithms will spend the longest time on

solving random instances at phase transition point, so those random instances generated at the transition

point are hardest SAT instances to solve.

Since the local search algorithm GSAT proposed by Selman et al. [12], a number of local search

algorithms with stochastic approaches, usually called stochastic local search (SLS) algorithms, have been

presented [13–20]. They have revealed good performance for solving random SAT instances, where

WalkSAT [6] is one of the most investigated algorithms. In recent years, there is great interest in

improving SLS algorithms to solve hard random instances, and we have viewed many contributions on

new strategies of SLS algorithms. Many heuristic strategies have been discussed. Among them clause

weighting technique [13,14] is an old but efficient method. It is employed in many SLS algorithms. As an

example, Hutter et al. [13] proposed the scaling and probabilistic smoothing (SAPS) algorithm. With this

method, heuristic approaches were developed to make decision on variable selection for flipping, where the

variable having minimum value of change in sum of false clause weights caused by the flipping is usually

selected. Testing on solving SAT instances indicates that those techniques can make SLS algorithms

efficiently. Later, Thornton et al. [14] developed a pure additive weighting scheme (PAWS) algorithm,

reporting that PAWS performs better on solving hard instances.

Recently, CScoreSAT has been proposed by Cai et al. [21, 22], which is also an SLS algorithm with

clause weighting technique. To deal with SAT instances with long clauses, two modes are employed in the

algorithm: greedy mode and diversification mode. The greedy mode tries to select the right variables to

flip to decrease the number of false clauses, whereas the diversification mode tries to escape the local area

when SLS reaches a local optimum. Besides, Cai et al. [21] also proposed the HScoreSAT algorithm, which

is a modified version from CScoreSAT. Both algorithms are particularly designed to solve SAT problems

with long clauses. They have shown that HScoreSAT performs better than CScoreSAT for random

instances at the phase transition point, whereas CScoreSAT is faster than HScoreSAT for instances below

the phase transition point. The solver probSAT, another SLS-based algorithm, was also extended in order

to solve SAT instances with long clauses [23]. It utilizes a probability selection to determine the variable

for flipping, where exponential functions are used to choose the next variable to flip. This method highly

depends on control parameters they set. Very recently, Liu and Papakonstantinou [24] have employed

polynomial valuation for variable selection, and proposed an algorithm called polyLS. They have shown

that polyLS outperforms the state-of-the-art algorithms by testing benchmark instances generated exactly

at the phase transition points.

As we have mentioned, the instances generated exactly at or near the phase transition points are always

very hard to solve, and improving searching efficiency is difficult for those instances, so developing new

strategies to improve SLS algorithms is still a challenge issue in the SAT community. Most researches

focus on making improvement on solving instances generated exactly at the phase transition points,



Gao J, et al. Sci China Inf Sci September 2017 Vol. 60 092109:3

but not all those algorithms perform well on solving hard instances near the phase transition point. In

this paper, we concentrate on developing a novel diversification heuristic to improve the CScoreSAT

algorithm with the aim at solving k-SAT instances near the phase transition point. A novel heuristic

strategy in the diversification mode is presented using a randomized approach, which is incorporated into

the CScoreSAT algorithm instead of the original diversification method. The key feature of the novel

method is that it only considers a part of variables in a clause. State in another way, it randomly selects

several variables and compares scores in order to find the best one among them for flipping rather than

selecting the best variable with smallest score in a clause for flipping. This new diversification strategy

is more robust compared with the method selecting the best variable, and has ability to lead the search

algorithm to different directions when trapping in the same local optimum. We analyze the results of

experiments on randomly generated instances near the phase transition point intensively. It can be seen

that the algorithm with the novel randomized diversification strategy shows better performance than the

algorithm with original strategy, where results of runtimes indicate that the proposed algorithm is more

efficient than CScoreSAT, and the number of instances solved within the limited time by the proposed

algorithm is also more than that of CScoreSAT. In addition, we also compare our algorithm with other

existing SAT algorithms showing the advantages of our algorithm.

2 Preliminaries

In this section, we first introduce the propositional satisfiability problem and its random generated model.

Then, SLS algorithms as well as some main related techniques are reviewed.

2.1 SAT model

We consider propositional formula in conjunctive normal form (CNF) in this paper. Here we give some

definitions about CNF. A literal is a Boolean variable or its negation, and a clause is a disjunction of

literals, where the number of literals in the clause is called the length of the clause. A propositional

formula F in CNF is with the form of a conjunction of clauses. The notation k-SAT often refers to the

SAT problems whose clause length is k. It is well known that 2-SAT can be solved in polynomial time,

while k-SAT (k > 2) is NP-complete.

Usually, in order to generate hard SAT instances for testing various SAT solvers, randomly generated

instances are considered. Those instances are produced randomly with some generation models. A

frequently used model is described as follows [12, 25]: three parameters k, n,m are employed to generate

SAT instances, where k is the length of clauses, n is the number of variables, and m is the number of

clauses. A ratio r is defined as r = m/n. To obtain a random SAT instance, we should generate m

clauses, where each clause is generated by selecting k variables without replacement from n variables

and negating each variable with probability 0.5, and thus clause generation is with uniform probability

distribution, and all clauses generated are of the same length k. Compared with SAT instances from

industrial areas, using this model, we can obtain a number of SAT instances, and we can also adjust

the control parameters r and n to generate instances whose size and difficulty are desirable. Theoretical

results on the random k-SAT model have shown that phase transition occurs at r = 4.267 with k = 3, and

thus instances generated with this parameter are hardest to solve. Moreover, hardest instances are also

with r = 9.931 for 4-SAT, with r = 21.117 for 5-SAT, with r = 43.37 for 6-SAT, and with r = 87.79 for

7-SAT. Therefore, random instances are good benchmarks to evaluate various SAT algorithms, especially

for SLS algorithms. To evaluate effectiveness of SLS algorithms and to show ability of solving hard

instances, most recent studies have performed testing on random instances.

2.2 SLS algorithms

An SLS algorithm often starts from a random assignment as initialization, and then it carries out iterations

of flipping variables until a solution is found or the prefixed limited time is achieved. It has been pointed

out by many authors that heuristic methods used for selecting a variable for flipping in each step impacts
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on efficiency of the entire SLS algorithm. To design efficient heuristic strategies, the functions make(x)

and break(x) are usually used to decide which variable will be selected to be flipped in the next iteration.

For instance, walkSAT and probSAT employ break(x) to make decision on which variable will be selected.

Moreover, both of make(x) and break(x) are incorporated into the SAT solver CScoreSAT. Besides, tie

breaking strategies are also used in the heuristics when some variable scores are of same value. Moreover,

timestamp is a useful strategy to break ties in many cases.

Clause weighting technique is also an important technique. By making penalty on unsatisfied clauses

and increasing weights of those clauses, SLS algorithms can avoid trapping in some local optima. Clause

weighting algorithms initialize weights of all clauses to one. Score functions are calculated based on those

weights. In a step when it reaches a local optimal point, clause weighting technique usually increases

weights of unsatisfied clauses to enhance the importance of those clauses. So variables in clauses difficult

to be satisfied will be flipped with high probability. This technique has been considered in many SAT

solvers.

In addition, there are some other techniques used in the SLS SAT solvers. An important one among

those techniques is the configuration checking (CC) strategy [26], first proposed by Cai et al. [27] for vertex

cover problem, and later it was incorporated into SLS algorithms for k-SAT problems and set covering

problems, and has been employed in a series of SLS algorithms, such as CScoreSAT, CCASat [19],

DCCASat [28], and uSLC [29]. CC strategy forbids variables to be flipped if their neighborhoods are not

changed, and thus avoid frequent flips on a certain variable that may cause a search cycle. Before their

work, previous SLS algorithms had not employed this strategy while they flip variables only according to

the properties of variables rather than flipping information of their neighbors.

2.3 CScoreSAT

CScoreSAT algorithm is a SLS algorithm with clause weighting techniques and CC strategy, which aims

at particularly solving SAT instances with clause length greater than 3. Like most SLS algorithms,

CScoreSAT is designed as a two-mode algorithm. However, different from previous ones, to deal with long

clauses, the second level properties are considered in CScoreSATalgorithm. More specifically, function

make2(x) is defined as the number of 1-satisfied clauses that will change to 2-satisfied after flipping x;

and function break2(x) is the number of 2-satisfied clauses that will change to 1-satisfied, where the

1-satisfied clause denotes there is only one true literal in a clause while a clause is a 2-satisfied clause if

there are 2 true literals. Using function make2(x) and break2(x), variable selection can make decision

with more information of clause states compared to using functions make(x) and break(x). This method

plays a crucial role in the CScoreSAT solver.

Timestamp is another measurement to determine the variable to be flipped, especially for breaking

ties. We use age(x) to count steps from last flip of the variable x to the current step. Heuristic strategy

of CScoreSAT will select the variable with largest age(x) if two variables gain the same score value.

Based on the make and break functions, cscore function is defined as the following formula:

cscore(x) = score(x) + score2(x)/d, (1)

where d is a control parameter taking positive integer, score(x) = make(x) − break(x), and score2(x) =

make2(x)− break2(x). And hscore function is defined as

hsocre(x) = cscore(x) + age(x)/β = score(x) + score2(x)/d+ age(x)/β, (2)

where control parameters d and β are positive integers.

In the greedy mode of CScoreSAT, hscore function is the heuristic strategy for selecting the best vari-

able, where the variable with minimum hscore is flipped in the step if the total score can be improved after

flipping. In the case that searching reaches a local optimum, the algorithm alters to the diversification

mode, where cscore function is used as a criterion for determining the flipped variable. It is noted that

the best one is selected with breaking tie by timestamp.
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The method for clause weight updating like the method in PAWS, proposed in [14], is used in CScore-

SAT. It will increase weights of false clauses by 1, and weight smoothing will be performed with a certain

probability and with the case that the number of clauses with weight more than 1 achieves the threshold.

With the techniques above, CScoreSAT is described as follows Algorithm 1.

Algorithm 1 CScoreSAT

1: Input CNF-formula F, maxSteps;

2: output a solution or “unknown”;

3: α← randomly generated truth assignment;

4: for step ← 1 to maxSteps do

5: if α satisfies F then

6: return α;

7: end if

8: if S = {x|x is comprehensively decreasing and configuration changed} is not empty then

9: v ← a variable in S with the greatest cscore, breaking ties in favor of the one with largest age;

10: else

11: update clause weights according to PAWS;

12: pick a random falsified clause C;

13: v ← the variable in C with the greatest hscore;

14: end if

α← α with v flipped;

15: end for

16: return “unknown”.

Like most SAT solvers, CScoreSAT randomly generates an initial solution, and iterates within a prefixed

number of steps. A step is composed of two main operations: picking up a variable and flipping the

variable in the implementation of CScoreSAT solver. The operation of picking up a variable (Lines 6 to

11) finds the best variable if flipping it can make improvement on total score, which is task of the greedy

mode; otherwise it returns best variable in the random chosen unsatisfied clause, which is task of the

diversification mode. The operation of flipping a variable changes the value and then updates score values

related to the variables. Besides, clause weights will be updated or be smoothed if the diversification

mode is performed. The algorithm outputs a solution to the given instance or reports no solution has

been found.

Most SLS solvers always take random SAT instances exactly at the phase transition point as benchmark.

Some of them can achieve good performance to solve those instances, because strategies and control

parameters are optimized according to those benchmarks, whereas strategies they used may not be

effective enough to obtain satisfactory results when solving other instances, even solving random instances

near phase transitions point. As an example, HScoreSAT solver is an enhanced solver for hardest instances

based on hscore function. Though HScoreSAT solver can perform better than CScoreSAT for solving

phase transition instances, it is shown that CScoreSAT can solve instances below phase transition point

more efficiently than HScoreSAT. Cai et al. [22] also conjectured there exists a boundary ratio for each

k such that below boundary ratio CScoreSAT outperforms HScoreSAT.

3 The new strategy and algorithm

In this section, we present the randomized strategy in details, and discuss implementation of the strategy.

After that, we describe the entire algorithm based on this new strategy.

3.1 The randomized diversification strategy

Though it has been shown that some new SLS algorithms can achieve better performance than CScoreSAT

on solving random instances at the phase transition point, CScoreSAT is still competitive for satisfiable

random instances near the point. The key feature to make CScoreSAT so efficient is the heuristic functions

hscore and cscore. With those two functions, right variables are probably selected to make good moves

in both greedy and diversification modes, so it seems hard to further improve the searching efficiency by



Gao J, et al. Sci China Inf Sci September 2017 Vol. 60 092109:6

modifying those two heuristic functions. However, to make CScoreSAT more efficient for the instances

near the phase transition point, in this section, we propose a new variable selection approach in the

diversification mode.

As we have mentioned in the previous section, CScoreSAT randomly selects an unsatisfiable clause

and then finds the variable with the highest cscore in the clause. This method can make a good move

when it reaches a local optimal point, and then searches its neighborhoods. However, if a local optimal

point is revisited many times, this method may pick up the same variable if the same clause is chosen

if there is only one or several unsatisfiable clauses in local optima. It is also clear that the fewer of

unsatisfiable clauses, the higher probability of the same variable will be chosen. Though it finds the best

variable such that flipping that variable makes the smallest increment of the total score, it may always

choose same variables, so cycling issue cannot be settled in the diversification mode. To some extent,

this issue will occur more frequently as the algorithm finds better assignments with fewer unsatisfiable

clauses. Therefore, CScoreSAT may suffer this issue and may flip some variables too frequently, and thus

make more cycling moves. Based on this consideration, we present a randomized strategy. The technique

described in the followings aims at improving diversification strategy so as to avoid trapping in a local

area and thus exploring more solution space.

As we discussed above, the existing method used in CScoreSAT algorithm only returns the best variable.

We make it more robust. Specifically, after choosing an unsatisfiable clause, the robust method selects R

variables and finds the best one among them, where hscore function is also the measure of those variables.

Duplicated variables may be selected. The times of selecting variables in a clause is generated randomly

for each step. To choose more variables with better score for flipping, we set the random number ranging

from ⌊k/2⌋+1 to k. With the discussion above, we proposed the new randomized strategy. The following

procedure shows details of the variable selection strategy in the diversification mode:

Step 1: choose an unsatisfiable clause C and generate the random integer R ranging from ⌊k/2⌋ + 1

to k;

Step 2: select a variable from the clause C and compute its hscore;

Step 3: record the variable with the greatest hscore as vb among all selected variables;

Step 4: repeat Steps 2 and 3 R times, and return the variable vb.

For the implementation aspect, we also use the function hscore to evaluate variables in the new strategy.

It is also noted that the modified strategy is easy to implement as we can modify the diversification part:

after determining the unsatisfiable clause, it uses the new strategy, and it generates the number of variable

selecting times, denoted by R; and then it repeats selecting of variables R times; at last the best one

among them is returned. It is also seen that the modification does not take much external time to

compute the next variable, as the number of variables picked up is smaller than k, so computation of

function hscore do not increase much time compared with original strategy.

3.2 The entire algorithm

In the following, we describe the complete algorithm proposed for solving SAT problems with long clauses.

The new algorithm employs the techniques in the original CScoreSAT algorithm, such as the greedy

mode, clause weighting, and CC strategy, while it also combines the randomized variable strategy in the

diversification mode. Hence, we can modify the CScoreSAT algorithm to propose the new one, called

RCScoreSAT. Recall the CScoreSAT algorithm, the variable with the greatest hscore will be selected

(Line 11). In RCScoreSAT, we use the randomized variable strategy described above instead of original

strategy, so Line 11 will be modified to the following statement:

v ←the variable selected by the randomized strategy.

RCScoreSAT also calculates function hscore and function cscore to evaluate variables, which is same

as CScoreSAT. It is noted that the new strategy is easy to implement and the algorithm only introduces

one extra control parameter that determines the number of variables considered.
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4 Experiment evaluations

In this section, we perform an intensive computational experiment to evaluate the new variable selection

strategy and the SAT algorithm based on the strategy. To study the effectiveness of the new strategy we

propose and provide a fair comparison, we incorporate the strategy into the CScoreSAT solver, which is

developed by Cai et al. with C++ language. We set parameters derived from the original CScoreSAT

algorithm same as values reported in the paper [22]. We perform all experiments parallel on a worksta-

tion with two Intel Xeon E5-2637v3 (3.5 GHz) CPUs, and 32 GB RAM, running Ubuntu Linux 15.04.

Computational experiments in the followings are divided into 3 parts: the first part analyzes the control

parameter of the new strategy; the second part analyzes average CPU run times cost on a single step;

and the last part compares computational results of the new algorithm with the results produced by

CScoreSAT and other existing algorithms.

To show the performance of the new algorithm on solving instances near phase transition areas, we

generate SAT instances using the random generator, which was also used in SAT Competition 2013

(available at http://sourceforge.net/projects/ksatgenerator/). We can obtain SAT instances without

duplicate clauses by the generator. Considering 3-SAT instances are usually solved by other efficient

SLS algorithms rather than CScoreSAT, we only generate instances with long clauses in this paper, i.e.,

k = 4, 5, 6, 7, respectively. For each k, we choose the ratio r near the phase transition area as does in [22],

where the first 9 values are selected that are near the phase transition point, whereas the value at the

point is not chosen since the improvement of this paper aims at solving instances near the point. Though

the value of the ratio r impacts on CPU runtime greatly, CPU runtime of an instance also depends on

the number of variables (n). We take n = 3000, n = 550, n = 350, and n = 150 to generate instances

for k = 4, 5, 6, 7, respectively. Ten instances are generated for each r and each k, and thus there are 360

instances totally, which will be taken as benchmark to test our proposed algorithm and other algorithms.

Moreover, huge groups of benchmarks in SAT race 2013 and 2014 are also taken as test instances. For

each k, there are 6 and 15 large-size instances in benchmark of 2013 and 2014 respectively.

4.1 Analyze on the new randomized strategy

We first analyze the number of variables selected for each clause. To show good performance of the

method ranging the number R from ⌊k/2⌋+ 1 to k, we take two other parameters, the first one ranging

the random number R from 1 to ⌊k/2⌋denoted by RCScorceSAT1, and the second one ranging the number

from k to ⌊3k/2⌋ denoted by RCScorceSAT2. Hence, three groups of results are obtained after solving

the total 360 random instances with the cutoff time 1000 s. Table 1 shows the computational results.

The par10 run time is computed and shown in the table. The par10 run time is always used for

evaluating other SAT algorithms, where unsuccessful runs within limited time will be penalized by 10

times of the limited CPU time. From this table, we can see that the RCScorceSAT preforms better than

the other two contrast algorithms on both the number of total successful runs and average run times for

all k = 4, 5, 6, 7. For most values of r, RCScorceSAT also performs better. This indicates bad variables

may be selected if we choose variable with 0 to ⌊k/2⌋ times, whereas the best variables may always be

selected if the number is bigger than k, so we set the range of the random number ranging from ⌊k/2⌋+1

to k.

4.2 Comparison with existing algorithms

In this subsection, we evaluate efficiency of the new algorithm. Comparisons are made between the new

one and CScoreSAT [21], probSAT [23] and CSCCSat [30]. Same as the previous section, we also test

those algorithms on SAT instances that are generated in the former subsection, limiting to 1000 s for

each run. Codes of probSAT and CSCCSat are also downloaded from the website of SAT competition

2014. We compile them settings all parameters default same as these used in the competition. We

perform experiments same as the experiments in former subsection, where each instance is solved 5 runs
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Table 1 Comparison of randomized strategies

RCScoreSAT RCScoreSAT1 RCScoreSAT2

Avg. #Succ. Avg. #Succ. Avg. #Succ.

k = 4

r = 9.000 0.2428 50 0.3104 50 0.2724 50

r = 9.121 0.3762 50 0.4706 50 0.461 50

r = 9.223 0.7174 50 0.8094 50 0.8446 50

r = 9.324 1.2438 50 1.678 50 1.3054 50

r = 9.425 2.751 50 2.801 50 3.4376 50

r = 9.526 8.277 50 10.9864 50 11.4096 50

r = 9.627 30.3548 50 41.5196 50 41.653 50

r = 9.729 771.9118 47 982.9466 46 1576.488 43

r = 9.830 8459.8 8 8669.37 7 8857.994 6

Avg./total 1030.631 405 1078.988 403 1165.985 399

k = 5

r = 20.000 2.2022 50 2.3616 50 3.3704 50

r = 20.155 5.423 50 7.526 50 5.9364 50

r = 20.275 17.1128 50 21.997 50 23.5836 50

r = 20.395 39.2522 50 89.2342 50 41.5158 50

r = 20.516 1042.579 45 872.529 46 1075.462 45

r = 20.636 1336.254 44 2120.392 40 1891.133 41

r = 20.756 3535.204 33 4342.104 29 3929.005 31

r = 20.876 6518.784 18 6096.655 20 6747.939 17

r = 20.997 9033.17 5 9616.664 2 9245.974 4

Avg./total 2392.22 345 2574.385 337 2551.547 338

k = 6

r = 40.000 1.8736 50 2.5686 50 2.1868 50

r = 40.674 5.4836 50 8.701 50 7.5538 50

r = 41.011 18.3818 50 25.6618 50 14.6598 50

r = 41.348 28.558 50 44.1718 50 43.7034 50

r = 41.685 382.0158 49 341.2936 49 730.8804 47

r = 42.022 3117.932 35 3006.646 36 3106.705 35

r = 42.359 6121.675 20 6557.346 18 5983.66 21

r = 42.696 8267.004 9 8493.843 8 8333.469 9

r = 43.033 9224.432 4 9437.054 3 9621.87 2

Avg./total 3018.595 317 3101.921 314 3093.854 314

k = 7

r = 85.000 915.5352 46 936.1416 46 1332.871 44

r = 85.558 982.968 46 1030.254 46 633.829 48

r = 85.837 1941.392 41 1609.236 43 1948.94 41

r = 86.116 1747.858 42 2383.182 39 2351.993 39

r = 86.395 2134.722 40 2972.488 36 2214.348 40

r = 86.674 3312.208 34 3015.547 36 3139.122 35

r = 86.953 4325.604 29 4302.681 29 4688.863 27

r = 87.232 4494.174 28 4873.474 26 4931.854 26

r = 87.511 5863.802 21 5897.31 21 5914.119 21

Avg./total 2857.585 327 3002.257 322 3017.326 321

by each solver. The number of successful runs and average runtimes of those algorithms are calculated,

and comparative results are listed in Table 2.

From Table 2, we can see that RCScorceSAT achieves best average performance of all groups among

those SAT solvers. It improves the performance of CScoreSAT greatly for each k. For each r, RCScorce-

SAT can achieve equal to or more successful runs than CScoreSAT. RCScorceSAT also performs better

on run times when RCScorceSAT and CScoreSAT have the same number of successful runs. Moreover,

probSAT performs best on 4-SAT instances, but it is not good to solve others as k increases. RCScorce-

SAT performs best on 5-SAT, 6-SAT and 7-SAT. probSAT performs better than CScoreSAT on 5-SAT

but worse than CScoreSAT on 6-SAT and 7-SAT. This phenomenon was also reported in [23] for solving
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Table 2 Comparative results with existing algorithms

probSAT CSCCSat CScoreSAT RCScoreSAT

Avg. #Succ. Avg. #Succ. Avg. #Succ. Avg. #Succ.

k = 4

r = 9.000 0.09 50 0.09 50 0.42 50 0.24 50

r = 9.121 0.17 50 0.14 50 0.80 50 0.38 50

r = 9.223 0.20 50 0.28 50 1.21 50 0.72 50

r = 9.324 0.37 50 0.59 50 2.52 50 1.24 50

r = 9.425 1.75 50 4.04 50 4.87 50 2.75 50

r = 9.526 3.65 50 11.62 50 20.54 50 8.28 50

r = 9.627 21.20 50 48.96 50 78.24 50 30.35 50

r = 9.729 924.33 46 1245.78 45 1615.92 42 771.91 47

r = 9.830 7501.65 13 9439.60 3 9647.33 1 8459.80 8

Avg./total 939.27 409 1194.57 398 1263.54 393 1030.63 405

k = 5

r = 20.000 4.08 50 9.31 50 4.89 50 2.20 50

r = 20.155 13.40 50 12.29 50 13.51 50 5.42 50

r = 20.275 30.00 50 35.20 50 19.45 50 17.11 50

r = 20.395 460.59 48 64.94 50 277.02 49 39.25 50

r = 20.516 920.08 46 902.43 46 1094.66 45 1042.58 45

r = 20.636 2355.57 39 2153.10 40 3141.62 35 1336.25 44

r = 20.756 5293.49 24 4570.53 28 5491.06 23 3535.20 33

r = 20.876 7118.93 15 6135.60 20 7702.45 12 6518.78 18

r = 20.997 10000.00 0 9608.52 2 9806.07 1 9033.17 5

Avg./total 2910.68 322 2610.21 336 3061.19 315 2392.22 345

k = 6

r = 40.000 21.51 50 21.21 50 2.93 50 1.87 50

r = 40.674 144.76 50 288.01 49 13.06 50 5.48 50

r = 41.011 1400.17 44 1357.09 44 45.22 50 18.38 50

r = 41.348 4146.96 30 606.85 48 279.15 49 28.56 50

r = 41.685 6568.72 18 3256.38 35 1181.82 45 382.02 49

r = 42.022 8660.78 7 6130.17 20 3776.20 32 3117.93 35

r = 42.359 9431.45 3 8098.15 10 8263.23 9 6121.67 20

r = 42.696 10000.00 0 9421.03 3 9601.39 2 8267.00 9

r = 43.033 10000.00 0 9629.11 2 9057.76 5 9224.43 4

Avg./total 5597.15 202 4312.00 261 3580.08 292 3018.60 317

k = 7

r = 85.000 4784.90 27 1128.84 45 1763.02 42 915.54 46

r = 85.558 4816.80 27 998.96 46 2921.53 36 982.97 46

r = 85.837 5175.96 25 2011.31 41 2336.43 39 1941.39 41

r = 86.116 6187.39 20 2387.12 39 2439.62 39 1747.86 42

r = 86.395 6770.92 17 2031.96 41 2757.06 37 2134.72 40

r = 86.674 5835.77 22 3371.87 34 3736.29 32 3312.21 34

r = 86.953 7299.66 14 4290.29 29 4910.41 26 4325.60 29

r = 87.232 6512.71 18 4400.07 29 4766.73 27 4494.17 28

r = 87.511 8272.29 9 6486.55 18 6040.26 20 5863.80 21

Avg./total 6184.05 179 3011.89 322 3519.04 298 2857.58 327

benchmark instances from SAT competitions, where probSAT performs better than CScoreSAT on 5-SAT

but CScoreSAT performs better on 7-SAT. CSCCSat performs slightly better than CScoreSAT on total

average runtime but it is worse than RCScorceSAT. RCScorceSAT is better than CSCCSat for most

values of r. Particularly, RCScorceSAT has good ability to solve instances when r decreases compared

to CSCCSat except 4-SAT.

Furthermore, we take huge-size instances from SAT Competition 2013 (SC-13) and 2014 (SC-14) to test

our algorithm and the original CScoreSAT. Like pervious experiment, we run 5 times for each instance,

but the cutoff time is set to 2000 s. Table 3 indicates average run times and the number of successful runs

grouped by k. As can be seen from it, RCScoreSAT performs better than CScoreSAT since it achieves
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Table 3 Comparative results on huge-size instances

CScoreSAT RCScoreSAT

Avg. #Succ. Avg. #Succ.

SC-13 k = 4 7111.00 20 4473.53 24

SC-13 k = 5 10095.09 15 6968.89 20

SC-13 k = 6 10178.51 15 10085.21 15

SC-13 k = 7 16675.09 5 13555.42 10

SC-14 k = 4 14192.87 23 13642.79 25

SC-14 k = 5 13556.33 25 12769.36 28

SC-14 k = 6 10797.84 35 10266.73 37

SC-14 k = 7 13719.65 24 12412.49 29

Avg./total 12040.80 162 10521.80 188

more successful runs and requires less CPU runtime for each group of instances.

5 Conclusion

The SAT problem is one of central issues in artificial intelligence, and is the prototype problem in NP-

complete. Many backtracking algorithms and SLS algorithms for SAT have been presented. Recently,

SLS algorithms, such as CScoreSAT solver and probSAT solver, have revealed good performance to solve

hard SAT instances. CScoreSAT performs well on instances with long clauses, where greedy mode and

diversification mode are important components in the SAT solvers. In this paper, we proposed a new

diversification strategy to improve the performance of CScoreSAT. Our contributions are summarized

as follows: In diversification mode, we modify the original strategy by using a more robust way for

selecting variables rather than choosing the best one to flip. This method can make different flips when

the search algorithm reaches the same local optimum so that diversification is enhanced compared to

original strategy. Then, the new diversification strategy is incorporated in CScoreSAT solver. A number

of computational experiments are performed with analyzing on control parameters and CPU run time.

Also, comparisons are made with other existing SLS algorithms. We have shown that the new proposed

SLS algorithm improves performance on solving instances near the phase transition point.
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