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Abstract Broadly speaking, the goal of neuromorphic engineering is to build computer systems that mimic

the brain. Spiking Neural Network (SNN) is a type of biologically-inspired neural networks that perform in-

formation processing based on discrete-time spikes, different from traditional Artificial Neural Network (ANN).

Hardware implementation of SNNs is necessary for achieving high-performance and low-power. We present the

Darwin Neural Processing Unit (NPU), a neuromorphic hardware co-processor based on SNN implemented with

digitallogic, supporting a maximum of 2048 neurons, 20482 = 4194304 synapses, and 15 possible synaptic delays.

The Darwin NPU was fabricated by standard 180 nm CMOS technology with an area size of 5 × 5 mm2 and

70 MHz clock frequency at the worst case. It consumes 0.84 mW/MHz with 1.8 V power supply for typical ap-

plications. Two prototype applications are used to demonstrate the performance and efficiency of the hardware

implementation.
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1 Introduction

Spiking Neural Network (SNN) is a type of biologically-inspired neural networks that perform informa-

tion processing based on discrete-time spikes instead of floating point or integer numbers as in traditional

Artificial Neural Network (ANN). There are a number of different approaches to developing accelerated

implementation of SNN models based on different types of hardware platforms, including (1) Multicore

and manycore CPUs, e.g., SpiNNaker Project from the University of Manchester [1]; (2) Graphics Process-

ing Unit (GPU), e.g., CarlSim3 from University of California, Irvine [2]; (3) Digital logic implementation

with FPGA or ASIC, e.g., the IBM TrueNorth chip developed in the DARPA SyNAPSE project [3];

(4) Analog and Mixed-Signal implementation, e.g., the ROLLS processor from ETHZ, Switzerland [4].

In this paper, we present the Darwin Neural Processing Unit (NPU), a neuromorphic hardware co-

processor based on SNN implemented with digital logic, for use in resource-constrained embedded appli-

cations. It has been prototyped on FPGA, and fabricated in SMIC’s 180 nm process.
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2 The neuron model

The Leaky Integrate and Fire (LIF) model [5] is a simplified model of biological neuron, widely used

in neuromorphic engineering projects. The membrane potential V of a LIF neuron is described by the

following equation:

Cm
dV

dt
= gl(Vrest − V ) + I, (1)

where Vrest is the resting membrane potential; Cm is the membrane capacitance; gl is the membrane

conductance; I is the input current. When the membrane potential V rises up to reach the firing

threshold Vth, a spike (also called an Action Potential) is triggered, and V rapidly rises to a large value,

then is reset to V = Vreset. Afterwards, there is a refractory period with length of Tref, when the neuron

is not responsible to input spikes. At the end of the refractory period, the membrane potential V returns

to the resting membrane potential Vrest, and starts to be responsive to input spikes again.

To implement the LIF model with digital logic, it is necessary to have a discrete-time version of the

LIF model. Consider a post-synaptic neuron with index j, connected to possibly multiple pre-synaptic

neurons with indices denoted as i. The membrane potential of neuron j satisfies the following discrete

time equations:

Vj(t)← Vj(t− 1)(1−Δt/τm) +
∑

i

SijVmaxwij , (2)

Vj(t)←
{
0, if t ∈ [Tf , Tf + Tref],

H(Vth − Vj(t))Vj(t), otherwise,
(3)

Si(t)← H(Vi(t)− Vth), (4)

where Vj(t) is the membrane potential of neuron j at time step t; the term
∑

i SijVmaxwij corresponds to

the input current I, equal to sum of each input spike current multiplied by the respective synapse weights.

Δt is simulation time step size, with a typical value of 0.1 ms; τm = Cm/gl is time constant of the RC

circuit model of the cell membrane; Sij = 0, 1 denotes whether neuron i fires a spike at time step t; Vmax

denotes the maximum voltage change to a neuron caused by receiving an incoming spike; wij indicates

the weight of the synapse that connects pre-synaptic neuron i to post-synaptic neuron j; it is positive if

the synapse is excitatory; negative if it is inhibitory; Vth is the firing threshold; H(x) =
{
1, x � 0,
0, x < 0

is the

unit step function; Vrest and Vreset are both assumed to be 0. If the neuron fired an output spike at t = Tf ,

then it remains quiescent for the length of the refractory period during the time interval [Tf , Tf + Tref],

when its membrane potential stays at Vreset = 0 and not responsive to input spikes. (The synapse delay

does not appear explicitly in (2)–(4), but is modeled as a circular buffer in Figure 1.) The floating-point

variables in (2)–(4) are then converted to fixed-point integer variables for implementation with digital

logic, with different bit-widths for different variables, e.g., the membrane potential Vj(t) has bit-width of

32, and the synapse weight wij has bit-width of 16.

3 Implementation details

Figure 2 shows the overall micro architecture of the Darwin NPU. It is designed for power and cost

sensitive applications, providing high configurability for both the neuron model and the network topology

while minimizing memory cost.

The Address-Event Representation (AER) format is used for information encoding of both input and

output spikes. Each spike is represented with an AER packet, which consists of two fields: ID of the

neuron that generated the spike and the time stamp when the spike is generated. The NPU works in

an event-triggered manner, where most of the NPU logics function only when an input AER packet is

received, providing low stand-by power consumption. While the NPU is currently a single-chip system,

the standard communication interface defined by the AER format enables future extensions to multi-chip

systems interconnected by an AER bus.
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Figure 1 The overall microarchitecture of the NPU.
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Figure 2 Circular buffer design for the delay queue.

Due to its limited area size, the NPU supports 8 physical neurons on the chip; each neuron can be

used to simulate a maximum of 256 logical neurons with time multiplexing, so the whole chip supports

a maximum of 8× 256 = 2048 logical neurons.

The main configurable parameters of Darwin NPU include

(1) Global parameters: including all parameters in (2)–(4), which are shared by all neurons (after

floating-to-fixed point conversion and parameter consolidation). Since these parameters are used at every

time step, they are stored in the on-chip registers to maximize performance, considering their high access

frequency and small size.

(2) Per-neuron variables: including each neuron’s membrane potential Vj(t), remaining length of the

refractory period, and delay queue, stored in an on-chip SRAM of size 16 KB for each physical neuron.

Hence the NPU has a total of 8× 16 KB = 128 KB of on-chip SRAM.

(3) Synapse attributes: including a table of Boolean values encoding the neural network’s connection

topology, as well as weight and delay attributes of each synapse. Each synapse’s attributes are accessed

when the synapse is activated by a spike. Its average access frequency is low, since a specific synapse in

a large SNN has low average probability of being activated. The synapse attributes can be very large,

ranging from several MBs up to GBs depending on the SNN size. Therefore, they are stored in off-chip

SDRAM to archive high storage density.

The run time execution consists of the following steps:

1. Spike routing: Each input spike in the form of an AER packet contains a time stamp and source

(pre-synaptic) neuron ID, which is used to look up the IDs of destination (post-synaptic) neuron IDs,

and the synapse attributes including their weights and delays stored in off-chip DRAM.

2. Synapse delay management: Each synapse has a configurable delay parameter, i.e., the delay from

spike generation of the pre-synaptic neuron to spike reception of the post-synaptic neuron. As shown in
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Figure 3 Photos of the die and the demonstration PCB board.

Figure 1, each neuron is associated with a delay queue consisting of 15 slots implemented as a circular

buffer; the kth slot stores the sum of input synapse weights (used to compute the term
∑

i SijVmaxwij

in (2)) with synaptic delay of k time steps. At each time step, the Current Time-step Pointer (CTP) is

shifted by one slot, and the content of the slot previously pointed to by CTP is sent to the neuron as

synaptic input.

3. Neuron status update: Each neuron performs status update based on (2)–(4). If an output spike is

generated, it is sent to the spike router (input or internal router in Figure 2) in the form of AER packets.

4 Experiment results

The Darwin NPU has been implemented with synthesizable Verilog, and fabricated with standard 180 nm

CMOS technology with an area size of 5× 5 mm2 and 70 MHz clock frequency at the worst case. It con-

sumes 0.84 mW/MHz with 1.8 V power supply for typical applications. It has been integrated with a RISC

CPU to form a complete System-on-Chip (SoC), based on the open-source OpenCores minsoc project

(http://opencores.org/project, minsoc). In addition to the NPU and CPU, the SoC also consists of a

local bus, 64 KB SRAM, SPI flash, UART controller and SDRAM controller. We perform protocol con-

version between UART and USB, so that the SoC can be used as an USB device and attached to a host

PC. Figure 3 shows the die photo, and the prototype PCB board.

Next, we present two application case studies.

(1) Application case 1: handwritten digit recognition.

The first application case study is the Spiking Deep Belief Network (DBN) from [6] for handwritten

digit recognition. It is a 4-layer SNN, with full feed forward connection between layers. The input layer

consists of 784 neurons, each representing an image pixel in a 28 × 28 pixel image; each input neuron

emits a spike train that uses firing rate coding to encode pixel intensity. Each of the two hidden layers

consists of 500 neurons; and the output layer consists of 10 neurons, each representing a digit of 0–9. The

output neuron with the highest firing rate is selected as the classification output.

We consider another SNN hardware accelerator Minitaur [6], which implemented the same Spiking

DBN on a Xilinx Spartan-6 FPGA. The Darwin NPU is configured to have clock speed of 25 MHz,

with average latency of 0.16 s for recognizing each digit, and overall classification accuracy of 93.8%. In

comparison, Minitaur has clock speed of 75 MHz, average latency of 0.152 s, and classification accuracy

of 92%. The Darwin NPU achieved similar average latency with a lower clock speed, and slightly better

classification accuracy.

(2) Application case 2: EEG decoding of motor imagery.

The second application case study is decoding of Electroencephalogram (EEG) signals. We use the

Emotiv headset to collect EEG signals for real-time classification of the user’s motor imagery, i.e., whether

the user is thinking of left or right direction, and use the result to control the movement of a virtual ball

on the screen. The SNN has 4 layers, with full feed forward connection between layers. The input layer

consists of 6 neurons, each representing an EEG channel; each input neuron emits a spike train that uses
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firing rate coding to encode EEG signal amplitude. The first hidden layer consists of 50 neurons, and the

second hidden layer consists of 100 neurons, with full recurrent connections within the layer; the output

layer consists of 2 neurons, each representing a binary decision of either left or right motor imagery.

The output neuron with the highest firing rate is selected as the classification output. The training set

consists of 4000 EEG signal fragments, and the test set consists of 4000 EEG signal fragments captured

and decoded in real-time. The classification accuracy is 92.7%.

5 Conclusion and future work

We present the Darwin NPU, a neuromorphic hardware co-processor based on SNN, supporting a max-

imum of 2048 neurons, 20482 = 4194304 synapses, and 15 possible synaptic delays. As part of future

work, we plan to use it as a Processing Element in a Network-on-Chip (NoC) architecture, using the AER

format for input and output spikes, in order to scale up the SNN size to potentially millions of neurons

instead of mere thousands.
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