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Abstract In this paper, we investigate the tracking problem for a class of second-order uncertain nonlinear

systems using sampled-data output feedback. Our controller is designed based on the characteristic modeling

method. We first derive the corresponding characteristic model and then give the sampled-data feedback control

law, which is referred to as “golden-section adaptive control based on characteristic models”. The closed-

loop system is shown to be stable and, concurrently, it is demonstrated that the tracking error can be made

arbitrarily small by taking a sufficiently small sampling period. Our results improve upon the findings of previous

work by removing the persistent excitation condition, and also lay certain theoretical foundations for practical

applications of golden-section adaptive control.
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1 Introduction

Characteristic modeling is a control-oriented modeling method, which considers both the dynamic charac-

teristics of controlled plants and performance specifications [1]. Different to traditional modeling methods,

the sole objective of which is to determine plant dynamics as precisely as possible, characteristic modeling

aims to establish a simplified model for engineering purposes. However, the characteristics of the con-

trolled plant are not neglected. In general, the resultant characteristic model is described by a low-order

slowly time-varying difference equation [1].

As a primary component of characteristic modeling theory, all-coefficient adaptive control based on

characteristic models was first proposed by Wu et al. [2,3], and has since gradually been refined through

a number of engineering projects. This technique removes many of the deficiencies of traditional adaptive

control theory when applied to practical engineering, while it includes features such as simplicity of design,

convenience of adjustment, and strong robustness. To date, the characteristic modeling method has been

successfully applied to various engineering projects in the fields of astronautics and industry, e.g., for
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adaptive re-entry lifting control of manned spacecraft [4], adaptive control of spacecraft instantaneous

thermal currents [5], control of an aluminum electrolysis process [6], the automatic rendezvous and docking

of the Shenzhou-8 and Shenzhou-9 spacecraft with the Tiangong-1 orbiter [7,8], and for attitude control

of spacecraft with deployable and retractable flexible structures [1]. Note that the precision of the re-

entry lifting control for manned spacecraft obtained using this technique is of the highest international

standard [4].

Important progress has also been made with regard to theoretical research on the characteristic mod-

eling method. In particular, the characteristic modeling problem has been well solved. For high-order

linear time-invariant systems and second-order affine nonlinear systems, different characteristic modeling

methods have been developed, as reported in [9, 10]. In addition, the equivalence in the output of the

resultant characteristic models and controlled plants has been investigated. As regards the closed-loop

stability problem, current research is primarily restricted to stability analysis of discrete-time closed-loop

systems consisting of characteristic models and corresponding discrete-time controllers (e.g., [1, 11–14]).

However, very little research has been conducted on hybrid closed-loop systems comprised of continuous

plants and sampled-data controllers. In [15], an adaptive control law was proposed and the stability

was proven for a class of affine nonlinear systems with a relative degree of two. However, the stability

was verified under a condition of persistent excitation, and it is very difficult to verify such a condition

in practice. Recently, sufficient conditions for stability, which are related to the characteristic model-

based pole placement method, have been established in [16], including a stringent criterion imposed on

characteristic-model modeling errors. Therefore, investigation of the closed-loop stability problem with

consideration of appropriate stability conditions is of great significance, both theoretically and practically.

In fact, certain difficulties must be overcome in order to solve the above closed-loop stability prob-

lem. Firstly, the resultant characteristic model is typically a time-varying discrete-time system, and the

time-varying property causes difficulties with regard to both parameter estimation and stability analy-

sis. Secondly, noting that the characteristic model-based adaptive control is essentially a sampled-data

controller, the corresponding closed-loop system can be classed as a hybrid control system. Therefore, in

order to prove the system stability, we are required to determine how the proposed sampled-data control

can manage the effects of the system’s complex structures, uncertainties, and external disturbances on

the system performance in a successive sampling period.

In this paper, we discuss the above stability problem, considering the tracking problem for a class of

second-order uncertain nonlinear systems. By deriving the characteristic model of a plant, we propose a

corresponding golden-section adaptive controller. Then, we demonstrate that this controller can ensure

hybrid closed-loop system stability and also make the tracking error sufficiently small, with no persistent

excitation requirement. This research lays certain theoretical foundations for practical applications of

the characteristic modeling method.

Notation. R denotes the set of real numbers, N the set of natural numbers, ‖ · ‖ the Euclidean

vector norm or the spectral matrix norm [17], and Im the m-dimensional identity matrix. Let T > 0

be the sampling period, •(k) � •(t)|t=kT , k ∈ N. For any given function κ(t), t ∈ Dκ, the expression

κ(t) = O(1), t ∈ Dκ means that there exists a positive constant Mκ > 0 such that |κ(t)| � Mκ, ∀t ∈ Dκ.

2 Problem formulation

Consider the following single-input-single-output (SISO) second-order nonlinear system:

{
ẋ(t) = Ax(t) +B [f(x(t)) + b(t)u(t) + d(t)] ,

y(t) = Cx(t),
t � 0, (1)

where x(t) = [x1(t) x2(t)]
T ∈ R

2, u(t) ∈ R, and y(t) ∈ R are the state variables, the control input, and

the measured output, respectively, f(x) is a nonlinear function that may contain unknown dynamics, b(t)

is an unknown time-varying parameter, and d(t) represents external disturbances. In addition, the triple
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(A,B,C) is defined as

A =

[
0 1

0 0

]
, B =

[
0

1

]
, C = [ 1 0 ] .

For the uncertain nonlinear system (1), we make the following assumptions.

Assumption 1. The unknown function f(x) is differentiable and globally Lipschitz in x. Moreover,

there exists L > 0 such that for any (x1, x2)
T, (x′

1, x
′
2)

T ∈ R
2,

|f(x1, x2)− f(x′
1, x

′
2)| � L (|x1 − x′

1|+ |x2 − x′
2|) . (2)

Assumption 2. The unknown time-varying parameter b(t) is differentiable, belongs to a bounded

interval that does not contain 0, and its sign is known. In addition, ḃ(t) is bounded. Without loss of

generality, let b, b̄1, and b̄2 be positive constants satisfying

0 < b � b(t) � b̄1, ∀t ∈ [0,+∞), sup
t�0

|ḃ(t)| � b̄2. (3)

Assumption 3. The disturbance d(t) is bounded, i.e., supt�0 |d(t)| � d with a constant d > 0.

For system (1), we consider the output tracking problem. Specifically, our control objective is to develop

a sampled-data output feedback controller to ensure that, for all initial states in any given compact set,

the output signal y(t) tracks the reference trajectory generated from the target system

ẋ∗(t) = Amx∗(t) +Br(t), y∗(t) = Cx∗(t), t � 0, (4)

where the state x∗(t) � [x∗
1(t) x

∗
2(t)]

T ∈ R
2 and the input signal r(t) ∈ R satisfies |r(t)| � r̄ with r̄ > 0

being a known constant. Further, Am is a Hurwitz matrix defined by

Am =

[
0 1

−k1 − k2

]
. (5)

Thus, it is apparent from the above that x∗(t) is uniformly bounded, i.e., there exists M∗ > 0 depending

on the system parameters {Am, r̄} and the initial value x∗(0) such that

sup
t�0

‖x∗(t)‖ � M∗. (6)

In fact, the above output tracking problem can be equivalently converted into a stabilizing problem

for the corresponding error dynamic system, which can simplify the controller design and performance

analysis. By introducing the error variables ei = xi − x∗
i (i = 1, 2) and ye = y − y∗, and considering the

plant given in (1) and the target system given in (4), we can express the error dynamics as

ė1(t) = e2(t), ė2(t) = F (e1(t), e2(t), t) + b(t)u(t), ye(t) = e1(t), (7)

where F (e1, e2, t) � f(e1+x∗
1(t), e2+x∗

2(t))+d(t)+k1x
∗
1(t)+k2x

∗
2(t)−r(t), in which f(·) and d(t) are given

in (1), and r(t), k1, and k2 are given in (4) and (5). Moreover, by Assumptions 1 and 3 and the uniform

boundedness of the (x∗
1, x

∗
2) state, the following properties of the function F (·) can be easily verified:

(A1) F (e1, e2, t) is globally Lipschitz in (e1, e2) uniformly in t. Furthermore,

|F (e′1, e
′
2, t)− F (e′′1 , e

′′
2 , t)| = |f(e′1 + x∗

1(t), e
′
2 + x∗

2(t)) − f(e′′1 + x∗
1(t), e

′′
2 + x∗

2(t))|
� L(|e′1 − e′′1 |+ |e′2 − e′′2 |), ∀(e′1, e′2)T, (e′′1 , e′′2)T ∈ R

2, ∀t � 0.

(A2) F (0, 0, t) is uniformly bounded, i.e., there exists a constantMF0 > 0 depending on the parameters

{L, d, k1, k2, r̄, M∗} such that

sup
t�0

|F (0, 0, t)| � MF0. (8)
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(A3) F (e1, e2, t) is differentiable with respect to its arguments, (e1, e2). Also,

|F (e1, e2, t1)− F (e1, e2, t2)| � MF1, ∀(e1, e2)T ∈ R
2, ∀t1, t2 � 0, (9)

where MF1 is a positive number depending on {L, d, k1, k2, r̄, M∗}.
Thus, the tracking problem can be solved by causing the tracking error ye(t) in (7) to converge to zero.

Hence, our control objective becomes the design of a sampled-data output feedback control law to ensure

that ye(t) → 0 as t → ∞.

3 Primary results

In this section, we first present the sampled-data feedback controller and then show our primary results.

3.1 Golden-section adaptive control based on characteristic models

The explicit controller design method, which is referred to as “golden-section adaptive control based on

characteristic models” was initially developed by Wu and presented in [2]. Before proceeding further,

considering that our control objective is now to ensure that ye(t) converges to zero, we need to first

derive the characteristic model of the error system given in (7) upon which the control design depends.

In the following, in the absence of special instructions, we set ye(−1) = e1(−1) = e1(0) − Te2(0),

e1(i) = 0 (∀i < −1), and e2(i) = u(i) = 0 (∀i < 0). Then, the characteristic model of (7) can be expressed

as follows.

Proposition 1. Consider the error system given in (7). If Assumptions 1–3 hold, the corresponding

characteristic model can be described by the second-order time-varying difference equation,

ye(k + 1) = f1(k)ye(k) + f2(k)ye(k − 1) + (T 2/2)b(k)u(k) + (T 2/2)b(k − 1)u(k − 1), ∀k � 0, (10)

where

f1(k) = 2 + T 2 ∂F

∂e1

∣∣∣∣
(σ1e1(k),0,k)

+ T
∂F

∂e2

∣∣∣∣
(e1(k),σ2e2(k),k)

, f2(k) = −1− T
∂F

∂e2

∣∣∣∣
(e1(k),σ2e2(k),k)

, (11)

in which σi ∈ (0, 1) (i = 1, 2) is parameters depending on the state variables (e1(k), e2(k)). Furthermore,

the above time-varying parameters {f1(k), f2(k), b(k)} have the following properties:

(P1) Uniform boundedness: for any k � 0, [f1(k), f2(k), b(k)]
T ∈ D, where D is a closed convex set

defined by

D �

⎧⎪⎨
⎪⎩ (a1, a2, a3)

T ∈ R
3

∣∣∣∣∣∣∣
a1 ∈ [

2− TL− T 2L, 2 + TL+ T 2L
]

a2 ∈ [− 1− TL, − 1 + TL
]

a3 ∈ [
b, b̄1

]
⎫⎪⎬
⎪⎭ , (12)

in which L, b, and b̄1 are given by (2) and (3) in Assumptions 1 and 2.

(P2) Slowly time-varying property:⎧⎪⎪⎨
⎪⎪⎩
|f1(k + 1)− f1(k)| � 2(TL+ T 2L),

|f2(k + 1)− f2(k)| � 2TL,

|b(k + 1)− b(k)| � b̄2T,

∀k � 0, (13)

where b̄2 is given by (3) in Assumption 2.

Proof. See Appendix A.

Remark 1. Various methods for deriving the characteristic model exist. Further, the description of

the characteristic model is not unique. Here, we develop a constructive method to obtain the above

characteristic model, so that the modeling error of the characteristic model and the stability of the

controlled plant can be more conveniently analyzed below.
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Remark 2. In general, the parameters of the characteristic model are uncertain, because of the un-

certainties in the controlled plant. Here, the characteristic model is introduced to aid the sampled-data

controller design; the simple structure of this model simplifies the controller design and the resultant

control algorithm can then be more conveniently implemented in practice.

Remark 3. In the subsequent theoretical analysis, it will be verified that the error between the char-

acteristic model and the exact discrete-time model of the system (7) can be arbitrarily small, provided

that T is sufficiently small, the controller {u(k)} guarantees that the tracking error {ye(k)} is uniformly

bounded, and {T 2u(k)} is uniformly bounded for any bounded T ∈ (0, Tmax] (0 < Tmax < ∞). This,

to some extent, demonstrates that it is reasonable to take the difference Eq. (10) as the characteristic

model, and demonstrates the validity of our control design method based on this characteristic model.

Remark 4. The parameters σi ∈ (0, 1) (i = 1, 2) in the time-varying coefficients f1(k) and f2(k) depend

on the state variables (e1(k), e2(k)). In the absence of special instructions, the σ1 and σ2 terms in the

following simply represent the constants located in the (0, 1) interval, and their values are not required

to be equal.

We next present the golden-section adaptive control law based on the characteristic model given in (10).

For any k � 0, we set the unknown parameter vector θ(k) � [f1(k), f2(k), b(k)]
T, the corresponding esti-

mation vector θ̂(k) � [f̂1(k), f̂2(k), b̂(k)]
T, and the regression vector ϕ(k) � [ye(k), ye(k−1), (T 2/2)u(k)]T.

Then, the golden-section adaptive control law is

u(k) =
2

T 2b̂(k)

[
−l1f̂1(k)ye(k)− l2f̂2(k)ye(k − 1)

]

=
2

T 2b̂(k)

[
−l1f̂1(k)(y(k)− y∗(k))− l2f̂2(k)(y(k − 1)− y∗(k − 1))

]
, (14)

where l1 = 3−√
5

2 ≈ 0.382 and l2 =
√
5−1
2 ≈ 0.618 are the golden-section proportions. θ̂(k) is calculated

from the projected gradient estimator [18], which can be expressed as

θ̂(k) = πD

{
θ̂(k − 1) +

ϕ(k − 1)

μ+ ϕ(k − 1)Tϕ(k − 1)

(
ye(k)− ϕ(k − 1)Tθ̂(k − 1)− T 2

2
b̂(k − 2)u(k − 2)

)}
,

(15)

where μ > 0 is a parameter to be designed, πD{x} is a projection function that projects x into the set D,

and D is the compact set defined by (12).

At this point, we have shown the characteristic model (10) of the error system (7) and the corresponding

golden-section adaptive control (14). Moreover, it can be seen from (14) that our proposed control law

has a simple linear structure, rendering it convenient for engineering applications.

3.2 Primary theorems

The performance of the closed-loop system under the golden-section adaptive controller given in (14) is

demonstrated by the following theorems. For convenience, we introduce the time invariant matrix

Ac �

⎡
⎢⎢⎣
2(1− l1) −(1− l2 + 2l1) l2

1 0 0

0 1 0

⎤
⎥⎥⎦ , (16)

which is related to the discrete-time closed-loop equation. Our first theorem shows the exponential

stability of the characteristic model (10) under (14).

Theorem 1. Consider the discrete-time closed-loop system consisting of the characteristic model (10)

and the golden-section adaptive control law (14). Assuming that Assumptions 1–3 hold, there exist a

positive number Cb and a sampling period T∗ > 0 that depend on the control parameters l1 and l2 and

the matrix Ac, such that for

b̄1/b− 1 < Cb, (17)

and T ∈ (0, T∗), the corresponding closed-loop system is globally exponentially stable.
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The stability of the controlled plant (1) and the tracking error properties are discussed below.

Theorem 2. Consider the uncertain nonlinear plant (1), the characteristic model (10), and the golden-

section adaptive controller (14). Suppose that Assumptions 1–3 are satisfied, and that the parameters

{b̄1, b} satisfy the condition given in (17). Then, for any ρ0 > 0 and any initial state ‖(x1(0), x2(0))‖ � ρ0,

there exists T ∗ > 0 such that, for any T ∈ (0, T ∗):
(1) All trajectories satisfy

sup
t�0

{|x1(t)|+ T |x2(t)|} = O(1); (18)

(2) The tracking performance satisfies

lim sup
t→∞

|y(t)− y∗(t)| = O(T ). (19)

Furthermore, if x(0) = x∗(0), then |y(t)− y∗(t)| = O(T ) holds for all t � 0.

Remark 5. The transient performance of the closed-loop system is related to its initial value, and

a smaller initial value yields a smaller transient error. Nevertheless, for any bounded initial value, the

tracking error ultimately enters the neighborhood of the origin, with a radius of O(T ).

Remark 6. Theoretically, the steady error can be rendered arbitrarily small by taking a sufficiently

small T . However, in practice, certain limitations on the value of T exist, as a result of the various

physical constraints. The corresponding stability problem with prescribed T remains a topic for further

investigation.

4 Proofs of primary theorems

To prove our primary theorems, we first analyze the stability of the discrete-time closed-loop system

consisting of the characteristic model (10) and the golden-section adaptive control law (14). Then, by

quantitatively analyzing the error between (10) and the exact discrete-time model of the error dynam-

ics (7), we demonstrate the performance for (7) under (14). Finally, we prove the boundedness of the

hybrid closed-loop system trajectory and calculate the tracking error.

Before proceeding further, we first give the discrete-time closed-loop system consisting of (10) and (14).

Substituting (14) into (10), we have

ye(k + 1) =
[
f1(k)− l1f̂1(k)

]
ye(k) +

[
f2(k)− l2f̂2(k)− l1f̂1(k−1)

]
ye(k−1)

− l2f̂2(k−1)ye(k−2) + (T 2/2)b̃(k)u(k) + (T 2/2)b̃(k − 1)u(k − 1), ∀k � 0, (20)

where b̃(i) � b(i) − b̂(i) (∀i � 0). For the convenience of stability analysis, we derive an equivalent form

for the closed-loop equation (20). We introduce the notation

Ye(k + 1) �

⎡
⎢⎢⎣
ye(k + 1)

ye(k)

ye(k − 1)

⎤
⎥⎥⎦ , B0 �

⎡
⎢⎢⎣
1

0

0

⎤
⎥⎥⎦ , Ak �

⎡
⎢⎢⎣
α1(k) α2(k) α3(k)

1 0 0

0 1 0

⎤
⎥⎥⎦ , (21)

where the time-varying parameters {αi(k), i = 1, 2, 3} are given as

α1(k) = f1(k)− l1f̂1(k), α2(k) = f2(k)− l2f̂2(k)− l1f̂1(k − 1), α3(k) = −l2f̂2(k − 1),

and fi(k), f̂i(k) (i = 1, 2) are given by (11) and (15), respectively. Then, we can rewrite the closed-loop

equation (20) as

Ye(k + 1) = AkYe(k) + (T 2/2)B0

[
b̃(k)u(k) + b̃(k − 1)u(k − 1)

]
= AkYe(k) +B0η

T
k Ye(k), (22)

where Ak and B0 are given by (21) and

ηTk �
[
−l1f̂1(k)b̃(k)/b̂(k), −l2f̂2(k)b̃(k)/b̂(k)− l1f̂1(k−1)b̃(k−1)/b̂(k−1), −l2f̂2(k−1)b̃(k−1)/b̂(k−1)

]
.

(23)
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4.1 Key lemmas

We now introduce some key lemmas upon which the proof of our main results depends. Firstly, we

consider the linear time-varying difference equation:

S(k + 1) = AkS(k), ∀k � 0, (24)

where S(k) � [s(k), s(k−1), s(k−2)]T ∈ R
3 is the state variable and the matrix sequence {Ak} is defined

by (21). The stability of the above equation is shown below.

Lemma 1. Consider the linear time-varying difference equation given in (24). Suppose that the pa-

rameters fi(k) and f̂i(k) (i = 1, 2) satisfy the properties given in (12), (13), and (15). Then, there exists

T0 > 0 such that ∀T ∈ (0, T0], system (24) is exponentially stable.

Proof. See Appendix B.

As stated previously, in order to prove Theorem 2, we must quantitatively analyze the modeling error

between the characteristic model (10) and the exact discrete-time model of the error plant (7). Thus,

we first analyze the properties of the solution of (7). In fact, for any given sampled-data control signals

{u(k), k � 0}, the solution of (7) can be expressed as{
e1(t) = e1(k) + (t− kT )e2(k) +

∫ t

kT
(t− τ) [F (e1(τ), e2(τ), τ) + b(τ)u(k)] dτ,

e2(t) = e2(k) +
∫ t

kT [F (e1(τ), e2(τ), τ) + b(τ)u(k)] dτ, ∀t ∈ [kT, (k + 1)T ].
(25)

The properties of the above solution are given in the following lemma, but the proof is omitted because

of space limitations.

Lemma 2. Consider the error dynamics given in (7). If Assumptions 1–3 are satisfied, for any given

sampled-data control signals {u(k), k � 0}, solution (25) has the following properties:

z(t) � p1(t− kT )z(k) + (t− kT )p1(t− kT )|e2(k)|+ p2(t− kT )MF0

+ p2(t− kT )b(k)|u(k)|+ p3(t− kT )b̄2|u(k)|, (26)

zk(t) � Lp2(t− kT )z(k) + (t− kT )p1(t− kT )|e2(k)|+ p2(t− kT ) (MF0 +MF1)

+ p2(t− kT )b(k)|u(k)|+ p3(t− kT )b̄2|u(k)|, ∀t ∈ [kT, (k + 1)T ], ∀k � 0, (27)

where z(t) � |e1(t)|+ |e2(t)|, z(k) � |e1(k)|+ |e2(k)|, and zk(t) � |e1(t)− e1(k)|+ |e2(t)− e2(k)|. The L,

b̄2, MF0, and MF1 parameters are given by (2), (3), (8), and (9), respectively, and

p1(s) � exp [s(2 + s)L/2], p2(s) �
(
s+ s2/2

)
p1(s), p3(s) �

(
s2/2 + s3/6

)
p1(s). (28)

In addition, from (25), we know that the exact discrete-time model of the error dynamics given in (7) is⎧⎨
⎩
e1(k + 1) = e1(k) + Te2(k) +

∫ (k+1)T

kT
[(k + 1)T − t] · [F (e1(t), e2(t), t) + b(t)u(k)] dt,

e2(k + 1) = e2(k) +
∫ (k+1)T

kT
[F (e1(t), e2(t), t) + b(t)u(k)] dt.

(29)

The following lemma shows the properties of model (29). Again, the proof is omitted because of space

limitations.

Lemma 3. Consider the exact discrete-time model (29) of the error equation (7). Let Assumptions 1–3

hold. Then, Ref. (29) has the following properties:{
e1(k + 1) = f1(k)e1(k) + f2(k)e1(k − 1) + (T 2/2)b(k)u(k) + (T 2/2)b(k − 1)u(k − 1) + Δ1(k + 1), (30a)

T |e2(k + 1)| � (1/2 + T/3)T 2Lp1(T )|e2(k)|+Δ2(k + 1), ∀k � 0, (30b)

where f1(k) and f2(k) have the same form as the expressions given by (11), and Δ1(k+1) and Δ2(k+1)

satisfy{ |Δ1(k+1)| � c11|e1(k)|+c12|e1(k−1)|+c21|e2(k)|+c22|e2(k−1)|+c01|u(k)|+c02|u(k−1)|+C1, (31)

Δ2(k+1) = |e1(k+1)−e1(k)|+(1/2)T 2Lp1(T )|e1(k)|+c03|u(k)|+C2, (32)
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in which the coefficients cij (i = 0, 1, 2, j = 1, 2, 3) are positive numbers related to {T, L, b̄1, b̄2} and the

constants C1 and C2 depend on the parameters {T, L, MF0, MF1}. Furthermore,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c11 = 1
2T

2L
[
1 + TL

(
1 + 1

3T
)]

p1(T ), c12 = 1
2T

2L(1 + TL)p1(T ),

c21 = 1
2T

2L
[
1 + 5

3T + T 2L+ 1
3T

2L2
]
p1(T ), c22 = T 2L(1 + TL)

(
1
2 + T

3

)
p1(T ),

c01 = T 3Lp1(T )b̄1 +
1
3T

3b̄2 +O(T 4), c02 = T 3L
(
1
2 + 1

3p1(T )
)
b̄1 +

1
3T

3b̄2 +O(T 4),

c03 = T 2

2 b̄1 +O(T 3), C2 = T 2

2 MF0 +O(T 3), C1 = 2T 2MF0 + T 2MF1 +O(T 3),

(33)

where the function p1(·) is defined in (28).

4.2 Closed-loop performance analysis

We next analyze the performance of plant (1) under the golden-section adaptive controller (14) and prove

our main theorems. Firstly, we show the globally exponential stability of the characteristic model given

in (10) under (14).

Proof of Theorem 1. To analyze the stability of the closed-loop system (22), we first demon-

strate the properties of the matrix sequence {Ak, k � 0} by considering the time-varying difference

equation (24). According to Lemma 1, we know that there exists T0 > 0 such that ∀T ∈ (0, T0],

equation (24) is globally exponentially stable. More specifically, by introducing the matrix sequence

Φ(k + 1, i) = AkΦ(k, i), Φ(i, i) = I3, ∀k � i � 0, where Ak is given by (21), and from (B8) given in the

proof of Lemma 1,

‖Φ(k + 1, i)‖ � M0λ
1
2 (k+1−i)
0 , ∀k � i � 0, (34)

where M0 > 0 and λ0 ∈ (0, 1) are given by (B3). Moreover,

sup
k�0

‖B0η
T
k ‖ = sup

k�0
‖ηk‖ � δ0(l1, l2)

(
b̄1/b− 1

)
+O(T ), (35)

where δ0(l1, l2) =
√

8l21 + 2l22 + 4l1l2. From (22), we find

Ye(k + 1) = Φ(k + 1, 0)Ye(0) +

k∑
i=0

Φ(k + 1, i+ 1)B0η
T
i Ye(i). (36)

Then, using (34) and (35) and applying the same calculations given in (B5)–(B8) to (36), we have

‖Ye(k + 1)‖ � M0

(√
λ0 +M0δ0(b̄1/b− 1) +O(T )

)k+1

‖Ye(0)‖. (37)

Therefore, setting Cb �
(
1−√

λ0

)
/(M0δ0) and from condition (17), we find

√
λ0 +M0δ0(b̄1/b− 1) < 1.

Therefore, there exists T∗ � T0 such that ∀T ∈ (0, T∗),
√
λ0 +M0δ0(b̄1/b − 1) + O(T ) < 1. This result,

together with (37), guarantees that the discrete-time closed-loop system given in (22), or equivalently,

system (20), is globally exponentially stable. The proof is complete.

Proof of Theorem 2. We split the proof into two parts. First, we demonstrate that the sampling

signals {x1(k), x2(k)} of plant (1) under the golden-section adaptive controller (14) are bounded and give

the explicit bounds. Then, we show the boundedness of the hybrid closed-loop system trajectories and

give the tracking error.

Part I. To prove the boundedness of the state signals {x1(k), x2(k)}, we are simply required to prove

that {e1(k), e2(k)} are bounded, as the trajectories of the target system given in (4) are bounded.

Without loss of generality, we assume the initial values satisfy |e1(0)| + |e2(0)| � ρe, where ρe is

determined by the upper bound of the plant’s initial values ρ0 and the target system’s initial state

(x∗
1(0), x

∗
2(0)). Then, in the following, we prove that there exists a sampling period T ∗ ∈ (0, 1], such that

∀T ∈ (0, T ∗), the error states satisfy the properties:

sup
k�0

|e1(k)| � 2M0ρe � ρ1, sup
k�0

T |e2(k)| � 1

1− λ1
(3 + (2l1 + l2)b̄1/b)ρ1 � ρ2, (38)
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where M0 > 1, b̄1 and b are defined by (B3) and (3), respectively, and λ1 ∈ (0, 1) is any given constant.

We adopt the contradiction argument. If we suppose the above statement is incorrect, then we know a

time k0 � 0 must exist such that the values of {e1(k0+1), e2(k0+1)} do not satisfy (38). This is because

the initial values satisfy |e1(0)| � ρ1 and T |e2(0)| � ρ2. Let k∗ + 1 � 1 correspond to the first time the

signals {e1(k), e2(k)} exceed the bounds given in (38). Therefore, for any 0 � k � k∗, we have

|e1(k)| � ρ1, T |e2(k)| � ρ2, (39)

and at time k∗ + 1, only the following two cases occur:

|e1(k∗ + 1)| > ρ1 or T |e2(k∗ + 1)| > ρ2.

We next analyze these two cases individually.

Case 1. |e1(k∗ + 1)| > ρ1.

Set E1(k) � [e1(k), e1(k−1), e1(k−2)]T. According to Lemma 3 and by substituting the golden-section

controller (14) into the exact discrete-time model (29), we have

E1(k + 1) = [Ak +B0η
T
k ]E1(k) +B0Δ1(k + 1), (40)

where Ak, B0, ηk, and Δ1(k + 1) are defined by (21), (23), and (30a), respectively, and Δ1(k + 1) satis-

fies (31). Next, we calculate an upper bound for ‖E1(k
∗ + 1)‖. Firstly, we introduce the state transition

matrix sequence Φ′(k + 1, i) = [Ak + B0η
T
k ]Φ

′(k, i), Φ′(i, i) = I3, ∀k � i � 0. From Theorem 1 and

by (37), we know that under condition (17) there exists T∗ > 0 such that ∀T ∈ (0, T∗),

‖Φ′(k + 1, i)‖ � M0λ
k+1−i, ∀k � i � 0, (41)

where M0 > 0 is defined by (B3) and λ ∈ (0, 1). Furthermore, to analyze the properties of the Δ1(k+1)

term, we split the bounds of Δ1(k + 1) into two parts, such that

|Δ1(k + 1)| � Δ11(k + 1) + Δ12(k + 1), (42)

where {
Δ11(k + 1) = c11|e1(k)|+ c12|e1(k − 1)|+ c01|u(k)|+ c02|u(k − 1)|, (43)

Δ12(k + 1) = c21|e2(k)|+ c22|e2(k − 1)|+ C1, (44)

and the parameters cij (i = 0, 1, 2, j = 1, 2) and C1 are given in (33). By substituting the golden-section

control law (14) into (43), and noting that max{c01, c02} = O(T 3), it can be easily verified that

Δ11(k + 1) � c̄11|e1(k)|+ c̄12|e1(k − 1)|+ c̄13|e1(k − 2)|,
where the parameters max1�i�3 c̄1i = O(T ). This, together with (39), indicates that

Δ11(k + 1) = O(T ), ∀0 � k � k∗. (45)

In addition, from (33) we know that max{c21, c22, C1} = O(T 2). This, together with (39) and (44) further

indicates that ∀0 � k � k∗,

Δ12(k + 1) = O(T 2)(|e2(k)|+ |e2(k − 1)|+ 1) = O(T ). (46)

Moreover, it follows from (40) that

E1(k + 1) = Φ′(k + 1, 0)E1(0) +

k∑
i=0

Φ′(k + 1, i+ 1)B0Δ1(i + 1). (47)

Therefore, by substituting (41), (42), (45) and (46) into (47), we find that for any 0 � k � k∗,

‖E1(k + 1)‖ � ‖Φ′(k + 1, 0)‖ · ‖E1(0)‖+
k∑

i=0

‖Φ′(k + 1, i+ 1)‖ · ‖B0‖ · |Δ1(i + 1)|
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� M0λ
k+1‖E1(0)‖+

k∑
i=0

M0λ
k−i(Δ11(i+ 1) + Δ12(i + 1))

� M0‖E1(0)‖+ (M0/(1− λ))O(T ). (48)

Hence, by the initial condition |e1(0)| + |e2(0)| � ρe and our appointment e1(−1) = e1(0) − Te2(0), we

know there exists T1 � T∗ such that for any T ∈ (0, T1), the inequality ‖E1(k
∗+1)‖ < 2M0ρe = ρ1 holds.

Thus, we obtain a contradiction with |e1(k∗ + 1)| > ρ1.

Case 2. T |x2(k
∗ + 1)| > ρ2.

Consider the inequality (30b). Firstly, for any given constant λ1 ∈ (0, 1), there exists T2 � T1 such

that for any T ∈ (0, T2],

(1/2 + T/3)TLp1(T ) � λ1. (49)

We then analyze the properties of the Δ2(k+1) term. From the analysis given in Case 1, we determined

that

|e1(k∗ + 1)| < ρ1, (50)

when T ∈ (0, T1). Thus, by substituting the control law given in (14) into (32), and from (33), (39),

and (50), we find that |Δ2(k + 1)| � (2 + (2l1 + l2)b̄1/b)ρ1 + O(T ) holds for any T ∈ (0, T2] and

any 0 � k � k∗. Here, b̄1, b, and ρ1 are defined by (3) and (38). Therefore, from the above analysis

and (30b), we know that there exists T ∗ � T2 such that ∀T ∈ (0, T ∗) and ∀0 � k � k∗,

T |e2(k + 1)| � λ1T |e2(k)|+ (2 + (2l1 + l2)b̄1/b)ρ1 +O(T )

� λk+1
1 T |e2(0)|+ [(2 + (2l1 + l2)b̄1/b)ρ1 +O(T )]/(1− λ1)

� ρ1(2 + (2l1 + l2)b̄1/b)/(1− λ1) +O(T )

< ρ1(3 + (2l1 + l2)b̄1/b)/(1− λ1) = ρ2. (51)

Hence, we find that T |e2(k∗ + 1)| < ρ2, which contradicts the claim that T |e2(k∗ + 1)| > ρ2.

Thus, by combining Case 1 and Case 2, we know that ∀T ∈ (0, T ∗), the states of the exact discrete-time

model (29) satisfy

|e1(k)| � ρ1, T |e2(k)| � ρ2, ∀k � 0. (52)

In addition, from the above, we can further obtain the steady properties of the {e1(k), e2(k)} states. In

fact, from (48), (45) and (46),

lim
k→∞

‖E1(k + 1)‖ � lim
k→∞

k∑
i=0

M0λ
k−i(|Δ11(i + 1)|+ |Δ12(i+ 1)|) = M0

1− λ
O(T ) = O(T ). (53)

Hence, there exists N0(T ) ∈ N such that

|e1(k)| = O(T ), ∀k � N0(T ). (54)

Moreover, for the e2(k) state and from (32), (33), and (54), we know that for any k � N0(T ), |Δ2(k+1)| =
O(T ). Together with (30b) and (49), this indicates that ∀T ∈ (0, T ∗) and ∀k � N0(T ),

T |e2(k + 1)| � λ1T |e2(k)|+ |Δ2(k + 1)| � λk+1−N0
1 T |e2(N0)|+

k∑
i=N0

λk−i
1 |Δ2(i+ 1)|,

� λk+1−N0
1 T |e2(N0)|+O(T ).

Thus, it can be determined that

lim
k→∞

T |e2(k)| = O(T ), (55)

that is, limk→∞ |e2(k)| = O(1).

To summarize, we have shown the boundedness of the {e1(k), e2(k)} state signals and given the explicit

bounds (52). Also, we have provided the corresponding steady properties (53) and (55).
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Part II. In this part, we analyze the properties of the trajectory of the closed-loop system consisting

of the error dynamics (7) and the control law (14), and we give the tracking error.

For the solution (25) of the error system given in (7), according to Assumptions 1–3 and using (8), we

find that for any k � 0 and any t ∈ [kT, (k + 1)T ],

|e1(t)|� |e1(k)|+T |e2(k)|+L

∫ t

kT

(t−τ)z(τ)dτ+(T 2/2)b(k)|u(k)|+(T 3/6)b̄2|u(k)|+(T 2/2)MF0, (56)

where z(t) is defined in Lemma 2 and satisfies (26), and b̄2 andMF0 are defined by (3) and (8), respectively.

Then, by substituting (14) and the inequality (26) into (56), and from the bounds given in (52), we find

that for any t � 0 and T ∈ (0, T ∗),

|e1(t)| � (1 + (2l1 + l2)b̄1/b)ρ1 + ρ2 +O(T ). (57)

Similarly, according to Assumptions 1–3 and using (25), (14), (8), and (26), we have ∀t � 0 and ∀T ∈
(0, T ∗),

T |e2(t)| � 2(2l1 + l2)(b̄1/b)ρ1 + ρ2 +O(T ). (58)

Consequently, from (57) and (58) the trajectory of the closed-loop system satisfies

|e1(t)|+ T |e2(t)| = O(1), ∀t � 0. (59)

This, together with the boundedness of the target trajectory (x∗
1(t), x

∗
2(t)), indicates that Eq. (18) is

true.

Moreover, for the solution (25) of the error system given in (7), according to Lemma 2 and from the

steady properties of the {e1(k), e2(k)} signals given by (53) and (55), along with the boundedness of the

{e1(t), e2(t)} states given by (59), it can easily be seen that

lim
t→∞[|e1(t)|+ T |e2(t)|] = O(T ). (60)

Therefore, from (60), the tracking error satisfies (19). Furthermore, if the initial condition satisfies

x(0) = x∗(0), then e1(0) = e2(0) = 0. Hence, from the above analysis and by (48) and (51), it is apparent

that the bounds ρ1 and ρ2 in this case satisfy the statements that ρ1 = O(T ) and ρ2 = O(T ). Therefore,

according to (57) and (58), it can be shown that

|e1(t)|+ T |e2(t)| = O(T ), ∀t � 0. (61)

From the above, the proof of Theorem 2 is complete.

5 Simulation

We illustrate the performance of the proposed control method using two numerical examples. The first

is based on a practical plant, whereas the second example is an academic case with strong nonlinearity.

Example 1. We consider pitch-axis attitude control for a three-axis stabilized satellite with liquid

propellant and flexible solar arrays during motor operation. The system can be simply modeled as

I(t)θ̈p = u+ d(t), y = θp, where θp ∈ R denotes the pitch angle, u ∈ R is the control input, I(t) denotes

the total moment of inertia (the value of which varies over time as result of the change in the satellite

center), and d(t) represents the disturbances causing by the liquid propellant and flexible solar arrays.

Here, we take I(t) = I0 + I1δI(t), where I0 = 1000 kg ·m2, I1 = 10%I0, and |δI(t)| � 1 with a bounded

derivative. In addition, we take d(t) =
∑100

i=1 C
∗
i sin(ω

∗
i t + p∗i ) to equivalently describe the disturbance

where C∗
i /I0 ∈ (0, 20], ω∗

i ∈ (0, 50], and p∗i ∈ [0, 2π] (i = 1, . . . , 100) are random numbers. The goal is to

have θp asymptotically track the reference signal generated by the target system

ẋ∗
1 = x∗

2, ẋ∗
2 = −2w0x

∗
2 − w2

0x
∗
1 + r(t), y∗ = x∗

1, (62)
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Figure 1 System output, reference trajectory, and corre-

sponding tracking error (θp(0) = −1).

Figure 2 Control signal (θp(0) = −1).
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Figure 3 System output, reference trajectory, and corre-

sponding tracking error (θp(0) = 0).

Figure 4 Control signal (θp(0) = 0).

where the parameters w0 = 1 and r(t) = 10 and the initial condition is x∗
1(0) = 0. Then, the corresponding

characteristic model, as given by (10), is ye(k+1) = 2ye(k)−ye(k−1)+(T 2/2)[b(k)u(k)+b(k−1)u(k−1)],

where ye(k) = y(k) − y∗(k) and b(k) = 1/I(k) ∈ [1/1100, 1/900]. Further, the golden-section adaptive

control is u(k) = −2[2l1((y(k)− y∗(k))− l2(y(k− 1)− y∗(k− 1))]/(T 2b̂(k)), where l1 = 0.382, l2 = 0.618,

and b̂(k) is calculated using the projected gradient algorithm. Thus, by taking T = 0.05, the tracking

performance and the control signals for the initial values θp(0) = −1 and θp(0) = 0 can be obtained, as

shown in Figures 1 and 2 and Figures 3 and 4, respectively.

It is apparent that, in both cases, the tracking performance of the closed-loop systems can meet the

requirements. Furthermore, the transient performance is improved as the initial error decreases, which

coincides with our theoretical results.

Example 2. Consider the nonlinear system

ẋ1 = x2, ẋ2 =
x1x2 sinx1

2 + x2
1

+
3x1x

3
2

(1 + x4
2)e

x2
1+5x2

2

+ (2 + sin 10t)u+ d(t), y = x1,

where d(t) = 1. Similar to the previous example, the control objective is to have y asymptotically track

the reference signal generated by the target system (62), with w0 = 1, r(t) = sin t, and x∗
1(0) = 0. Hence,

the characteristic model is described by: ye(k+1) = f1(k)ye(k)+f2(k)ye(k−1)+(T 2/2)[b(k)u(k)+b(k−
1)u(k− 1)], where {f1(k), f2(k), b(k)} satisfy |f1(k)− 2| � 3(T +T 2), |f2(k) + 1| � 3T, and 1 � b(k) � 3.
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Figure 5 System output, reference trajectory, and corre-

sponding tracking error (T = 0.05).

Figure 6 Control signal (T = 0.05).
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Figure 7 System output, reference trajectory, and corre-

sponding tracking error (T = 0.01).

Figure 8 Control signal (T = 0.01).

Furthermore, we have the golden-section adaptive control u(k) = −2[l1f̂1(k)((y(k)−y∗(k))+l2f̂2(k)(y(k−
1)− y∗(k − 1))]/(T 2b̂(k)), where the parameter estimates {f̂1(k), f̂2(k), b̂(k)} are given by the estimator

of (15). By taking x1(0) = 1, the tracking errors and control signals for T = 0.05 and T = 0.01 can be

obtained, as shown in Figures 5 and 6 and Figures 7 and 8, respectively. As expected, such uncertain

nonlinearity can be managed by the proposed u(k). Further, by comparing Figure 5 with Figure 7, we

find that the steady-state tracking error decreases as T is reduced. All of the above findings are consistent

with the theoretical results, illustrating the efficacy of the proposed control method.

6 Conclusion

The purpose of this paper is to deal with the tracking problem for a class of second-order nonlinear

systems, which are subjected to both unknown nonparametric dynamics and external disturbances, using

sampled-data output feedback. The characteristic modeling method is used to design the sampled-

data control law; this is achieved by first deriving the characteristic model and then proposing the

corresponding golden-section adaptive control law. We also prove the following three properties: Firstly,

the characteristic model under the golden-section adaptive controller is globally exponentially stable;

secondly, the trajectory of the hybrid closed-loop system is bounded; and thirdly, the output tracking error

can be arbitrarily small if the sampling period is chosen to be sufficiently small. In addition, the stability
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condition given in this work depends on the parameters of the plant, the controller parameters, and the

sampling period only which, to the best of the authors’ knowledge, appears to be the weakest criterion.

Two numerical examples are also given to illustrate the validity of our proposed sampled-data output

feedback controller. All the above results confirm the theoretical basis of the characteristic modeling

method, and also lay important theoretical foundations for practical applications of this technique. Of

course, a number of problems requiring further investigation remain, particularly those concerning more

general cases.
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Appendix A Proof of Proposition 1

For any given sampling rate T > 0, based on the core concept of characteristic modeling (i.e., that the characteristics of the

system are retained), and combining the exact discrete-time model of the error system given in (7), we extract the following

discrete-time model:

e1(k + 1) = e1(k) + Te2(k + 1)− (T 2/2)b(k)u(k), e2(k + 1) = e2(k) + TF (e1(k), e2(k), k) + Tb(k)u(k). (A1)

Then, according to Assumption 1 and by the mean-value theorem, we have

F (e1(k), e2(k), k) = F (0, 0, k) + (∂F/∂e1)|(σ1e1(k),0,k)
· e1(k) + (∂F/∂e2)|(e1(k),σ2e2(k),k)

· e2(k), (A2)

where σ1, σ2 ∈ (0, 1) are parameters depending on the state variables (e1(k), e2(k)). Substituting (A2) into the difference

equation (A1), and noting that ye(−1) = ye(0) − Te2(0), u(−1) = 0, we obtain ∀k � 0,

ye(k + 1) = f1(k)ye(k) + f2(k)ye(k − 1) + (T 2/2)b(k)u(k) + (T 2/2)b(k − 1)u(k − 1)
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+ T 2F (0, 0, k) + (T 2/2)h(k)b(k − 1)u(k − 1), (A3)

where f1(k) and f2(k) are given by (11) and h(k) � T (∂F/∂e2)|(e1(k),σ2e2(k),k)
. As the last two terms in (A3) have the

properties that T 2F (0, 0, k) = O(T 2) and h(k) = O(T ), we obtain the characteristic model of (10) by omitting the final

two terms in Eq. (A3).

Furthermore, from Assumption 1, we know that |∂F/∂ei| = |∂f/∂xi| � L (i = 1, 2) which, together with Assumption 2,

further ensures that the time-varying parameters of (10) are uniformly bounded and belong to the set D defined by (12).

In addition, from (12) and Assumption 2, we know that the slow time-varying property of parameters {f1(k), f2(k), b(k)}
given by (13) holds. Thus, the proof is complete.

Appendix B Proof of Lemma 1

First, we rewrite (24) as

S(k + 1) = AkS(k) = AcS(k) + B0ζk(S(k)), (B1)

where Ak, B0, and Ac are defined by (21) and (16), respectively, and the function ζk(·) is defined by

ζk(S(k)) =
[(
f1(k)− 2

)
+ l1

(
2− f̂1(k)

)]
s(k) +

[(
1 + f2(k)

) − l2
(
1 + f̂2(k)

)
+ l1

(
2− f̂1(k − 1)

)]
s(k − 1)− l2

(
1 + f̂2(k − 1)

)
s(k − 2), (B2)

For the matrix Ac, according to the Jury criterion1), the eigenvalues are located in the unit circle with the parameters

l1 = 3−√
5

2
and l2 =

√
5−1
2

. Therefore, by setting ρ(Ac) = max
1�i�3

{ |λi(Ac)| } , we find ρ(Ac) < 1. Furthermore, from [18],

there exist

M0 =
√
3

(
1 +

2

ε0

)2

and λ0 = ρ(Ac) + ε0‖Ac‖ < 1, (B3)

with a certain small constant ε0 > 0, such that

‖Ak
c‖ � M0λ

k
0 , ∀k � 0. (B4)

In addition, from the difference equation (B1), we have

S(k + 1) = Ak+1
c S(0) +

k∑
i=0

Ak−i
c B0ζi(S(i)). (B5)

Moreover, from (B2) along with the uniform boundedness for f1(k) and f2(k) given in (12) and that for f̂1(k) and f̂2(k)

given in (15), there exists a positive number c0 > 0 that depends on l1 and l2 only, such that

|ζk(S(k))| � c0TL‖S(k)‖. (B6)

Thus, substituting (B6) into (B5) and from (B4), we have

‖S(k + 1)‖ � ‖Ak+1
c S(0)‖ +

k∑
i=0

‖Ak−i
c B0ζi(S(i))‖ � M0λ

k+1
0 ‖S(0)‖ +

k∑
i=0

M0λ
k−i
0 c0TL‖S(i)‖.

Let d0 � M0
λ0

c0TL. Then, according to the Bellman-Gronwall inequality [18], we have

λ
−(k+1)
0 ‖S(k + 1)‖ � M0‖S(0)‖

[
1 + d0

k∑
i=0

(1 + d0)
k−i

]
� M0‖S(0)‖ (1 + d0)

k+1 � M0‖S(0)‖ exp (d0(k + 1)) . (B7)

Therefore, let T � −λ0 ln (λ0) /(2c0M0L) � T0, which ensures exp (d0(k + 1)) � λ
−(k+1)/2
0 . This, together with (B7),

ensures that the solution of (B1) satisfies

‖S(k + 1)‖ � M0λ
k+1
2

0 ‖S(0)‖ = M0 exp {−λ∗(k + 1)} ‖S(0)‖, (B8)

where λ∗ � 1
2
ln

(
1
λ0

)
. Therefore, for any T ∈ (0, T0], the difference equation (B1) is globally exponentially stable. Thus,

the lemma is true.

1) Hu S S. Automatic Control (in Chinese). 5th ed. Beijing: Science Press, 2007.
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