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Abstract Since the Shor algorithm showed that a quantum algorithm can efficiently calculate discrete log-

arithms and factorize integers, it has been used to break the RSA, EIGamal, and ECC classical public key

cryptosystems. This is therefore a significant issue in the context of ensuring communication security over in-

secure channels. In this paper, we prove that there are no polynomial-size quantum circuits that can compute

all Boolean functions (of which there are 22
n

cases) in the standard quantum oracle model. Based on this,

we propose the notion of data complexity under a quantum environment and suggest that it can be used as a

condition for post-quantum computation. It is generally believed that NP-complete problems cannot be solved

in polynomial time even with quantum computers. Therefore, a public key cryptosystem and signature scheme

based on the difficulty of NP-complete problems and the notion of data complexity are presented here. Finally,

we analyze the security of the proposed encryption and signature schemes.
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1 Introduction

In the early 1980s, Feynman presented a quantum Turing machine (QTM) based on quantum mechanics.

With the rapid development of quantum information science, a number of quantum algorithms have been

discovered in the past three decades.

Deutsch was the first to present a model of quantum computation and to point out the superiority of

quantum computation to conventional electronic computation [1]. Bernstein presented a mathematical

model of a QTM [2]. This became the theoretical basis of quantum computation. Simon proposed an

example of a quantum algorithm [3]. Grover constructed a general quantum search algorithm [4], with

complexity O(
√
n). In application to cryptography, the Grover algorithm reduces the length of the key

by half. This presents a threat to existing cryptosystems. Shor’s seminal article [5] proposed an effective

quantum algorithm to solve the factorization and discrete logarithm problems. This algorithm therefore
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presents a serious threat to classical public key cryptosystems such as RSA, ELGamal, and ECC, which

are based on the factorization and discrete logarithm problems. More generally, Mosca extended the Shor

algorithm to abelian groups [6]. The primary ingredient of these algorithms is the efficient solution of a

hidden subgroup problem about certain abelian groups. Hallgren pointed out that weak Fourier sampling

succeeds for a similar reason when H is a normal subgroup of a non-abelian group G [7].

In summary, these quantum algorithms provide a new theoretical basis and tools for cryptanalysis.

As a consequence, there is a need for new public key cryptosystems to take account of the challenges

posed by quantum computation. Such post-quantum computation cryptosystems currently include the

following:

1. Quantum cryptography based on quantum physics [8–13];

2. DNA-based cryptography [14–16];

3. Cryptography based on mathematically hard problems [17–20].

This paper concentrates mainly on public key cryptosystems based on mathematically hard problems.

At present, computational complexity theory deals mainly with time complexity and space complexity.

In addition to time and space resources, data also comprises an important computational resource.

Data complexity was first used for differential cryptanalysis of the DES block cipher in electronic

computation [21]. It is known that PC machines can break the DES with �8 rounds in a few minutes.

However, the standard DES (16 rounds) cannot be broken [22], since this would need at least 247 chosen

plaintext pairs, and the data complexity is large [23].

Although data complexity can be used for cryptanalysis, we shall attempt to use it to design a public

key cryptosystem under a quantum environment. We obtain the following results.

1. In the quantum standard oracle model, there are no polynomial-size quantum circuits to calculate all

Boolean functions. On the basis of this, we present a definition of data complexity in quantum computers.

2. Based on the difficulty of NPC and data complexity, we present a public key cryptosystem and

signature scheme.

3. We analyze the security of the public key cryptosystem and signature scheme.

The main body of the paper is organized as follows: In Section 2, we introduce the relevant background

knowledge. In Section 3, we present the definition of data complexity under a quantum environment. In

Section 4, we propose some hard problems and a quantum one-way function. In Section 5, we present

a public key cryptosystem and analyze its security. In Section 6, we propose a signature scheme and

analyze its security. Section 7 provides a summary.

2 Preliminaries

2.1 Quantum computation, quantum measurement, and realization

The most widely used model of quantum computation involves a series of quantum logic gates and

quantum measurements [24–30]. There is another model of quantum computation that involves only

quantum measurements [31,32], but in this paper we shall consider only the first model.

A qubit state is a vector in a two-dimensional complex vector space; i.e., a qubit can be randomly

expressed in any superposition state of |0〉 and |1〉. If a quantum system has n qubits, then the storage

space of an n-qubit quantum computer is of 2n dimensions.

Quantum measurement leads to “wave packet collapse” in quantum physics. Measurement causes

quantum states to degrade to classical states with a probability value. The results of collapse are affected

by previous measurements, and this is an irreversible process.

In a specific quantum system, the quantum superposition states are not permanent and the lengths

of time for which they persist are different for different quantum systems. In 2008, Nicolas Gisin [33]

produced a photon quantum state with a storage time of 1ms in a solid-state device. At the annual

meeting of the American Physical Society in early March 2012, researchers at IBM reported significant

progress in quantum computing devices with regard to storage.
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One application of quantum computing devices is to simulate classical computers. In this regard, Mat-

teo Mariantoni [34] successfully realized the von Neumann structure using a quantum circuit. However,

the number of qubits was low. Although there are many obstacles to successful implementation of quan-

tum computers, it is to be hoped that further developments in technology may overcome these, and we

believe that quantum computers have great potential for further development.

2.2 Quantum complexity

Definition 1 ([2]). A QTM is defined by the triple M = (Σ, Q, δ), where Σ = {Δ, 0, 1}n denotes a

finite alphabet set with a blank symbol Δ; Q denotes a set of finite states including an initial state q0
and final state qf �= q0; δ denotes the quantum transition function, δ : Q × Σ × Q × Σ × {L,R} → C,

where C is the complex field.

Definition 2 ([35]). Let the function f : {0, 1}m → {0, 1}n.
1. The standard quantum oracle: Uf : |x〉|b〉 → |x〉|b⊕ f(x)〉.
2. The Fourier quantum oracle: Pf : |x〉|b〉 → e

2πif(x)b
2n |x〉|b〉, where x and b are respectively an m-qubit

string and an n-qubit string.

The oracles Uf and Pf are equivalent [35]. For a QTM with an oracle, the computational power has

the following limitations.

Theorem 1 ([19]). For any QTM Q(A) for which T (n) = O(2
n
2 ) relative to the oracle with probability

1, BQTime(T (n)) does not contain NP.

Theorem 2 ([19]). For any QTM Q(B) for which T (n) = O(2
n
3 ) relative to the oracle with probability

1, BQTime(T (n)) does not contain NP ∩ Co-NP.

3 Data complexity under a quantum environment

In addition to time and space resources, data is also an important computational resource. If any resources

cannot satisfy calculational requirements, it will not be possible to effectively complete the process of cal-

culation. We therefore introduce the notion of data complexity under a quantum environment, combining

time and space complexity to design a public key cryptosystem.

Similar to the classical situation, the proposed data complexity consists of input data complexity and

processing data complexity under a quantum environment. Input data complexity refers to the required

input data for completing quantum algorithms. On the other hand, processing data complexity refers

to the required data for running these quantum algorithms to handle the input data. For example, if

the decomposed number is n-bit, then the input data complexity of the Shor algorithm is O(n). From

the description of a quantum circuit, factor decomposition requires < cn2(log n)(log logn) quantum logic

gates [32], where c is a constant. In n-qubit quantum circuits, each quantum gate has at most O(2n)

states (or data). Thus, the processing data complexity of the Shor algorithm is at most O(n32n) and so

is not large.The input data complexity of the Grover algorithm is O(
√
N), where N denotes the number

of data needed to search. When N tends to infinity, the Grover algorithm is no longer valid.

Before presenting the notion of data complexity, we first introduce some additional notation. Boolean

functions are important in classical cryptography. In general, this uses Boolean circuits to describe the

computational process of Boolean functions. In quantum computation, we can use quantum circuits (or

quantum networks) for this task.

Quantum logic gates can be divided into single-qubit, two-qubit, and multi-qubit gates, according to

the number of input qubits. Without loss of generality, some logic operations can be regarded as black

boxes composed of groups of quantum logic gates.

The size of a quantum circuit refers to the number of quantum logic gates in the circuit. If two quantum

circuits have the same input and output in each assignment, they are equivalent. The quantum circuit

size is called minimum if there is no equivalent quantum circuit containing fewer quantum logic gates.

Let N(n, S) denote the number of quantum circuits for computing different Boolean functions, which

includes n qubits channels and S quantum logic gates.
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Lemma 1. N(n, S) < S(2n)S for all S.

Proof. Let a quantum computer be in a state on a system consisting of n qubits. Then, the quantum

circuit has n quantum channels. A quantum logic gate has C1
n+C2

n+ · · ·+Cn
n ≈ 2n different cases in the

quantum circuits, depending on the numbers of qubits as the input of quantum gates. Thus, S quantum

logic gates have at most (2n)S different combinations of quantum circuits. So, there are at most S(2n)S

quantum circuits, if the quantum circuit size is not greater than S, i.e., N(n, S) < S(2n)S .

Theorem 3. Let a quantum computer have n qubits. In the standard oracle model, there are no

polynomial-size quantum circuits to compute Boolean functions.

Proof. Let the quantum circuit size be S and let there be n qubit quantum channels in the quantum

circuits. By the above lemma, there are at most S(2n)S quantum circuits, if the quantum circuit size is

not greater than S. Let S = 2n−n
n ; then S(2n)S = 2n−n

n · 22n−n = 2n−n
n2n · 22n 	 22

n

. So, there are no

polynomial-size quantum circuits to compute Boolean functions.

So far, we have failed to find any quantum circuits (or Boolean circuits) of specific Boolean functions

that are super linear functions. However, Lemma 1 suggests that there are still many computational

tasks that cannot be effectively completed by the quantum computer. Theorem 3 shows that quantum

computation cannot complete the computational task if the data complexity is large (
 2n). This can

be used as a condition for post-quantum computation.

Theorem 3 provides good inspiration for designing cryptosystems. For this purpose, we select a function

f : Fn
p → Fm

p whose input data complexity is large. We can then utilize it to construct a secure

cryptosystem. Alternatively, we can consider some special algebraic constructions for designing a secure

cryptosystem such that a quantum computer would need a massive amount of data to attack it.

Based on this theory, we introduce the notion of data complexity under a quantum environment in a

standard quantum oracle.

Definition 3. Let QTM be a quantum Turing machine with n qubits. The data complexity of QTM is a

function f : N → N , where f(n) is the sum of input data and processing data in QTM. Let n = n1 +n2;

then f(n) = f1(n1) + f2(n2), where n1 and n2 are respectively the numbers of storage registers and

calculation registers. The functions f1(n1), f2(n2) ∈ N are respectively the numbers of input data and

processing data.

Definition 4. Let functions f, g : N → R+. If there exists a positive integer n0 such that

lim
n→∞

f(n)

g(n)
= c

for all n > n0, where c is a positive constant, then g(n) is an asymptotic upper bound of f(n); i.e.,

f(n) = O(g(n)).

Definition 5. Let QTM be a quantum Turing machine with n = n1 + n2 qubits, where n1 and n2 are

respectively the numbers of storage registers and calculation registers in the standard quantum oracle.

Suppose that QTM runs a quantum algorithm to solve certain problems with effective time T ∈ R+; then

f(n) = f1(n1)+f2(n2) ∈ N is the sum of input data and processing data, where the functions f1(n1) and

4f2(n2) ∈ N are respectively the numbers of input data and processing data. Let the functions g1(n1)

and g2(n2) ∈ N be respectively the capacities of input and processing data in the quantum computer.

1. If

lim
n→∞

(
f1(n1)

g1(n1)
+

f2(n2)

g2(n2)

)
= k

for all n > n0, where k is a positive constant, then the problem is easy to calculate in QTM.

2. If there exists a positive integer n0 such that

lim
n→∞

(
f1(n1)

g1(n1)
+

f2(n2)

g2(n2)

)
= ∞,

then the problem is hard to calculate in QTM.

Definitions 3 and 5 are abstract concepts, but the ability of a quantum computer to solve problems

can be illustrated by considering specific quantum circuits [1–7,34,36].
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4 Hard problems and quantum one-way functions

4.1 Hard problems

In this section, we first describe some NPC problems and NP problems. Second, we construct hard

problems.

Theorem 4 (Tensor decomposition of rank r over any field F [37–39]). Let F be any field. Given tijk

and a positive integer r, where 1 � i � n1, 1 � j � n2, 1 � k � n3, compute the vector v
(l)
e ∈ Fne ,

1 � l � r, 1 � e � 3 such that tijk =
∑r

l=1 v
l
1(i)v

l
2(j)v

l
3(k). This is an NPC problem.

Theorem 5 ([37–39]). The tensor decomposition of rank r = 1 is a NP problem over a finite field F .

This indicates that there is no effective quantum algorithm to solve tensor problems [37–39], even

though rank r = 1 over a finite field.

Definition 6 (Subset problem [40]). Given a set of values M1,M2, . . . ,Mn ∈ Z+ and a sum S ∈ Z+,

compute bi ∈ {0, 1} such that S = b1M1 + b2M2 + · · ·+ bnMn.

Definition 7. Given n-dimensional vectors A = (ai)1×n and B = (bi)1×n, the wreath product 

operation can be defined as follows:

A
B = (aibi)1×n,

where ai, bi ∈ Zp, p ∈ Z.

Theorem 6 (Wreath product unique decomposition problem for vector spaces). Given an n-dimensional

vector C = A 
 B = (aibi)1×n, a set of values M1, . . . ,Mn ∈ Z+, and a sum S ∈ Z+, then an n-

dimensional vector A = (ai)1×n satisfying S = a′1M1 + · · · + a′nMn can be obtained from the vector C,

where ai, bi ∈ Zp, p is prime, and i = 1, . . . , n. The a′i are such that if ai � bi, then a′i = 1; otherwise, if

ai < bi, then a′i = 0.

Proof. It is easy to see that this problem is an extension of the subset problem. The subset problem

is a special case of the vector space wreath product decomposition problem under the restrictions ai =

1, bi = 0 or ai = 0, bi = 1. Thus, the problem can be seen to be NPC directly from the subset problem.

Corollary 1 (Wreath product unique decomposition problem for matrices). Given an n2-dimensional

matrix C = A 
 B = (aijbij)n×n, a set of values M1, . . . ,Mn2 ∈ Z+, and a sum S ∈ Z+, then it is

possible to compute an n2-dimensional matrix A = (aij)n×n satisfying S = a′11M1 + · · ·+ a′nnMn2 from

the matrix C, where aij , bij ∈ Zp, p is prime, and i, j = 1, . . . , n. The a′ij are such that if aij � bij , then

a′ij = 1; otherwise, if aij < bij , then a′ij = 0.

Note 1. The wreath product decomposition problem over smaller domains is still an NPC problem. For

example, this is so even if the sets have only two elements a and b, a �= b (or a = 0, b = 1).

4.2 Quantum one-way function

In this section, we introduce the concept of a quantum one-way function. Let

QFP = {f | The QTM takes quantum polynomial time to calculate f}.

Definition 8 (Quantum one-way function [17]). A function f is called quantum one-way (QOW) if the

following two conditions hold:

1. [Easy to compute] There exists a polynomial time QTM A, so that, on input x, A outputs f(x)

(i.e., A(x) = f(x)).

2. [Hard to invert] For every probabilistic polynomial time QTM, Adv, every polynomial poly, and all

sufficiently large n,

Pr[Adv(f(x)) ∈ f−1(f(x))] < 1/poly(n).

The probability is taken over the distribution of x, the (classical) coin flips of Adv, and quantum obser-

vation of Adv.

Definition 9 (Tensor operation). Let x1 = (a0, a1, . . . , an−1), x2 = (b0, b1, . . . , bn−1), where ai, bi are

over the field F ; then x1 ⊗ x2 = (a0b0, a0b1, . . . , a0bn−1, . . . , an−1b0, an−1b1, . . . , an−1bn−1).
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Let A,B,C be n2-dimensional matrices over the finite field Fq and M be a n6-dimensional matrix over

Fq, where q is a large prime. Let the function f : Fn6

q → Fn6

q satisfy f(A,B,C) = A ⊗B ⊗ C = M . By

Theorems 4 and 5, the function f(A,B,C) ∈ QFP, f−1(A,B,C) /∈ QFP. Thus, the function f(A,B,C)

can be regarded as a quantum one-way function.

5 Quantum public key cryptosystem

Before further discussion, we define some notation. Let the unit element be I = (Iij)n×n satisfying

I 
 A = A, where Iij = 1. The symbol M e = M 
M 
 · · · 
M, e ∈ Z+ represents the product of e

matrices M under the 
 operation. The following discussion concerns objects over a finite field.

5.1 Proposed scheme

Theorem 7. Let f = (fij)n×n, g = (gij)n×n, α = (αij)n×n, β = (βij)n×n, i, j = 1, . . . , n, where

fij , gij , αij , βij ∈ Zp, p is prime. Then (f ⊗ g)
 (α⊗ β) = (f 
 α)⊗ (g 
 β).

Proof. When n = 1, this is ordinary multiplication. Let n > 1. Then the left-hand side of the equation is

⎛
⎜⎜⎝

f11g · · · f1ng
· · · · · · · · ·
fn1g · · · fnng

⎞
⎟⎟⎠


⎛
⎜⎜⎝

α11β · · · α1nβ

· · · · · · · · ·
αn1β · · · αnnβ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f11g 
 α11β · · · f1ng 
 α1nβ

· · · · · · · · ·
fn1g 
 αn1β · · · fnng 
 αnnβ

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

(f11α11)g 
 β · · · (f1nα1n)g 
 β

· · · · · · · · ·
(fn1αn1)g 
 β · · · (fnnαnn)g 
 β

⎞
⎟⎟⎠ .

The right-hand side is

⎛
⎜⎜⎝

f11α11 · · · f1nα1n

· · · · · · · · ·
fn1αn1 · · · fnnαnn

⎞
⎟⎟⎠⊗

⎛
⎜⎜⎝

g11β11 · · · g1nβ1n

· · · · · · · · ·
gn1βn1 · · · gnnβnn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(f11α11)g 
 β · · · (f1nα1n)g 
 β

· · · · · · · · ·
(fn1αn1)g 
 β · · · (fnnαnn)g 
 β

⎞
⎟⎟⎠ .

So the left- and right-hand sides are equal, since the commutative law is satisfied over Zp.

Key generation

1. Select randomly a large prime p > 2mpr11 · · · prss , where p1, . . . , ps are odd primes and r1, . . . , rs ∈ Z+.

2. Select nonzero integers t1, t2, t3 ∈ {0, 1, . . . , ϕ(p)} and t1 �= t2 �= t3, where ϕ(p) is the Euler function

of p.

3. Select three m2-dimensional matrices A = (aij)m×m, B = (bij)m×m, D = (dij)m×m, where

aij , bij , dij ∈ Zp.

4. Compute Y1 = At1
Bt2
Dt3 (mod p), Y2 = Bt1
Dt2
At3 (mod p), Y3 = Dt1
At2
Bt3 (mod p)

such that every y
(1)
ij , y

(2)
ij , y

(3)
ij � 2m, where Y1 = (y

(1)
ij )m×m, Y2 = (y

(2)
ij )m×m, Y3 = (y

(3)
ij )m×m, ykij ∈

Zp, k = 1, 2, 3, i, j = 1, . . . ,m. Otherwise it returns to the third step.

The public key comprises matrices A,B,D, Y1, Y2, Y3 and a prime number p; the private key comprises

numbers t1, t2, t3.

Encryption

1. Let there be given an m6-dimensional plaintext M = (mij)m3×m3 , mij ∈ Zp.

2. Select nonzero integers s1, s2, s3 ∈ {0, 1, . . . , ϕ(p)} and s1 �= s2 �= s3.

3. Compute U = Y s1
1 ⊗ Y s2

2 ⊗ Y s3
3 (mod p), C1 = As1 ⊗ Bs2 ⊗ Ds3 (mod p), C2 = Bs1 ⊗ Ds2 ⊗

As3 (mod p), C3 = Ds1 ⊗As2 ⊗Bs3 (mod p), C = U 
M (mod p).

The ciphertext is a four-tuple (C1, C2, C3, C).

Decryption

1. Compute V = Ct1
1 
 Ct2

2 
 Ct3
3 (mod p).
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2. Recover plaintext M through computing m6 congruence equations vijmij = cij (mod p), where

vij ∈ V, cij ∈ C, mij ∈ M .

5.2 Correctness of decryption

Let U = (uij)m×m. During the process of decryption, the first step computes V = Ct1
1 
 Ct2

2 
 Ct3
3

=(As1t1 ⊗Bs2t1 ⊗Ds3t1)
 (Bs1t2 ⊗Ds2t2 ⊗As3t2)
 (Ds1t3 ⊗As2t3 ⊗Bs3t3)=(As1t1 
Bs1t2 
Ds1t3)⊗
(As2t3 
Bs2t1 
Ds2t2)⊗ (As3t2 
Bs3t3 
Ds3t1) =Y s1

1 ⊗Y s2
2 ⊗Y s3

3 =U (mod p) by Theorem 7. Then, the

second step computes the congruence equations. It is known that the general solutions of the congruence

equations are x = x′ + p
d t, t = 0, 1, . . . , d − 1, where d = (uij , p) and x′ is a particular solution. As

(uij , p) = 1, there is only a solution in the value space.

5.3 Security analysis of the scheme

We provide an initial analysis of the security of our scheme by considering several possible attack ap-

proaches. We assume that the eavesdropper Eve uses a quantum computer with m qubits to attack this

scheme and that the computational capability of the quantum computer is O(2m), i.e., it can complete

these O(2n) computations instantaneously. It is clear that our scheme is analogous to RSA public key

cryptography. We believe that it is immune to classical attack. Thus, we only consider its security against

a quantum attack, including the Shor and Grover algorithms.

1. Finding secret keys from public keys. Eve has only the public information in a passive attack.

Let δp(a) be the smallest positive integer satisfying ax = 1 (mod p), where (p, a) = 1. In number theory,

this is a primitive root modulo p, if p is an odd prime. Then δp(a) = ϕ(p) and a ∈ Zp is a primitive root.

Eve computes Y1 
 Y2 
 Y3=(A 
 B 
 D)t1+t2+t3 (mod p) and obtains t = t1 + t2 + t3 by the Shor

algorithm. However, in the worst case, the period of t is ϕ(p) and the possible decomposition result has

C2
ϕ(p)−4 = (ϕ(p)−4)(ϕ(p)−5)

2 = (p−5)(p−6)
2 ≈ O(p2) � O(22m). So the input data complexity is not less than

O(22m). By Definition 5,

lim
m→∞

22m

2m
= ∞.

Thus, it seems to be impossible for Eve to find the right t1, t2, t3 from all solutions, even with a quantum

computer.

In addition, the complexity of finding solutions is no less thanO(2m) through the Grover algorithm, and

it seems to be impossible to guess the solution, since the numbers have exponentially large possibilities.

In the other method, Eve can directly compute t1, t2, t3 from Y1 = At1 
Bt2 
Dt3 (mod p). This is

equivalent to solving the group of equations at1ijb
t2
ijd

t3
ij = yij (mod p). Then, this procedure is equivalent

to solving the following set of nonlinear equations using the quantum computer:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

at1ij = y
(1)
ij (mod p),

bt2ij = y
(2)
ij (mod p),

dt3ij = y
(3)
ij (mod p),

yij = y
(1)
ij y

(2)
ij y

(3)
ij ,

where t1, t2, t3 are variables. Because yij = 2mp
r′1
1 · · · pr′ss , the number of y

(1)
ij , y

(2)
ij , y

(3)
ij exceeds C0

r +C1
r +

· · · + Cr
r = 2r, where r′1 � r1, . . . , r

′
s � rs and r = m + r′1 + · · · + r′s. Thus, the data complexity is not

less than O(2r). Assuming that the quantum computer can be regarded as a black box with the most

powerful computational ability, by Definition 5 it still cannot complete all the computations needed to

solve the set of nonlinear equations. Thus, the private key is safe.

2. Finding plaintexts from ciphertexts. It appears to be impossible to guess the nonzero integers

s1, s2, s3, since the numbers have exponentially large possibilities for the same reasons as above. Eve

has only the ciphertexts (C1, C2, C3, C) in the passive attack. By the definition of tensor operations,

As1 ⊗ Bs2 ⊗ Ds3 (mod p) can be converted into As1 
 Bs2 
Ds3 (mod p) through selection of special
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elements. Therefore, the data complexity is not less than O(2m), and the security is similar to that in

the previous discussion.

The probability of the plaintext M from C = U 
M (mod p) is not more than 1
2m2 . It appears to be

impossible to guess the mij . Thus, it is computationally secure with respect to quantum computation.

In addition, direct decomposition of the ciphertexts Ci, i = 1, 2, 3 and C is also an intractable task in

smaller domains according to Theorems 5 and 6 and Note 1.

Therefore, the plaintext is safe.

6 Signature scheme

The above encryption scheme can be used to construct a digital signature. This is possible for the

following reasons.

The receiver Bob selects nonzero integers s1, s2, s3 and computes C1 = As1 ⊗ Bs2 ⊗ Ds3 (mod p),

C2 = Bs1 ⊗ Ds2 ⊗ As3 (mod p), C3 = Ds1 ⊗ As2 ⊗ Bs3 (mod p). Then, Bob sends C1, C2, C3 to the

signer Alice.

Alice computes V = Ct1
1 
 Ct2

2 
 Ct3
3 (mod p) = (vij)m3×m3 . Alice solves the congruence equation

uijm
′
ij = mij (mod p) and obtains the new matrix M ′ = (m′

ij)m3×m3 . So D(M,Kd) = M ′, where Kd is

a private key.

Bob computes U = Y s1
1 ⊗ Y s2

2 ⊗ Y s3
3 (mod p) and verifies E(D(M,Kd),Ke) = U 
M ′=M (mod p),

where Ke is a public key and M is plaintext. Thus,

E(D(M,kd), ke) = D(E(M,ke), kd) = M.

6.1 Signature scheme

The public key is Ke = (A,B,D, Y1, Y2, Y3) and the private key is Kd = (t1, t2, t3). Let M be plain text

and HASH be any hash function. Our signature scheme has three participants: the signer Alice, the

receiver Bob, and a justice center (JC). JC appears only in the case of a dispute. The signature scheme

has three phases: Initialization, Signature, and Verification. The specific process is as follows.

Initialization:

JC selects three different nonzero integers l1, l2, l3 ∈ {0, 1, . . . , ϕ(p)}, and computes C1 = Al1⊗Bl2⊗Dl3

(mod p), C2 = Bs1 ⊗Ds2 ⊗ As3 (mod p), C3 = Ds1 ⊗As2 ⊗Bs3 (mod p). JC saves these data l1, l2, l3.

Then, Alice computes V = C1
t1 
C2

t1 
C3
t1

(mod p) and sends the V to JC through secure and reliable

channels, while JC saves V and the public key Ke = (A,B,D, Y1, Y2, Y3).

Signature process:

1. Bob selects nonzero integers s1, s2, s3, r1, r2, r3 ∈ {0, 1, . . . , ϕ(p)}, with s1 �= s2 �= s3 and r1 �= r2 �=
r3. Bob computes C1 = As1 ⊗Bs2 ⊗Ds3 (mod p), C2 = Bs1 ⊗Ds2 ⊗As3 (mod p), C3 = Ds1 ⊗As2 ⊗Bs3

(mod p), C′
1 = Ar1 ⊗Br2 ⊗Dr3 (mod p), C′

2 = Br1 ⊗Dr2 ⊗Ar3 (mod p), C′
3 = Dr1 ⊗Ar2 ⊗Br3 (mod p).

Then Bob sends C1, C2, C3, C
′
1, C

′
2, C

′
3, TBA to Alice and sends s1, s2, s3, r1, r2, r3, TBA to JC through

secure and reliable channels, where TBA is a time stamp in the digital signature scheme.

2. Alice signs the message M with the private key Kd. Alice selects three nonzero integers s′1, s
′
2, s

′
3 ∈

{0, 1, . . . , ϕ(p)}, and computes U = Y
s′1
1 ⊗ Y

s′2
2 ⊗ Y

s′3
3 (mod p), M = M 
 U (mod p). Then, Alice sends

the three nonzero integers s′1, s
′
2, s

′
3, TAB to JC through secure and reliable channels, where TAB is a time

stamp.

3. Alice computes V = Ct1
1 
Ct2

2 
Ct3
3 (mod p), W = (C′

1)
t1 
 (C′

2)
t2 
 (C′

3)
t3 (mod p). Alice solves

the congruence equations and obtains M ′ and M
′
from V 
M ′ = M (mod p), W 
M

′
= M ′ (mod p).

Alice computes c = HASH(M⊕M ′)⊕HASH(M ′⊕M
′
). So Alice sends the signature 〈M ′

,M,M, c, TAB〉
to Bob.

Verify signature:

Bob verifies the signature with the public key Ke. Bob computes U
′
= Y r1

1 ⊗ Y r2
2 ⊗ Y r3

3 (mod p),

U
′ 
 M

′
= N ′ (mod p), U = Y s1

1 ⊗ Y s2
2 ⊗ Y s3

3 (mod p) and U 
 N ′ = N (mod p). If N = M and
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r = HASH(N ⊕N ′)⊕HASH(N ′ ⊕M
′
) = c, then the signature is successful. Otherwise, the signature is

false.

Note 2. The above tuple (s′1, s′2, s′3) is one-time.

6.2 Security of the signature

If a forger is to successfully forge the signature, they must obtain M ′. Otherwise, the result is not equal

to c in the HASH function. The forger does not know the matrices V and W , since t1, t2, t3 are secret

keys. The forger can obtain V 
W = M 
 (M
′
)−1 (mod p). The decomposition results of V and W are

large. Furthermore, the correct probability of M ′ satisfying the hash value c from V 
M ′ = M (mod p)

is not more than 1
2m2 . Even assuming that the quantum computer can be regarded as a black box with

the most powerful computational ability, i.e., that it can complete an O(2m) computation of the hash

function on a transient, by Definition 5 it still cannot complete all the computations of the hash value c.

Therefore, the forger cannot easily forge the signature, and the latter is secure.

A dishonest legitimate receiver cannot effectively forge the signature. Since the random numbers

(s′1, s
′
2, s

′
3) are not known, a dishonest receiver cannot obtain the correct U . The dishonest receiver can

only use the previous U to forge a signature. However, it is possible to check whether the signature is

fake through JC. The dishonest receiver offers the signature 〈M ′
,M,M, c, TAB〉. JC first finds (s′1, s

′
2, s

′
3)

from the time stamp TAB, and tests the correctness of U from M = M 
U (mod p). Then, JC tests the

correctness of the private key t1, t2, t3 from V = C1
t1 
 C2

t1 
 C3
t1

(mod p). Third, JC obtains M ′ by
computing V = Ct1

1 
 Ct2
2 
 Ct3

3 (mod p) and solving the congruence equation V 
M ′ = M (mod p).

Finally, JC tests the correctness of W 
M
′
= M ′ (mod p). If it is not correct, then this shows that the

signature has been forged by the receiver.

In addition, the signer cannot deny the signature. If W 
 M
′
= M ′ (mod p) holds, the signature

is true.

7 Summary

Existing classical public key cryptosystems (e.g., RSA, EIGamal, and ECC) face serious threats from

recent advances in quantum computation. Under a quantum computational environment, it is still nec-

essary to protect information security and it is an important task to determine which kinds of public key

cryptosystems can be used under such environments.

Since quantum computation is a parallel approach, it has a large calculational capacity, and quantum

computers can efficiently solve some problems that are believed to be intractable on any classical com-

puter. In this sense, we have proved that there are no polynomial-size quantum circuits that can compute

Boolean functions. We have proposed a notion of data complexity under a quantum environment and

have shown that quantum computation cannot complete the computational task if the data complexity

is large (
 2n). This can be used as a condition for post-quantum computation.

Thus, we have utilized complexity theory, including data complexity, time complexity, and space

complexity, to design a public key cryptosystem. In general, it is widely believed that NP-complete

problems cannot be solved in polynomial time even with quantum computers [17,19,41,42]. We have

therefore tried to construct a new quantum public key cryptosystem based on data complexity and the

NPC problem. This scheme can not only encrypt, but also realize the signature. Finally, we have analyzed

the security of the encryption and signature schemes. This concept of data complexity is a new research

field, and there are still many problems that remain to be investigated.
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