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Abstract Person re-identification (Re-ID) is the problem of matching a person from different cameras based

on appearance. It has interesting algorithm challenges and extensive practical applications. This paper presents

a weight-based sparse coding approach for person re-identification. First, three hypotheses are introduced to

achieve a linear combination of images based on sparse coding. Then, we convert the person re-identification

problem into an optimization problem with sparse constraints. To reduce the influence of abnormal residuals

caused by occlusion and body variation, a weight-based sparse coding approach is proposed to achieve the

optimal weights by the ordering statistics of square residuals iteratively. Experiments on various public datasets

for different multi-shot modalities have shown good performance of the proposed approach compared with other

state-of-the-art ones (more than 42% and 34% at rank-1 on CAVIAR4REID and i-LIDS, respectively).
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1 Introduction

In recent years, the research and practice on smart cities have been developed rapidly. For a smart city,

abundant large-scale and heterogeneous data is required to be analyzed [1]. As an efficient paradigm,

data vitalization is proposed [2]. To verify this paradigm, a reference model for data service oriented

architecture is developed [3]. In that model, heterogeneous data is fused in Supporting Layer for Data

Vitalization Service, which includes text, image, audio, video, and geographic information data. In a real

smart city system, most of the data is video data, while most of the video data is surveillance data [4].

In surveillance scenarios where long-term activities need to be modeled within a large and structured
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environment, an important problem is to recognize a person at a different camera when the person has

been previously observed at another camera [5]. This refers to person re-identification (Re-ID). Unlike

passive biometrics such as face and gait, Re-ID relies on the overall appearance of individuals [6], making

it a challenge task due to the changes of illumination, pose, viewpoint, background clutter, occlusion,

and image resolution [7].

Currently, research on the Re-ID problem mostly focuses on two aspects: (1) Developing feature

representations that are discriminative for identification and invariant to viewpoint and illumination.

(2) Developing machine learning methods to classify different persons [8]. In a typical Re-ID system, the

feature representation and machine learning method are devised manually. Although this is robust to low

resolution, occlusions, pose, viewpoint, and illumination in some ways, it is also laborious and heuristic.

Domain knowledge and many trials are required [9]. Moreover, choosing the parameters that regulate

manually selected features and learning methods is hard.

Instead of using handcrafted features, some researchers attempted to generate features automatically.

These methods can be classified into two types. (1) Neural network (NN) methods. Li et al. [10] tried

to automatically learn optimal features. They built a filter pairing neural network (FPNN) to jointly

handle misalignment, photometric and geometric transforms, occlusions, and background clutter. Ding

et al. [11] produced a large number of triplet units, each of which contains an image with a matched

and a mismatched reference. A convolutional neural network was proposed to generate the layered

representations. However, these methods usually require a great deal of training data. (2) Sparse coding

(SC) methods: Harandi et al. [12] proposed an algorithm for learning a Riemannian dictionary, which

aimed to tackle the problem of sparse coding and dictionary learning in the space of symmetric positive

definite matrices. However, this method is complex and sensitive to the environment.

To avoid the previously mentioned problems, a weight-based sparse coding (WSC) is proposed in this

paper. Based on three hypotheses, we successfully apply the sparse coding method to Re-ID problem.

Unlike the traditional sparse coding method, WSC arranges weight to every residual. The probability

density function of weights is designed carefully, and is determined at every iteration when minimizing

the weighted residuals. Thus, the abnormal residuals will be filtered out. WSC is simple and robust to

environment changes. It also can improve the performance of traditional sparse coding method.

The contributions of this paper are as follows. First, we apply sparse coding method to the Re-ID prob-

lem based on three hypotheses, which will be introduced in Subsection 3.2. Second, a weighted method is

proposed to eliminate the influence of abnormal residuals, which is vital for non-rigid matching problems,

including Re-ID problem. Removing the abnormal residuals significantly improve the performance of

sparse coding.

The remainder of this paper is organized as follows. Section 2 discusses the related work in person

Re-ID. In Section 3, the theory of WSC is presented, including the aim of optimization, basic hypotheses,

framework, and parameters estimation. The algorithm of WSC is designed in Section 4. Section 5

provides the experimental results. Section 6 concludes this paper and points out the future work.

2 Related work

There are two sets in a general Re-ID problem: a gallery set A and a probe set B. The task of Re-ID

problem is to determine whether an image or a group of images of set B are the same person of set A. The

matching mechanism depends on how many images are presented for each person [13]. This gives three

matching modalities: (1) single-shot versus single-shot (SvsS), if each image in a set represents a different

individual; (2) multiple-shot versus single-shot (MvsS), if each image in probe set B represents a different

person, while in gallery set A each person has different images; (3) multiple-shot versus multiple-shot

(MvsM), if both A and B contain multiple images for each individual.

There are many approaches for the SvsS modality, which include biologically inspired features based

method [14,15], attributes-based method [16,17], spatiotemporal segmentation method [6], middle-level

clothes attributes based method [18,19], RGB-D based method [20], visual context based method [21],

feature importance evaluating method [5,22], appearance transfer learning method [23], Mahalanobis
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distance learning method [24], etc.

In this paper, the proposed WSC model needs several images of one person to compose the dictionary.

So, it is suitable for the MvsS and MvsM modalities. The methods for MvsS and MvsM modalities can

be divided into two groups: direct and learning-based methods. The direct methods usually focus on

designing features that capture the most distinguishing aspects of an individual, while the learning-based

methods need a training set to learn matching parameters.

In direct methods, multiple images could be used to obtain highly discriminative features. For example,

a Mean Riemannian Covariance Grid (MRCG) was proposed for combining information from multiple

images, which exploited the spatial information that carried out by dense grid structure [25]. Body part

is another factor that could be exploited. Bazzani et al. [26] incorporated the global and local statistical

descriptions of human appearance, and proposed the Histogram Plus Epitome (HPE) to describe the

human part. On this descriptor, a structured feature called Asymmetry-based HPE (AHPE) was defined

to describe the whole person [27].

In learning-based methods, pairs or groups of samples that belong to the same class are always required

to train the parameters. In [28], a metric using pairs of labeled samples from different cameras was used to

learn the transition from one camera to the other. In [29], the metric was improved to be a Mahalanobis

metric, which provides much better generalization properties.

An important issue is the limited number of available training samples in learning-based approaches.

There are four approaches to solve this problem. (1) Higher weighting for the saliency regions. In [30],

a class-aware dimensionality reduction technique called Partial Least Squares (PLS) was used to create

the discriminative appearance models. When combining different feature channels, higher weights are

located in regions that better distinguish a specific appearance from the remaining ones. In [31], different

regions of the appearance were matched using various strategies to obtain a distinctive representation.

Zhao et al. [32] proposed an unsupervised salience learning methods to find reliable and discriminative

features. (2) Body part segmentation. The body was usually segmented into 3 (head, torsos and legs) or 6

(chest, head, thighs and legs) parts. In [33], Pictorial Structures (PS) was proposed for human body pose

estimation, which relied on two components: one capturing the local appearance of body parts, while the

other representing an articulated body structure. Based on PS, Custom Pictorial Structures was proposed

to improve the localization of parts via learning the appearance of an individual [34]. (3) Patch pairs

segmentation. The images are segmented into regular patches to increase the number of pairs. In [18],

the patches are divided into three categories according to the discriminative and generalization ability:

general, rare and effective patches. The effective patches were used to learn mid-level filters for person

Re-ID. Features of these methods are all selected manually. (4) Utilize co-occurrence information. In [35],

for multi-label image annotation, a semantic label embedding dictionary representation is presented that

not only achieves the discriminative feature representation for each label in the image, but also mines

the semantic relevance between co-occurrence labels for context information.

For sparse coding methods, various researchers have pointed out the robustness issue of the l2-norm

variance [36]. In face recognition, two methods are proposed to obtain robust sparse coding features:

(1) Using the lp-norm (0 � p � 1) which is less sensitive to noise and outlier to replace the l2-norm [37].

However, the non-smoothness of lp-norm makes it difficult to be solved by the classical optimization

algorithms. (2) Downsample sparse representation by filtering out the occluded pixels, which are judged

with absolute entry value bigger than a predefined threshold [38]. However, a threshold that works for

all images cannot be easily found (may not exist). (3) Utilizing constraints in the video. For example,

in [39], the constraints in two stages are utilized: faces from a face tack must belong to the same person

and faces from a video frame can not be the same person. However, this method is not applicable on a

collection of appearance images.

OurWSC method still uses the l2-norm, which could be solved by the classical Least Absolute Shrinkage

and Selection Operator (LASSO) [40]. An output feature augmented LASSO could also be used to obtain

multiple output prediction [41]. Unlike [38], the occluded pixels are judged by the ordering statistics in

each iteration, which will achieve generalization of threshold.
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3 Weight-based sparse coding

In this section, we review the traditional sparse coding problem. Then, three hypotheses for applying

sparse coding method to person Re-ID problem are proposed. To obtain robust sparse representation,

the WSC model is proposed. Finally, the framework of WSC and parameter estimation is discussed.

3.1 Traditional sparse coding

The traditional sparse coding problem could be formulated as

min
α

∥
∥α

∥
∥
1

s.t.
∥
∥y −Dα

∥
∥
2

2
� ε, ε > 0, (1)

where y is the given signal, D is the dictionary matrix, α is the coding vector of y over D (or coefficient

for short), and ε is error bound of the sparsity.

It is equivalent to the LASSO problem, which could be formulated as

min
α

∥
∥y −Dα

∥
∥
2

2
s.t.

∥
∥α

∥
∥
1
� ε, ε > 0, (2)

where y = (y1, y2, . . . , yn)
T ∈ R

n is the original output signal, D = (d1, d2, . . . , dm) ∈ R
n×m is the

dictionary matrix with column vector di, and α is the coding vector.

When the residual e = y−Dα has a Gaussian distribution, Eq. (2) is more like a Bayesian Solution of
∥
∥α

∥
∥
1
� ε related to a prior on α. However, when the pedestrian body rotating or being partly occluded,

the residual can be very large. In this case, true error distribution may be far away from the Gaussion

distribution. In the following subsection, we will weight the residual to remove abnormal pixels.

3.2 Hypotheses for person Re-ID

In this paper, we apply sparse coding method to person Re-ID problem. To solve the occlusion, body

orientation, and illumination changes problems, the Weight-based Sparse Coding (WSC) is proposed,

which is based on the following hypotheses.

First, two images belonging to one person have more pixels with similar color than those belonging to

different persons. The person Re-ID problem relies on the whole appearance of individuals. The color of

the clothes plays the most important role in feature extraction. Currently the research on Re-ID focuses

on short-term scene. In such conditions, the clothes of pedestrian is assumed not to change. Thus, if two

images belong to one person, they would have more similar color pixels.

Second, if there are n regions with similar colors and the same shape, these regions are linearly

dependent, i.e., if we denote the region color values as vectors, an arbitrary region vector could be

expressed by the other n− 1 region vectors. Thus, if there are m images that belong to one person, we

can find some intersecting regions according to location and color and these regions are linearly dependent.

Then, if the regions that have no similar color were removed from all these m images, one image could

be expressed by the other m− 1 images.

Third, images belonging to the same person have a smaller variance. The images of the same person

would have more similar color and emerge at the same position. The difference between two images of

one person will be smaller than those of two different persons.

Our WSC aims to eliminate the influence of dissimilar regions, which is reached by weighting the image

pixels. The pixels in these regions are called abnormal pixels in this paper. We train some weights that

were used to express an image linearly which have the smallest error compared with the real image in

gallery set. The weights of abnormal pixels should be close to zero. Then, we use these weights to test

whether one image in probe set could be linearly expressed by images of the same person. The person

with the smallest error is the matched person.
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Figure 1 The curve of weight distribution function. In contrast to (6), the horizontal axis denotes eij , while the vertical

axis denotes wij . (a) Curve changes with parameter μ when c = 1; (b) curve changes with parameter c when μ = 1.

3.3 Weigt-based sparse coding

To reduce the influence of abnormal residuals, we weight the residual to control the importance of e.

Thus, a weighted sparse encoder is obtained, which is shown as (3).

min
α

∥
∥W ◦ (y −Dα)

∥
∥
2

2
s.t.

∥
∥α

∥
∥
1
� ε, ε > 0, (3)

where W is cophenetic matrix (with same dimensions) with Dα, sign ‘◦’ is Hadamard or entrywise

product. If Am×n = {aij} and Bm×n = {bij} are cophenetic matrices, the Hadamard product A ◦ B is

defined as (A ◦B)ij = aijbij . We resize all images to the same dimensions of p× q× r. Suppose there are

n images belonging to m persons that are selected as dictionary, and each person has the same number

of images. An image will be reshaped into a vector with dimension of pqr, then D will be in dimension

of pqr×mn, α in dimension of mn×m, and W in dimension of pqr×m. In this paper, W ◦ (y−Dα) is

also called weighted residual.

We fit the weight distribution in each iteration when minimizing (3). When the residual is large, the

weight should be close to 0, otherwise 1. Thus, it is reasonable to assume the Probability Density function

(PDF) with the following character.

fθ(x) = fθ(−x), (4)

fθ(x1) > fθ(x2) if |x1| < |x2|, (5)

where θ is the parameter of PDF f . Eq. (4) indicates that the PDF is symmetrical about the y-axis.

Eq. (5) indicates that the PDF is a decreasing function at the right of symmetry axis, while an increasing

function at left.

The sigma alike function is selected as the weight distribution function. Suppose the residual matrix

e = {eij}, then the weight could be defined as

wij =
1

1 + e−c(μ−e2ij)
, (6)

where parameter c > 0 controls the decreasing rate, and μ > 0 controls the inflection point. Figure 1

shows the curves change with the parameters.

3.4 Framework of WSC

Figure 2(a) shows the optimization framework of WSC. In the optimization, a LASSO method is applied

to minimize the weighted residual. Upon achieving the optimal result, coefficient α and weight matrix

W are obtained, which will be used in the testing procedure.

Figure 2(b) shows the testing framework. Giving an image yj , we compute the residual of yj with

every class yi. The class that has minimized residual with class j is the class that class j belongs to.
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Figure 2 Framework of WSC. (a) Optimization; (b) test.

3.5 Parameter estimation

There are two parameters c and μ in (6) that need to be determined. When μ = e2ij , we can get that

wij = 0.5. We need to filter out the abnormal residuals, while reserving the normal. Hence, most of the

weights of residuals should be more than 0.5. We calculate the ordering statistics ψ = (e2(1), e
2
(2), . . . , e

2
(n))

by sorting e2ij in an ascending order, i.e., e2(1) � e2(2) � · · · � e2(n). We set μ as

μ = ψ([τn + 0.5]), (7)

where τ ∈ (0, 1) denotes the percent of reserving pixels, and [x] denotes the integer part of x.

Parameter c controls the decreasing rate of weight value from 1 to 0. If c is larger, the weight value

decreases quicker. Let λ = cμ. In (6), when e2ij = 0, wij reaches the maximum value.

wmax =
1

1 + e−cμ
=

1

1 + e−λ
. (8)

The λ should be sufficiently large to make wmax close to 1. On the other hand, if λ is very large, the

weight value would decrease quickly. Then, some residuals in the middle position of ψ may be assigned

to an error part. In experiment, we test the interval of parameter λ that should be [5, 8].

4 Algorithm of weight-based sparse coding

In this section, we will discuss the implement of WSC, including optimization and testing algorithms.

4.1 Optimization algorithm

Optimization procedure for (3) is shown in Algorithm 1. In person Re-ID problem, the dictionary is an

image set randomly selected from the whole dataset. Coefficient α is also initialized randomly. Then the

first residual e and weight matrix W can be calculated. After the parameters are initialized, the rest

is a standard optimal procedure. After the optimization result is achieved, the coefficient α and weight

matrix W are obtained, which are the parameters for testing procedure.
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Algorithm 1 WSC Optimization

Require: Dictionary D, normalized training sample y, and randomly initialized coefficient α;

Ensure:
∥
∥α

∥
∥
1
� ε;

1: t ⇐ 1, α(1) ⇐ α;

2: while t � 100 or achieving optimal result do

3: y(t) ⇐ Dα(t);

4: e
(t)
ij =

∥
∥y − y(t)

∥
∥
2
;

5: w
(t)
ij ⇐ 1/[1 + exp {−c(μ − (e

(t)
ij )2)}];

6: α∗ ⇐ argminα
∥
∥W ◦ (y −Dα(t))

∥
∥2

2
s.t.

∥
∥α

∥
∥
1
� ε;

7: α(t+1) ⇐ α(t) + σ(α∗ − α(t)), where 0 < σ < 1 is the step size.

8: t ⇐ t+ 1;

9: end while

Algorithm 2 WSC Testing

Require: Dictionary D, dictionary labels DL, class number CN , testing sample y, weight W from Algorithm 1, and

random coefficient α from Algorithm 1;

1: t ⇐ 1;

2: while t � CN do

3: i ⇐ 1;

4: while i � len(DL) do

5: if DL(i) == t then

6: αte
i ⇐ αi;

7: else

8: αte
i ⇐ 0;

9: end if

10: i ⇐ i+ 1;

11: end while

12: z ⇐ W ◦ (y −D ∗ αte);

13: Result(t) = z′ ∗ z;

14: t ⇐ t+ 1;

15: end while

16: find class: C = argmint Result(t);

4.2 Testing algorithm

In testing procedure (Algorithm 2), the optimal algorithm is also needed to compute the coefficient α

and weight W from probe images. After that, we calculate the square residual for the test class to each

class in gallery set. The corresponding class which has the minimum square residual is the class that the

test class belongs to.

5 Experiment results

In this section we report experiment results performed on several person Re-ID datasets and we also

compare our method with the state-of-the-art methods. All experiments are performed on publicly

available datasets for MvsS and MvsM Re-ID problem, including CAVIAR4REID [42], ETHZ [43] and

iLIDS [44]. There is no publicly available code for some methods which makes the side-by-side comparison

difficult. Hence, we only compare our method with the public available results in this paper.

5.1 Datasets

CAVIAR4REID is a dataset for evaluating person Re-ID algorithms, which has been extracted from

the well-known CAVIAR dataset mostly famous for person tracking and detection. Shopping center

dataset contains 26 sequences recorded from two different points of view at resolution of 384×288 pixels.

CAVIAR4REID dataset contains object (people) bounding boxes extracted from the shopping center

dataset. It contains 72 unique individuals: 50 of them with both the camera views and the remaining 22

with only one camera view. The images for each camera view have variance with respect to resolution

changes, light conditions, occlusions, and pose changes. So it is challenging to the Re-ID task.
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ETHZ dataset is captured from moving cameras in a crowded street. It contains three sub-datasets.

The images are extracted from the ground truth location of people in the video with original resolution.

ETHZ1, ETHZ2 and ETHZ3 contain 83 people (4875 images), 35 people (1936 images), and 28 people

(1762 images), respectively.

iLIDS is created from the pedestrians observed in two non-overlapping camera views from the i-LIDS

Multiple-Camera Tracking Scenario (MCTS) dataset, which was captured at an airport arrival hall under

a multi-camera CCTV network. It comprises 600 image sequences of 300 distinct individuals, with one

pair of image sequences from two camera views for each person. Each image sequence has variable length

ranging from 23 to 192 image frames, with an average number of 73. The iLIDS-VID dataset is very

challenging due to clothing similarities among people, lighting and viewpoint variations across camera

views, cluttered background and random occlusions.

5.2 Experimental setup and evaluation system

WSC focuses on MvsS and MvsM person Re-ID. We denote N as the number of images for one person

in dictionary. We select N = 3, 5, 10 to perform on previously mentioned datasets respectively. The

remainder images are divided into five sets evenly. One set is used as validation set to determine the

supper-parameters, including c, μ in (6), and training step size σ in Algorithm 1. The other four sets

are used as the testing set. Each image is processed in RGB color space, and resized to the same size at

resolution of 30×75 pixels. Then, the image is represented as a vector with dimension of 30×75×3 = 6750.

The Cumulative Matching Characteristic (CMC) curve is the standard performance measure for the

person Re-ID task. CMC measures the correctly matched ratio at rank r. We initialize rank(r) to zero.

If there are m classes (persons) in the MvsS modality, Dα will contain m vectors which represent the m

classes, respectively. For each image yi in probe set, we compute a
(j)
i = ‖Wi ◦ (yi − (Dα)j)‖22 for each

j = 1, 2, . . . ,m. We calculate φ = (a(1), a(2), . . . , a(m)) by sorting a
(j)
i in ascending order. We find a(p) ∈ φ

which has the same label with yi, then compute rank(p) = rank(p)+1. Calculate all images i as previous

steps, we will get the final CMC curve. For MvsM modality, we suppose there are n images for one person

in the probe set. For each image k of person j, we calculate a
(j,k)
i = ‖W (j,k) ◦ (yj,k − (Dα)j,k)‖22, and

a
(j)
i = min{a(j,k)i }. After that, the CMC curve will be computed as in MvsS modality.

5.3 Linear combination of images

Figure 3 shows the optimal procedure of 10 persons from CAVIAR4REID dataset. The top 5 rows present

5 matched persons, while the other 5 rows present 5 mismatched persons. Figure 3(a) shows the test

image, (b) is the dictionary set where N = 5, (c) and (d) is the result of Dα and W ◦ (Dα), respectively.
When testing whether an image belongs to a person, the components for other persons of W and α are

set to zero. Figure 3 (e) and (f) are the results of Dα and W ◦ (Dα) after setting the other components

to zero. The class of (f) with the minimum square residual of (a) is the class that (a) belongs to.

The dictionary contains all the 72 unique individuals in CAVIAR4REID. When N = 5, it totally

contains 72 × 5 = 360 images. Results of (c) and (d) are computed by the whole dictionary, while (e)

and (f) are computed by one person images of the dictionary.

Let us focus on the sixth row. The test image differs significantly from the dictionary images, but the

result of Figure 3(e) is similar with the test image. In this case, the whole dictionary does represent a

significantly different image. However, this may also lead to mismatched cases. For example, Figure 4 (a)

and (b) show the contribution of dictionary images that represent the first and sixth person in Figure 3,

respectively. The first person contributes 89.8% to represent herself, so when other components of W

and α are set to zero, the result of W ◦ (Dα) is approximately invariant. This is the matched case. In the

sixth person’s representation, the images only contribute 18.2% to himself. The contribution of multiple

persons is more than his own, i. e., the sixth person is represented by multiple persons. This leads to a

mismatched case.

In Figure 5, the top 4 images of the first person is her own. Only one image of her own is not included

in the top 10 images. The first image of the second row is very similar with the testing image. For the
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(a) (b) (c) (d) (e) (f)

Figure 3 Optimal procedure. The first to fifth rows are matched individuals, while the sixth to tenth rows are mismatched.

(a) Images in probe set, i.e., the testing images; (b) images in dictionary set, where N = 5; (c) result of Dα; (d) result of

W ◦ (Dα); (e) result of Dα, where the components of α for the other persons are set to zero; (f) result of W ◦ (Dα), where

the components of α and W for the other persons are set to zero.
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Figure 4 The normalized contribution of dictionary images that represents a testing image. (a) Representation contribu-

tion to the first image of Figure 3; (b) representation contribution to the sixth image of Figure 3.

sixth person, none of his own image is included in the top 10 dictionary images. From left to right of the

fourth row, the image is more and more similar with the testing image.
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Figure 5 Dictionary images rank sort by contribution in ascending order. The first and third rows are top ten images of

the first and sixth person in Figure 3, respectively, where the images are sorted by the absolute value of corresponding α in

an ascending order. The labeled number of the image is the corresponding coefficient of α. The images of the second row

are results of Dα that are calculated by top 5, 10, 15, . . . , 50 images and coefficients of the first person, while the fourth row

is the sixth person.
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Figure 6 Results on CAVIAR4REID dataset. (a) MvsM when N = 3; (b) MvsM when N = 5; (c) MvsS when N = 3, 5.
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Table 1 Performance at rank-1 with respect to the state-of-the-art on CAVIAR4REID

Modality MvsM (N = 3) MvsM (N = 5) MvsS (N = 3) MvsS (N = 5)

AHPE [27] 0.075 0.075 – –

SDALF [13] 0.085 0.083 – –

CPS [34] 0.13 0.175 – –

WSC 0.556 0.611 0.403 0.456
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Figure 7 MvsM on ETHZ 1, 2, 3 datasets. (a) MvsM on ETHZ1 when N = 5; (b) MvsM on ETHZ2 when N = 5;

(c) MvsM on ETHZ3 when N = 5; (d) MvsM on ETHZ1 when N = 10; (e) MvsM on ETHZ2 when N = 10; (f) MvsM on

ETHZ3 when N = 10.
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Figure 8 MvsS on ETHZ datasets. (a) MvsS on ETHZ1; (b) MvsS on ETHZ2; (c) MvsS on ETHZ3.

Table 2 Performance at rank-1 with respect to the state-of-the-art on ETHZ

Dataset ETHZ1 ETHZ2 ETHZ3

Modality
MvsM MvsS MvsM MvsS MvsM MvsS

N = 5 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10

AHPE [27] 0.91 – – – 0.906 – – – 0.94 – – –

PLS [30] 0.79 0.79 – – 0.745 0.745 – – 0.775 0.775 – –

SDALF [13] 0.902 0.896 0.865 0.83 0.916 0.915 0.92 0.84 0.937 0.941 0.98 0.978

CPS [34] 0.977 – – – 0.973 – – – 0.98 – – –

MRCG [25] – 0.96 – – – 0.97 – – – 0.983 – –

EIML [29] 0.78 0.78 – – 0.74 0.74 – – 0.91 0.91 – –

RPLM [28] 0.77 0.77 – – 0.65 0.65 – – 0.83 0.83 – –

eSDC knn [32] 0.81 0.81 – – 0.79 0.79 – – 0.90 0.90 – –

eSDC ocsvm [32] 0.80 0.80 – – 0.80 0.80 – – 0.89 0.89 – –

RSR [12] – 0.92 – – – 0.93 – – – – – –

WSC 0.975 0.974 0.928 0.964 1 1 0.971 0.970 1 1 0.984 0.992

5.4 Results on multiple fixed cameras

The images of CAVIAR4REID dataset are captured from two fixed cameras. In the fixed camera scenario,

the backgrounds of different persons from the same camera view are similar. This may lead to a mismatch

between different persons.

On this dataset we compare WSC with the AHPE [27], SDALF [13], and CPS [34] method. In

Figure 6 (a) and (b), we report the CMC curves for WSC and the state-of-the-art for MvsM (N ∈ {3, 5}
respectively). In MvsS modality, there is no publicly available result on CAVIAR4REID. We only report
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Figure 9 Results on iLIDS dataset. (a) MvsM when N = 2; (b) MvsS when N = 2.

Table 3 Performance at rank-1 with respect to the state-of-the-art on iLIDS

Modality MvsM (N = 2) MvsS (N = 2)

HPE [26] 0.185 –

AHPE [27] 0.32 –

SDALF [13] 0.39 0.37

CPS [34] 0.44 –

MRCG [25] 0.46 –

SCR [45] 0.36 –

WSC 0.803 0.754

our results in Figure 6(c).

In Table 1 we report rank-1 results for the MvsS and MvsM (N ∈ {3, 5}) modalities. WSC outperforms

current methods up to 42.6% and 43.6% for MvsM N = 3 and N = 5, respectively. For MvsS modality,

WSC method achieves 40.3% and 45.6% at rank-1 when N = 3 and N = 5, respectively.

5.5 Results on moving cameras

The images of ETHZ datasets are captured from moving cameras. In the moving camera scenario, change

of viewpoint is large. This may lead to a mismatch between images for the same person.

On ETHZ 1, 2, 3 datasets we compare WSC with AHPE [27], PLS [30], SDALF [13], CPS [34], MR-

CG [25], EIML [29], RPLM [28], eSDC knn [32], eSDC ocsvm [32], and RSR [12] method. In Figures 7

and 8, we report the CMC curves for MvsM and MvsS (N ∈ {5, 10}) modalities, respectively. In Table 2

we report rank-1 results for the MvsS and MvsM (N ∈ {5, 10}) modalities on ETHZ 1, 2, 3 datasets. WSC

reaches 97.5% at rank-1 on ETHZ1. This is comparative with respect of the state-of-the-art methods.

On ETHZ2 and ETHZ3, WSC reaches 100% at rank-1.

5.6 Results on image sequences of video

The images of ETHZ datasets are frame sequences of videos from two camera views. In this scenario, the

backgrounds of different images for the same person, and the backgrounds of different persons from the

same camera view are all similar. Unlike CAVIAR4REID dataset, there are multiple images with similar

backgrounds for one person. This may improve the performance of matching. There is also challenge of

viewpoint changes, but it is not so serious because the change between two consecutive frames is small.

On iLIDS we compare WSC with HPE [26], AHPE [27], SDALF [13], CPS [34], MRCG [25], and

SCR [45] method. In Figure 9 (a) and (b), we report the CMC curves for WSC and the state-of-the-art

for MvsM (N = 2) and MvsS (N = 2) modality, respectively. In Table 3, we report rank-1 results for

the MvsM and MvsS (N = 2) modalities. WSC outperforms current methods up to 34.3% and 38.4% for

MvsM and MvsS, respectively.
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6 Conclusion and future work

In this paper we proposed an approach to person Re-ID that is based on robust weighted sparse coding.

We showed how to apply sparse coding method to the Re-ID problem, and filter out the abnormal residuals

through weights. Our WSC method has the following advantages. (1) WSC obtains the state-of-the-art

performance on multi-shot vs multi-shot and multi-shot vs single-shot Re-ID modalities. (2) WSC requires

no labeled data for training, which is competitive with respect to learning-based methods. (3) WSC

requires no foreground/background or body part segmentation.

Future work includes: (1) We used the naive images as dictionary, which may not be the optimal or

even suboptimal basis. A trained optimal basis may lead to better performance. (2) In Subsection 5.3,

we found that a person may be represented by other persons. Adding a constraint to the optimization

goal that mainly uses one person’s images to represent an image may produce better solutions.
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