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Abstract One can design a robust H∞ filter for a general nonlinear stochastic system with external distur-

bance by solving a second-order nonlinear stochastic partial Hamilton-Jacobi inequality (HJI), which is difficult

to be solved. In this paper, the robust mixed H2/H∞ globally linearized filter design problem is investigated for

a general nonlinear stochastic time-varying delay system with external disturbance, where the state is governed

by a stochastic Itô-type equation. Based on a globally linearized model, a stochastic bounded real lemma is es-

tablished by the Lyapunov–Krasovskii functional theory, and the robust H∞ globally linearized filter is designed

by solving the simultaneous linear matrix inequalities instead of solving an HJI. For a given attenuation level,

the H2 globally linearized filtering problem with the worst case disturbance in the H∞ filter case is known as

the mixed H2/H∞ globally linearized filtering problem, which can be formulated as a linear programming prob-

lem with simultaneous LMI constraints. Therefore, this method is applicable for state estimation in nonlinear

stochastic time-varying delay systems with unknown exogenous disturbance when state variables are unavailable.

A simulation example is provided to illustrate the effectiveness of the proposed method.
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1 Introduction

State estimation has always been one important problem in the areas of filter design and control system

design when system states are unknown [1–29]. The H∞ filtering problem is to estimate the unavailable

state variables by output measurement, which ensures the L2 gain to be less than a given level [1–6, 13–

16, 18–26]. The advantage of H∞ filtering is that the noise sources are arbitrary signals with bounded

energy or average power instead of being Gaussian, and no exact statistics are necessary to be known [3].

General nonlinear systems exist in many real-world systems and have been studied extensively [7–

19, 30–33], in which various direct and indirect methods are applied. It is well known that nonlinear

control and filtering problems are associated with the solutions of the Hamilton-Jacobi inequality (HJI),
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Hamilton-Jacobi-Bellman inequality (HJBI), Hamilton-Jacobi-Isaacs equation (HJIE), and Hamilton-

Jacobi equation (HJE). In [8, 9], the nonlinear H∞ control problem for deterministic nonlinear systems

with external disturbance depends on the solution of a first-order nonlinear partial differential HJIE,

which has been proven to be impossibly solved analytically, even the approximate solution is still difficult

to obtain. In [9], the designs of satisfaction output feedback controls for nonlinear stochastic systems

under long-term tracking risk-sensitive index are related with the HJBI. Also, an integrator backstepping

method is constructively applied to design an output feedback control. The infinite horizon H∞ control

problem has been solved for Itô-type stochastic systems by introducing three coupled HJEs in [10] and a

single HJI in [11], respectively. In [12], a sufficient condition of the L2-L∞ filter for nonlinear stochastic

systems has been established in terms of an HJI. For general nonlinear stochastic systems, the nonlinear

stochastic H∞ filtering problem relies on solving an HJI in [14].

It should be pointed out that the nonlinear stochastic partial differential HJBI [9], HJEs [10], and

HJI [11,12,14] are second-order ones because of the effect of the diffusion terms. It is usually difficult to

solve them. Linearization methods [15–18] are probably the alternative approaches. In [15], the globally

linearized method [34] is employed to deal with the robustH2/H∞ filtering problem of nonlinear stochastic

system under state-dependent noise and uncertain external disturbance. Under a fuzzy linearization

scheme, the robust fuzzy filter design for a class of nonlinear stochastic systems has been studied in [16].

The robust H∞ control design for nonlinear stochastic systems with external disturbance and Poisson

noise has been investigated via fuzzy interpolation method instead of solving an HJI in [17]. Milstein-type

discretization scheme is applied to study nonlinear filtering for stochastic time-delay systems in [18].

Practical system unavoidably involves in time delays, which may cause instability and poor performance

of a control system. Therefore, much attention has been focused on the robust H∞ filtering problem for

time-delay systems [1, 5, 6, 13, 16, 18–22,25, 26].

To the best of our knowledge, few work on mixed H2/H∞ filtering has been reported for an Itô-

type general nonlinear stochastic time-varying delay systems. Inspired by [15–18] and based on the

globally linearized scheme, a stochastic bounded real lemma (BRL) is established. The robust H∞
globally linearized filter is designed by solving simultaneous linear matrix inequalities (LMIs) related

with the filtering problem in the linear stochastic time-delay systems at vertices instead of solving the

HJI associated with the H∞ filtering problem in the nonlinear stochastic time-delay systems. When the

worst case disturbance is discussed, the suboptimal mixedH2/H∞ globally linearized filter design problem

is transformed into a convex optimization problem with simultaneous LMI constraints. A simulation

example is given to verify the effectiveness of the proposed approach.

Notations. Let | · | denote the Euclidean vector norm. R > 0 means that R is a symmetric positive

definite matrix. Sym(A) = A+ AT and TSym(C)B = CBCT. Let
(
Ω,F , P

)
be a complete probability

space with an increasing family {F}t�0 of σ algebras Ft ⊂ F and E{·} be the mathematical expectation

operator as to the probability measure P . L2[0,∞) signifies the space of square integrable vector functions

over [0,∞). C
(
[−τ, 0],Rn

)
stands for the family of all continuous Rn-valued functions φ on [τ, 0] with the

norm ‖φ‖ = sup{|φ(θ)| : −τ � θ � 0}. Let L2
F0

(
[−τ, 0];Rn

)
be the family of all F0-measurable bounded

C
(
[−τ, 0],Rn

)
-valued random variables ϕ = {ϕ(θ) : −τ � θ � 0}.

2 H∞ setting for nonlinear stochastic system with interval time-varying delay

Consider the following Itô-type general nonlinear stochastic time-varying delay system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = (f(x(t), x(t − τ(t)), t) + g(x(t), x(t − τ(t)), t)v(t)) dt+ h(x(t), x(t − τ(t)), t)dW (t),

dy(t) = (q(x(t), x(t − τ(t)), t) + k(x(t), x(t − τ(t)), t)v(t)) dt+ j(x(t), x(t − τ(t)), t)dW (t),

s(t) = Gx(t),

x(t) = φ(t), t ∈ [−τ2, 0],

(1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

l is the measurement, v(t) ∈ L2
F
(
R+;R

nv
)
is the external

disturbance, and φ(t) is any given initial data in L2
F0

(
[−τ2, 0];R

n
)
. W (t) is a standard one-dimensional
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Wiener process defined on
(
Ω,F , P

)
, satisfying E{W (t)} = 0 and E{W 2(t)} = t. s(t) is the signal to be

estimated, and G is a combination matrix, if xi(t) is to be estimated, G = diag{0, . . . , 1, . . . , 0}, G = I

means that the whole vector is estimated. Let x = x(t), xt = x(t−τ(t)), assume that f(x, xt, t), g(x, xt, t),

h(x, xt, t), q(x, xt, t), k(x, xt, t), and j(x, xt, t) satisfy the once continuously partially differentiable condi-

tion and the linear growth condition, which guarantee that the system (1) admits a unique global solution,

see [35, 36]. Also, suppose that f(0, 0, t) = h(0, 0, t) = 0 and q(0, 0, t) = j(0, 0, t) = 0, then x ≡ 0 is an

equilibrium point of (1). τ(t) is the time-delay satisfying

τ̇ (t) � τ̄ < 1, 0 � τ1 � τ(t) � τ2 < ∞. (2)

A lemma is introduced on the globally asymptotic stability at x ≡ 0 of the subsequent system.
⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = f(x(t), x(t − τ(t)), t)dt + h(x(t), x(t − τ(t)), t)dW (t),

f(0, 0, t) = h(0, 0, t) = 0,

x(t) = φ(t), t ∈ [−τ2, 0].

(3)

Lemma 1. It is assumed that there is a positive definite decrescent radially unbounded Lyapunov–

Krasovskii functional V (x, t) ∈ C2,1
(
R

n × [t0 − τ2,∞);R+

)
with V (0, 0) = 0, satisfying

∂V

∂t
+

∂V T

∂x
f(x, xt, t) +

1

2
hT(x, xt, t)

∂2V

∂x2
h(x, xt, t) < 0, (4)

for every nonzero x ∈ R
n, then system (3) is globally asymptotically stable in probability at x ≡ 0.

Proof. The proof can be followed from the same line of the proof for Theorem 4.2.3 in [36].

Proposition 1. If there exists a positive definite decrescent radially unbounded Lyapunov–Krasovskii

functional V (x, t) ∈ C2,1
(
R

n × [t0 − τ2,∞);R+

)
with V (0, 0) = 0, satisfying the following HJI:

∂V

∂t
+

∂V T

∂x
f(x, xt, t) +

1

2
‖s(t)‖2 + 1

2
hT(x, xt, t)

∂2V

∂x2
h(x, xt, t) < 0, (5)

then system (1) with v(t) = 0 is globally asymptotically stable in probability at x ≡ 0 and satisfies

‖s(t)‖2L2
� 2E{V (x(0), 0}.

Proof. By Lemma 1, the proof can be achieved according to the proof for Proposition 1 in [19].

Lemma 2. For system (1), if there is a positive definite decrescent radially unbounded Lyapunov–

Krasovskii functional V (x, t) ∈ C2,1
(
R

n× [t0− τ2,∞);R+

)
with V (0, 0) = 0, satisfying the HJI as below:

∂V

∂t
+
∂V T

∂x
f(x, xt, t)+

1

2
γ−2

(
∂V T

∂x
g(x, xt, t)g

T(x, xt, t)
∂V

∂x

)
+
1

2
‖s(t)‖2+1

2
hT(x, xt, t)

∂2V

∂x2
h(x, xt, t) < 0,

(6)

then system (1) is globally asymptotically stable in probability at x ≡ 0 when v = 0, and the inequality

‖s(t)‖2L2
� 2E{V (x(0), 0}+ γ2‖v(t)‖2L2

, ∀v ∈ L2
F
(
R+;R

nv
)
, v �= 0 (7)

holds for some prescribed disturbance attenuation level γ, if the initial value x(θ) �= 0, θ ∈ [t− τ2, 0], and

‖s(t)‖2L2
� γ2‖v(t)‖2L2

, ∀v ∈ L2
F
(
R+;R

nv
)
, v �= 0 (8)

is true for some given disturbance attenuation level γ, if the initial value x(θ) = 0, θ ∈ [t− τ2, 0].

Proof. First, by Lemma 1 and (6), it is obvious that system (1) is globally asymptotically stable in

probability at the equilibrium point x ≡ 0. Second, by Itô formula [36], the stochastic differential

dV (t, xt) along any trajectory of the closed-loop system (3) can be obtained as

dV (x, t) = LvV (x, t)dt + Vx(x, t)h(x, xt, t)dW (t), (9)

with Lv being the infinitesimal generator of (1), which is defined as

LvV (x, t) = Vt(x, t) + Vx(x, t)fx(x, xt, t) +
1

2
hT(x, xt, t)Vxx(x, t)h(x, xt, t). (10)
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According to the Hamilton-Jacoby-Isaacs condition, it follows from “completing the square” that

LvV (x, t) +
1

2
‖s(t)‖2 − 1

2
γ2‖v(t)‖2

= −
(
v − γ−2gT(x, xt, t)

∂V

∂x

)T
1

2
γ2I

(
v − γ−2gT(x, xt, t)

∂V

∂x

)

+
1

2
γ−2

(
∂V T

∂x
g(x, xt, t)g

T(x, xt, t)
∂V

∂x

)
+

∂V

∂t
+

∂V T

∂x
f(x, xt, t)

+
1

2
hT(x, xt, t)

∂2V

∂x2
h(x, xt, t) +

1

2
‖s(t)‖2. (11)

Considering (6) and (11), the following inequality is readily achieved:

LvV (x, t) � 1

2
γ2‖v(t)‖2 −

(
v − γ−2gT(x, xt, t)

∂V

∂x

)T
1

2
γ2I

(
v − γ−2gT(x, xt, t)

∂V

∂x

)
− 1

2
‖s(t)‖2

� 1

2
γ2‖v(t)‖2 − 1

2
‖s(t)‖2. (12)

Integrating (12) from 0 to T and taking expectation yields

E{V (x(T ), T )} − E{V (x(0), 0)} = E

{∫ T

0

dV (x(t), t)

}
= E

{∫ T

0

LvV (x(t), t)dt

}

�
∫ T

0

(
1

2
γ2‖v(t)‖2 − 1

2
‖s(t)‖2

)
dt, (13)

Eq. (13) implies that Eqs. (7) and (8) hold with initial state x(0) = 0 and x(0) �= 0, respectively.

Remark 1. Lemma 2 can be called a bounded real lemma (BRL) of nonlinear stochastic time-delay

systems. A linear stochastic BRL can be found in [28]. Also, two nonlinear ones for nonlinear stochastic

systems are derived in [14] and [37].

Remark 2. (1) The filter design problem satisfying the H∞ filtering inequality in (7) or (8) with a

given attenuation level γ is called the H∞ filter design problem of (1). (2) If

J(v) =
1

2
E

{∫ T

0

[‖s(t)‖2 − γ2‖v(t)‖2]dt
}

, (14)

then J(v) � J(v∗), for any v, and v∗ ∈ L2
F
(
R+;R

nv
) ∩ Ω̄, with Ω̄ = {v : limt→∞ E{V (x(t), t} = 0}, and

v∗ = γ−2gT
∂V

∂x
, (15)

where v∗ is called the worst case disturbance, it achieves the given energy gain γ2 from v(t) to s(t).

If the following nonlinear filter is employed for the estimation of s(t) in (1),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx̂(t) = f̂(x̂(t), x̂(t− τ(t)), t)dt + L̂(x̂(t), x̂(t− τ(t)), t)dy(t),

f̂(0, 0, t) = ĥ(0, 0, t) = 0,

ŝ(t) = Gx̂(t),

x̂(t) = 0, t ∈ [−τ2, 0],

(16)

to achieve the H∞ state estimation ‖e(t)‖2L2
� γ2‖v(t)‖2L2

, where v ∈ L2
F
(
R+;R

nv
)
and e(t) = s(t) −

ŝ(t) =
[
G −G

]
ξ(t), with ξT(t) =

[
xT(t) x̂T(t)

]
, then we present the subsequent result.

Lemma 3. For a prescribed attenuation level γ, if there is a positive definite decrescent radially

unbounded Lyapunov–Krasovskii functional V (x, x̂, t) ∈ C2,1
(
R

n×R
n×[t0−τ2,∞);R+

)
with V (0, 0, 0) =

0, solving the following HJI:

∂V T

∂x
f(x, xt, t) +

∂V T

∂x̂
(f̂(x̂, x̂t, t) + L̂(x̂, x̂t, t)q

(
x, xt, t)) +

1

2
hT(x, xt, t)

∂2V

∂x2
h(x, xt, t)
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+
1

2
γ−2

(
∂V T

∂x
g(x, xt, t) +

∂V

∂x̂
L̂(x̂, x̂t, t)k(x, xt, t)

)
×
(
∂V T

∂x
g(x, xt, t)

+
∂V

∂x̂
L̂(x̂, x̂t, t)k(x, xt, t)

)T

+
1

2
(L̂(x̂, x̂t, t)j(x, xt, t)

)T ∂2V

∂x̂∂x
h(x, xt, t)

+
1

2
hT(x, xt, t)

∂2V

∂x∂x̂
(L̂(x̂, x̂t, t)j(x, xt, t))

+
1

2
(L̂(x̂, x̂t, t)j(x, xt, t))

T ∂2V

∂x̂2
(L̂(x̂, x̂t, t)j(x, xt, t))

+
1

2
‖Ḡξ(t)‖2 + ∂V

∂t
< 0, (17)

for matrices f̂ and L̂ of appropriate dimensions, then Eq. (16) and (17) solve the stochastic H∞ state

estimation problem.

Proof. The proof is directly achieved as the same line of the proof for Theorem 1 [14].

It follows from Lemma 3 that the nonlinear filter (16) for (1) is more complicated than the filtering

problem from v(t) to s(t) in Lemma 2. In [14], the nonlinear filtering problem relies on solving a second-

order HJI, which is difficult to be solved except some special cases. There is no practicable nonlinear filter

design yet. However, the global linearization method has been conveniently applied for dealing with the

H2/H∞ filtering problem in nonlinear stochastic systems [15]. This method will be employed to study

the H2/H∞ filtering problem in nonlinear stochastic time-varying delay systems.

Assume that the nonlinear stochastic time-delay system in (1) could globally be linearized as [34]

[
∂f(x,y,t)

∂x
∂f(x,y,t)

∂y
∂h(x,y,t)

∂x
∂h(x,y,t)

∂y
∂q(x,y,t)

∂x
∂q(x,y,t)

∂y
∂j(x,y,t)

∂x
∂j(x,y,t)

∂y

]

∈ Ω, ∀x = x(t), y = x(t− τ(t)),

where the polytope Ω ∈ R
(n+m)×4n means the system parameters set of the globally linearized time-delay

systems at vertices. Assume that Ω could be described as the following convex hull:

Ω ∈ C0

([
A01 A11 C01 C11

Q01 Q11 J01 J11

]

, . . . ,

[
A0m A1m C0m C1m

Q0m Q1m J0m J1m

])

. (18)

Actually, all the globally linearized time-delay systems in Ω of the nonlinear stochastic time-delay system

(1) can be interpolated as the subsequent m linear stochastic time-delay systems at vertices of the convex

hull of Ω [34]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = (A0ix(t) +A1ix(t− τ(t)) +Biv(t)) dt+ (C0ix(t) + C1ix(t− τ(t))) dW (t),

dy(t) = (Q0ix(t) +Q1ix(t− τ(t)) +Kiv(t)) dt+ (J0ix(t) + J1ix(t− τ(t))) dW (t),

s(t) = Gx(t), i = 1, 2, . . . ,m,

x(t) = φ(t), t ∈ [−τ2, 0].

(19)

By the global linearization theory [34], it follows from (19) that each trajectory of the nonlinear stochastic

time-delay system in (1) means a trajectory of the convex combination of the m linearized stochastic time-

delay systems in (19), that is, the nonlinear stochastic time-delay system in (1) can be interpolated by

the convex combination of m linearized stochastic time-delay systems in (19) with proper approximation
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errors as below:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = (f(x(t), x(t − τ(t)), t) + g(x(t), x(t− τ(t)), t)v(t)) dt+ h(x(t), x(t − τ(t)), t)dW (t)

=
m∑

i=1

αi

(
x, xt, t

){(A0ix(t) +A1ix(t− τ(t)) +Biv(t)) dt

+ (C0ix(t) + C1ix(t− τ(t))) dW (t)} +
fdt+
gv(t)dt+
hdW (t),

dy(t) = (q(x(t), x(t − τ(t)), t) + k(x(t), x(t − τ(t)), t)v(t)) dt+ j(x(t), x(t − τ(t)), t)dW (t)

=

m∑

i=1

αi

(
x, xt, t

){(Q0ix(t) +Q1ix(t− τ(t)) +Kiv(t)) dt

+ (J0ix(t) + J1ix(t− τ(t))) dW (t)} +
qdt+
kv(t)dt+
jdW (t),

s(t) = Gx(t),

x(t) = φ(t), t ∈ [−τ2, 0],

(20)

where


f = f(x, xt, t)−
m∑

i=1

αi

(
x, xt, t

)(
A0ix+A1ixt

)
, 
q = q(x, xt, t)−

m∑

i=1

αi

(
x, xt, t

)(
Q0ix+Q1ixt

)
,


h = h(x, xt, t)−
m∑

i=1

αi

(
x, xt, t

)(
C0ix+ C1ixt

)
, 
j = j(x, xt, t)−

m∑

i=1

αi

(
x, xt, t

)(
J0ix+ J1ixt

)
,


g = g(x, xt, t)−
m∑

i=1

αi

(
x, xt, t

)
Bi, 
k = k(x, xt, t)−

m∑

i=1

αi

(
x, xt, t

)
Ki,

with the interpolation functions αi

(
x(t), x(t − τ(t)), t

)
, i = 1, 2, . . . ,m, satisfying 0 � αi

(
x(t), x(t −

τ(t)), t
)
� 1 and

∑m
i=1 αi

(
x(t), x(t − τ(t)), t

)
= 1.

Remark 3. It is usually difficult to solve the HJI in (6) or (17). By the global linearization method, the

filter design problem for the nonlinear stochastic time-delay system can be studied by solving simultaneous

LMIs related by the globally linearized systems in (20) instead of a second-order HJI.

3 H∞ global linearization filter design

By the globally linearized model (20), the nonlinear filter (16) is replaced by the following global lin-

earization filter to study the H∞ filter for system in (1):

dx̂(t) =
m∑

j=1

αj

(
x̂(t), x̂(t− τ(t)), t

){(
A0j x̂(t) +A1j x̂(t− τ(t))

)
dt+ Lj

[
dy(t)− dŷ(t)

]}
, (21)

where Lj is the gain for the jth filter and

dŷ(t) =
m∑

k=1

αk

(
x̂, x̂t, t

)
(Q0ix̂+Q1ix̂t) dt.

In this condition, the globally linearized filter is written as follows:

dx̂(t) =

m∑

i=1

αi

(
x, xt, t

) m∑

j=1

αj

(
x̂, x̂t, t

) m∑

k=1

αk

(
x̂, x̂t, t

){(
A0j x̂+A1j x̂t

)
dt+ Lj

[(
Q0ix+Q1ixt

)
dt

+Kivdt+
(
J0ix+ J1ixt

)
dW (t) +
qdt+
kvdt+
jdW (t)− (Q0kx̂+Q1kx̂t

)
dt
] }

. (22)

The augmented system is obtained as follows:

dξ(t) =

m∑

i=1

αi

(
x, xt, t

) m∑

j=1

αj

(
x̂, x̂t, t

) m∑

k=1

αk

(
x̂, x̂t, t

){(
Ā0ijkξ(t) + Ā1ijkξ(t− τ(t)) + B̄ijv(t)

)
dt
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+
(
D̄0ijξ(t) + D̄1ijξ(t− τ(t))

)
dW (t)

}
+
f̄dt+
ḡv(t)dt+
h̄dW (t), (23)

where

ξ(t) =

[
x(t)

x̂(t)

]

, Ā0ijk =

[
A0i 0

LjQ0i A0j − LjQ0k

]

, Ā1ijk =

[
A1i 0

LjQ1i A1j − LjQ1k

]

,

B̄ij =

[
Bi

LjKi

]

, D̄0ij =

[
C0i 0

LjJ0i 0

]

, D̄1ij =

[
C1i 0

LjJ1i 0

]

, 
f̄ =

[

f

∑m
j=1 αj

(
x̂, x̂t, t

)
Lj
q

]

,


ḡ =

[

g

∑m
j=1 αj

(
x̂, x̂t, t

)
Lj
k

]

, 
h̄ =

[

h

∑m
j=1 αj

(
x̂, x̂t, t

)
Lj
j

]

.

Denote η(t) =
[
ξT(t), ξT(t− τ(t)), 1

τ2

∫ t

t−τ2
ξT(s)ds

]T
, ζ(t) =

[
xT(t), xT(t− τ(t))

]T
.

Assumption 1. There are five positive bounded constants e1, e2, e3, e4, and α such that

‖
f‖ � e1‖ζ(t)‖, ‖
h‖ � e2‖ζ(t)‖, ‖
q‖ � e3‖ζ(t)‖, ‖
j‖ � e4‖ζ(t)‖,
[

g


k

][

g


k

]T

� αI. (24)

Remark 4. The nonlinear system (1), the globally linearized model (20), the globally linearized filter

(22), and the augmented system (23) are time-varying systems. Thus, the non-uniformly global stability

is studied in this paper.

Let us denote

e(t) = s(t)− ŝ(t) =
[
G −G

]
ξ(t) = Ḡξ(t), (25)

where Ḡ =
[
G −G

]
, then the nonlinear stochastic H∞ filter design problem can be described as below.

Determined the filter gains Lj , j = 1, 2, . . . ,m, such that the following hold.

(1) System (23) is globally asymptotically stable in probability at ξ(t) ≡ 0 when v(t) = 0.

(2) For a prescribed γ > 0, the subsequent inequality holds

‖e(t)‖2L2
� 2E{V (ξ(0), 0}+ γ2‖v(t)‖2L2

, ∀v ∈ L2
F
(
R+;R

nv
)
, v �= 0, (26)

where V (ξ, t) ∈ C2,1
(
R

2n × [t0 − τ2,∞);R+

)
with V (0, 0) = 0.

Theorem 1. For the augmented system in (23) with Assumption 1, if there exist P > 0, Q > 0, and

R > 0 solving the following matrix inequalities:

{
L̄T
j PL̄j < βjI, with a scalar variable βj > 0, j = 1, 2, . . . ,m,

ΠH∞
1 < 0,

(27)

where

ΠH∞
1 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

Πijk D̃T
ijP P̃B̄ij P̃ L̄j P̃ L̄k

∗ −P
2 0 0 0

∗ ∗ − γ2

2 I 0 0

∗ ∗ ∗ − γ2

α I 0

∗ ∗ ∗ ∗ − γ2

α I

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

,

with

Πijk =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

PĀ0ijk + ĀT
0ijkP + ḠTḠ+ P +Q+ τ22R

+
(
βj + βk

)[
1
2

(
e21 + e23

)
I +
(
e22 + e24

)
I
] PĀ1ijk 0

∗ −(1− τ̄)Q +
(
βj + βk

)

×[12
(
e21 + e23

)
I +
(
e22 + e24

)
I
] 0

∗ ∗ −τ22R

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,
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and D̃ij =
[
D̄0ij D̄1ij 0

]
, P̃ =

[
P 0 0

]T
, L̄j = diag{I, Lj}, L̄k = diag{I, Lk} for all i, j, k = 1, 2, . . . ,m,

then the subsequent is true: (1) the augmented system (23) is globally asymptotically stable in probability

at ξ(t) ≡ 0 when v(t) = 0, and (2) the subsequent inequality

‖e(t)‖2L2
� 2E{V (ξ(0), 0}+ γ2‖v(t)‖2L2

, ∀v ∈ L2
F
(
R+;R

nv
)
, v �= 0 (28)

holds for a prescribed disturbance attenuation level γ > 0.

Proof. By Lemma 2, if there is a positive definite decrescent radially unbounded Lyapunov–Krasovskii

functional V (ξ, t) ∈ C2,1
(
R

2n × [t0 − τ2,∞);R+

)
with V (0, 0) = 0 such that

∂V T

∂ξ

⎡

⎣
m∑

i=1

αi

(
ξ, ξt, t

) m∑

j=1

αj

(
ξ̂, ξ̂t, t

) m∑

k=1

αk

(
ξ̂, ξ̂t, t

)(
Ā0ijkξ + Ā1ijkξt

)
+
f̄

⎤

⎦

+
1

2

⎡

⎣
m∑

i=1

αi

(
ξ, ξt, t

) m∑

j=1

αj

(
ξ̂, ξ̂t, t

)(
D̄0ijξ + D̄1ijξt

)
+
h̄

⎤

⎦

T

∂2V

∂ξ2

×
[

m∑

l=1

αl

(
ξ, ξt, t

) m∑

s=1

αs

(
ξ̂, ξ̂t, t

)(
D̄0lsξ + D̄1lsξt

)
+
h̄

]

+
∂V

∂t
+

1

2
‖Ḡξ‖2

+
1

2
γ−2

⎡

⎣∂V
T

∂ξ

⎛

⎝
m∑

i=1

αi

(
ξ, ξt, t

) m∑

j=1

αj

(
ξ̂, ξ̂t, t

)
B̄ij +
ḡ

⎞

⎠

×
(

m∑

l=1

αl

(
ξ, ξt, t

) m∑

s=1

αs

(
ξ̂, ξ̂t, t

)
B̄ls +
ḡ

)T
∂V

∂ξ

⎤

⎦ < 0, (29)

then (1) and (2) hold. Choose a Lyapunov–Krasovskii functional candidate as

V (ξ, t) =
1

2
ξT(t)Pξ(t) +

1

2

∫ t

t−τ(t)

ξT(s)Qξ(s)ds +
τ2
2

∫ 0

−τ2

∫ t

t+θ

ξT(s)Rξ(s)dsdθ. (30)

For simplicity, denote αi

(
ξ, ξt, t

)
= αi, αl

(
ξ, ξt, t

)
= αl, αj

(
ξ̂, ξ̂t, t

)
= α̂j , αk

(
ξ̂, ξ̂t, t

)
= α̂k, αs

(
ξ̂, ξ̂t, t

)
=

α̂s with all the variables omitted.

By (30), Eq. (29) can be rewritten as

1

2

m∑

i=1

αi

m∑

j=1

α̂j

m∑

k=1

α̂k

m∑

l=1

αl

m∑

s=1

α̂s ×
{
Sym

(
ξTP

[
Ā0ijkξ + Ā1ijkξt

])
+ γ−2TSym

(
ξTPB̄ij

)

+ξTḠTḠξ +TSym
([
D̄0ijξ + D̄1ijξt

]T)
P
}
+

1

2
Sym

(
ξTP
f̄

)
+

1

2
γ−2TSym

(
ξTP
ḡ

)

+
1

2
γ−2

⎡

⎣ξTP
m∑

i=1

αi

m∑

j=1

α̂jB̄ij
ḡTPξ + ξTP
ḡ

m∑

l=1

αl

m∑

s=1

α̂sB̄
T
lsPξ

⎤

⎦

+
1

2

⎡

⎣
m∑

i=1

αi

m∑

j=1

α̂j

[
D̄0ijξ + D̄1ijξt

]T
P
h̄+
h̄TP

m∑

l=1

αl

m∑

s=1

α̂s

[
D̄0lsξ + D̄1lsξt

]
⎤

⎦

+
1

2

h̄TP
h̄+

1

2

[
ξTQξ − (1− τ̇(t)

)
ξTt Qξt + τ22 ξ

TRξ − τ2

∫ t

t−τ2

ξT(s)Rξ(s)ds

]

� 1

2

m∑

i=1

αi

m∑

j=1

α̂j

m∑

k=1

α̂k

m∑

l=1

αl

m∑

s=1

α̂s ×
{
Sym

(
ξTP

[
Ā0ijkξ + Ā1ijkξt

])
+ γ−2TSym

(
ξTPB̄ij

)

+ξTḠTḠξ +TSym
([
D̄0ijξ + D̄1ijξt

]T)
P
}
+

1

2

[
ξTPξ +
f̄TP
f̄

]
+

1

2
γ−2TSym

(
ξTP
ḡ

)

+
1

2
γ−2

⎡

⎣ξTP

⎡

⎣
m∑

i=1

αi

m∑

j=1

α̂j
1

2
B̄ijB̄

T
ij +

m∑

l=1

αl

m∑

s=1

α̂s
1

2
B̄lsB̄

T
ls

⎤

⎦Pξ



Mao W H, et al. Sci China Inf Sci March 2016 Vol. 59 032204:9

Table 1 Procedure for H∞ global linearization filtering

Steps Design procedures

Step 1: Establish the globally linearized model (19);

Step 2: Choose the matrix G;

Step 3: Obtain the five positive bounded constants e1, e2, e3, e4, and α in (24) along the entire

trajectory of the nonlinear system (1) that comes from the simulation of the system (1);

Step 4: Solve the LP in (35) to get γmin, P1, P2, Q1, Q2, Q3, R1, R2, R3, βj , and Yj , then Lj = P−1
2 Yj ;

Step 5: Establish the globally linearized filter in (21).

+
1

2
TSym

(
ξTP
ḡ

)
+

1

2
TSym

(
ξTP
ḡ

)
]
+

1

2

⎡

⎣
m∑

i=1

αi

m∑

j=1

α̂j
1

2
TSym

([
D̄0ijξ + D̄1ijξt

]T)
P

+
m∑

l=1

αl

m∑

s=1

α̂s
1

2
TSym

([
D̄0lsξ + D̄1lsξt

]T)
P +

1

2

h̄TP
h̄+

1

2

h̄TP
h̄

]

+
1

2

h̄TP
h̄

+
1

2

[
ξTQξ − (1− τ̄

)
ξTt Qξt + τ22 ξ

TRξ − τ2

∫ t

t−τ2

ξT(s)Rξ(s)ds

]
, {by Lemma 4 in [15]}

� 1

2

m∑

i=1

αi

m∑

j=1

α̂j

m∑

k=1

α̂k ×
{
Sym

(
ξTP

[
Ā0ijkξ + Ā1ijkξt

])
+ 2γ−2TSym

(
ξTPB̄ij

)
+ ξTḠTḠξ

+2
[
D̄0ijξ + D̄1ijξt

]T
P
[
D̄0ijξ + D̄1ijξt

]
+ ξT

(
P +Q+ τ22R

)
ξ − (1− τ̄

)
ξTt Qξt

−
[
1

τ2

∫ t

t−τ2

ξ(s)ds

]T
(τ22R)

1

τ2

∫ t

t−τ2

ξ(s)ds + γ−2ξTPL̄j

[

g


k

] [

g


k

]T

L̄T
j Pξ

+γ−2ξTPL̄k

[

g


k

][

g


k

]T

L̄T
kPξ +

1

2

[

f


q

]T

L̄T
j PL̄j

[

f


q

]

+
1

2

[

f


q

]T

L̄T
kPL̄k

[

f


q

]

+

[

h


j

]T

L̄T
j PL̄j

[

h


j

]

+

[

h


j

]T

L̄T
kPL̄k

[

h


j

]⎫⎬

⎭

{by Lemma 4 in [15] and Proposition B.8 (Jensen inequality) in [38]}

� 1

2

m∑

i=1

αi

m∑

j=1

α̂j

m∑

k=1

α̂k

{
ηT(t)

[
Πijk + 2γ−2P̃ B̄ijB̄

T
ijP̃ + 2D̃T

ijPD̃ij + αγ−2P̃ L̄jL̄
T
j P̃

+αγ−2P̃ L̄kL̄
T
k P̃
]
η(t)
}
< 0. {by (24) and L̄T

j PL̄j < βjI} (31)

The aforementioned inequality holds if the following inequalities:

Πijk + 2γ−2P̃ B̄ijB̄
T
ij P̃ + 2D̃T

ijPD̃ij + αγ−2P̃ L̄jL̄
T
j P̃ + αγ−2P̃ L̄kL̄

T
k P̃ < 0 (32)

are true for all i, j, k = 1, 2, . . . ,m, with Πijk, D̃ij , P̃ , L̄j, and L̄k being defined in Theorem 1. By the

Schur complement [34], Eq. (32) is equivalent to (27) under L̄T
j PL̄j < βjI. It follows from the inequalities

in (32) and L̄T
j PL̄j < βjI that (1) and (2) of the theorem hold. The proof is completed accordingly.

Remark 5. By the declaration of (33), the matrix inequalities in (27) can be formulated as in (34) to

solve P1 > 0, P2 > 0, Q1 > 0, Q2, Q3 > 0 and R1 > 0, R2, R3 > 0. For ease of design, let

P =

[
P1 P2

P2 P2

]

, Q =

[
Q1 Q2

Q2 Q3

]

, R =

[
R1 R2

R2 R3

]

, (33)
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and Eq. (27) should be modified as the LMIs in (34):

ΠH∞
2 =

[
(1, 1) (1, 2)

∗ (2, 2)ΠH∞
2

]

< 0, ∀ i, j, k = 1, 2, . . . ,m,

Θ =

⎡

⎢
⎢
⎢
⎢
⎣

−βjI 0 P1 P2

∗ −βjI Y T
j Y T

j

∗ ∗ −P1 −P2

∗ ∗ ∗ −P2

⎤

⎥
⎥
⎥
⎥
⎦
< 0 βj > 0, j = 1, 2, . . . ,m,

(34)

where

(1, 1) =

⎡

⎢
⎢
⎢
⎢
⎣

Γ11 Γ12 Γ13 Γ14

∗ Γ22 Γ23 Γ24

∗ ∗ Γ33 Γ34

∗ ∗ ∗ Γ44

⎤

⎥
⎥
⎥
⎥
⎦
, (1, 2) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 Γ17 Γ18 Γ19 P1 Yj P1 Yk

0 0 0 0 Γ29 P2 Yj P2 Yk

0 0 Γ37 Γ38 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
,

(2, 2)ΠH∞
2

= diag

{[
−τ22R1 −τ22R2

∗ −τ22R3

]

,

[
−P1

2 −P2

2

∗ −P2

2

]

, − γ2I

2
, − γ2I

α
, − γ2I

α
, − γ2I

α
, − γ2I

α

}

,

Yj = P2Lj, σ = 1
2

(
e21 + e23

)
+
(
e22 + e24

)
,

Γ11 = P1A0i +AT
0iP1 + YjQ0i +QT

0iY
T
j +GTG+ P1 +Q1 + τ22R1 +

(
βj + βk

)
σI,

Γ12 = AT
0iP2 + P2A0j +QT

0iY
T
j − YjQ0k −GTG+ P2 +Q2 + τ22R2, Γ13 = P1A1i + YjQ1i,

Γ14 = P2A1j − YjQ1k, Γ17 = CT
0iP1 + JT

0iY
T
j , Γ18 = CT

0iP2 + JT
0iY

T
j , Γ19 = P1Bi + YjKi,

Γ22 = P2A0j − YjQ0k +AT
0jP2 −QT

0kY
T
j +GTG+ P2 +Q3 + τ22R3 +

(
βj + βk

)
σI,

Γ23 = P2A1i + YjQ1i, Γ24 = P2A1j − YjQ1k, Γ29 = P2Bi + YjKi,

Γ33 = −(1− τ̄
)
Q1 +

(
βj + βk

)
σI, Γ44 = −(1− τ̄

)
Q3 +

(
βj + βk

)(
e22 + e24

)
σI,

Γ34 = −(1− τ̄
)
Q2, Γ37 = CT

1iP1 + JT
1iY

T
j , Γ38 = CT

1iP2 + JT
1iY

T
j .

By the previous discussion and the choices of P,Q, and R in (33), the optimal H∞ globally linearized

filter design is formulated as the subsequent linear programming problem (LP),

min
{P1,P2,Q1,Q2,Q3,R1,R2,R3,βj,Yj}

ρ,

s.t. (34) with ρ = γ2, P = PT > 0, Q = QT > 0, R = RT > 0.
(35)

For clarity, a design procedure for the H∞ globally linearized filter design is given in Table 1.

Remark 6. (1) In the globally linearized filter design, the HJI in (17) of the nonlinear state filter

design in (16) is replaced with the matrix inequalities in (27), which can be efficiently solved by the LMI

toolbox in Matlab. (2) By Remark 2, one can obtain a corresponding v∗ as

v∗ =
m∑

i=1

αi

m∑

j=1

α̂jγ
−2

[
B̄T

ij

∂V

∂ξ

]
+ γ−2
ḡT

∂V

∂ξ
=

m∑

i=1

αi

m∑

j=1

α̂jγ
−2
[
B̄T

ijPξ
]
+ γ−2
ḡTPξ, (36)

where v∗ can be taken as the worst case disturbance achieving the desired energy gain γ2.

4 Suboptimal mixed H2/H∞ global linearization filter design

If a desired attenuation level γ is chosen, we can obtain an H∞ filter in (21) under v∗(t) in (36) for the

nonlinear stochastic time-delay system. The H∞ filter design that minimizes the norm of the estimation

error is called the mixed H2/H∞ filter design, and the worst case disturbance v∗(t) in the H∞ filter case

is considered for v(t) in (1).
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In view of (36), the augmented system in (23) is rewritten as follows:

dξ(t) =

m∑

i=1

αi

(
x, xt, t

) m∑

j=1

αj

(
x̂, x̂t, t

) m∑

k=1

αk

(
x̂, x̂t, t

) m∑

l=1

αl

(
x, xt, t

) m∑

s=1

αs

(
x̂, x̂t, t

)× {[Ā0ijkξ(t)

+Ā1ijkξ(t− τ(t)) + γ−2B̄ijB̄
T
lsPξ + γ−2B̄ij
ḡTPξ + γ−2
ḡB̄T

lsPξ + γ−2
ḡ
ḡTPξ
]
dt

+
f̄dt+
[
D̄0ijξ(t) + D̄1ijξ(t− τ(t)) +
h̄

]
dW (t)

}
. (37)

It follows from Proposition 1 and Theorem 1 that we obtain the subsequent result.

Theorem 2. For the augmented system in (23) with Assumption 1, if there are P > 0, Q > 0, and

R > 0 satisfying the following matrix inequalities:

{
L̄T
j PL̄j < βjI, with a scalar variable βj > 0, j = 1, 2, . . . ,m,

Π
H2/H∞
1 < 0,

(38)

where

Π
H2/H∞
1 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

Πijk D̃T
ijP P̃B̄ij P̃ L̄j P̃ L̄k

∗ −P
2 0 0 0

∗ ∗ − γ2

4 I 0 0

∗ ∗ ∗ − γ2

2αI 0

∗ ∗ ∗ ∗ − γ2

2αI

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

with Πijk , D̃ij , and P̃ being defined in Theorem 1, L̄j = diag{I, Lj}, L̄k = diag{I, Lk} for all i, j, k =

1, 2, . . . ,m, then the subsequent hold: (1) the augmented system (23) is globally asymptotically stable in

probability at ξ(t) ≡ 0 when v(t) = 0, (2) the estimation error satisfies the H2 norm property as

‖e(t)‖2L2
� 2E{V (ξ(0), 0}

= E{ξT(0)Pξ(0)}+ E

{∫ 0

−τ(0)

ξT(s)Qξ(s)ds + τ2

∫ 0

−τ2

(
s+ τ2

)
ξT(s)Rξ(s)ds

}

, (39)

that is, E{ξT(0)Pξ(0)}+ E
{ ∫ 0

−τ(0) ξ
T(s)Qξ(s)ds+ τ2

∫ 0

−τ2

(
s+ τ2

)
ξT(s)Rξ(s)ds

}
is the upper bound of

‖e(t)‖2L2
and is to be minimized in the suboptimal H2 filtering case; and (3) the global linearization filter

also satisfies the filtering performance in (28).

Proof. By Proposition 1, if there exists a Lyapunov–Krasovskii functional V (ξ, t) ∈ C2,1
(
R

2n × [t0 −
τ2,∞);R+

)
with V (0, 0) = 0 such that the equation as below is derived, then (1) and (2) hold.

m∑

i=1

αi

(
x, xt, t

) m∑

j=1

αj

(
x̂, x̂t, t

) m∑

k=1

αk

(
x̂, x̂t, t

) m∑

l=1

αl

(
x, xt, t

) m∑

s=1

αs

(
x̂, x̂t, t

)×
{
∂V T

∂ξ

[
Ā0ijkξ

+Ā1ijkξt + γ−2B̄ijB̄
T
lsPξ + γ−2B̄ij
ḡTPξ + γ−2
ḡB̄T

lsPξ + γ−2
ḡ
ḡTPξ +
f̄
]

+
1

2
‖Ḡξ‖2 + 1

2

[
D̄0ijξ + D̄1ijξt +
h̄

]T ∂2V T

∂ξ2
[
D̄0lsξ + D̄1lsξt +
h̄

]
+

∂V

∂t

}
< 0. (40)

By substituting (30) into (40), it follows from the same lines as the proof of Theorem 1 that

1

2

m∑

i=1

αi

(
x, xt, t

) m∑

j=1

αj

(
x̂, x̂t, t

) m∑

k=1

αk

(
x̂, x̂t, t

) m∑

l=1

αl

(
x, xt, t

) m∑

s=1

αs

(
x̂, x̂t, t

)

×
{
ξTP

[
Ā0ijkξ + Ā1ijkξt + γ−2B̄ijB̄

T
lsPξ + γ−2B̄ij
ḡTPξ + γ−2
ḡB̄T

lsPξ
]

+
[
Ā0ijkξ + Ā1ijkξt + γ−2B̄ijB̄

T
lsPξ + γ−2B̄ij
ḡTPξ + γ−2
ḡB̄T

lsPξ
]T

Pξ

+2γ−2ξTP
ḡ
ḡTPξ + ξTP
f̄ +
f̄TPξ + ξTḠTḠξ + ξTQξ − (1− τ̇(t)
)
ξTt Qξt
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+τ22 ξ
TRξ − τ2

∫ t

t−τ2

ξT(s)Rξ(s)ds+
[
D̄0ijξ + D̄1ijξt +
h̄

]T
P
[
D̄0lsξ + D̄1lsξt +
h̄

]}

� 1

2

m∑

i=1

αi

m∑

j=1

α̂j

m∑

k=1

α̂k

{
ηT(t)

[
Πijk + 4γ−2P̃ B̄ijB̄

T
ij P̃ + 2D̃T

ijPD̃ij

+2αγ−2P̃ L̄jL̄
T
j P̃ + 2αγ−2P̃ L̄kL̄

T
k P̃
]
η(t)
}
< 0. {by (24) and L̄T

j PL̄j < βjI} (41)

From the previous analysis, if the subsequent inequalities

Πijk + 4γ−2P̃ B̄ijB̄
T
ij P̃ + 2D̃T

ijPD̃ij + 2αγ−2P̃ L̄jL̄
T
j P̃ + 2αγ−2P̃ L̄kL̄

T
k P̃ < 0, (42)

hold for all i, j, k = 1, 2, . . . ,m, then both (40) and (41) hold. By the Schur complement [35], Eq. (42)

is equivalent to (38) under L̄T
j PL̄j < βjI. It follows from matrix inequalities in (38) and L̄T

j PL̄j < βjI

that (1) and (2) of the theorem hold. By (42), the following inequality can be obtained:

Πijk + γ−2P̃ B̄ijB̄
T
ijP̃ + 2D̃T

ijPD̃ij + αγ−2P̃ L̄jL̄
T
j P̃ + αγ−2P̃ L̄kL̄

T
k P̃

< −2γ−2P̃ B̄ijB̄
T
ijP̃ − αγ−2P̃ L̄jL̄

T
j P̃ − αγ−2P̃ L̄kL̄

T
k P̃ � 0. (43)

It follows from (43) and the Schur complement that Eq. (27) is satisfied. Then, (3) of Theorem 2 holds

from Theorem 1. The proof is complete accordingly.

By the previous discussion, the suboptimal mixed H2/H∞ filter design is obtained by the following

minimization problem:

min
{P,Q,R,βj,Yj}

E{ξT(0)Pξ(0)}+ E

{∫ 0

−τ(0)

ξT(s)Qξ(s)ds+ τ2

∫ 0

−τ2

(
s+ τ2

)
ξT(s)Rξ(s)ds

}

,

s.t. (38) with P = PT > 0, Q = QT > 0, and R = RT > 0.

(44)

Similarly, with P,Q,R in (33), the matrix inequality constraints in (38) should be modified as (45), with

(1,1), (1,2), and Γij being defined in Remark 5.

Π
H2/H∞
2 =

⎡

⎣ (1, 1) (1, 2)

∗ (2, 2)
Π

H2/H∞
2

⎤

⎦ < 0, ∀ i, j, k = 1, 2, . . . ,m,

Θ =

⎡

⎢⎢
⎢
⎢
⎣

−βjI 0 P1 P2

∗ −βjI Y T
j Y T

j

∗ ∗ −P1 −P2

∗ ∗ ∗ −P2

⎤

⎥⎥
⎥
⎥
⎦
< 0 βj > 0, j = 1, 2, . . . ,m,

(45)

where

(2, 2)
Π

H2/H∞
2

= diag

{[
−τ22R1 −τ22R2

∗ −τ22R3

]

,

[
−P1

2 −P2

2

∗ −P2

2

]

, − γ2I

4
, − γ2I

2α
, − γ2I

2α
, − γ2I

2α
, − γ2I

2α

}

.

Remark 7. It is assumed that E{∫ 0−τ(0) ξ(s)ξ
T(s)ds} = NNT, E{∫ 0

−τ2

(
s+τ2

)
ξ(s)ξT(s)ds} = LLT and

E{ξ(θ)ξT(θ)} = M = diag {M11, 0}, θ ∈ [−τ2, 0], if x̂(θ) = 0 is always assumed. Then, the suboptimal

mixed H2/H∞ globally linearized filtering design problem in (44) is formulated as follows:

min
{P,Q,R,βj,Yj}

tr{MP}+ tr{NTQN}+ tr{LT
(
τ2R
)
L},

s.t. (45) with P = PT > 0, Q = QT > 0, and R = RT > 0.
(46)

Remark 8. By the Schur complement, Π
H2/H∞
2 < 0 implies ΠH∞

2 < 0. Therefore, the sufficient

condition (34) in the mixed H2/H∞ case has been removed.

A design procedure for the suboptimal mixed H2/H∞ globally linearized filter is presented in Table 2.



Mao W H, et al. Sci China Inf Sci March 2016 Vol. 59 032204:13

Table 2 Procedure for suboptimal mixed H2/H∞ global linearization filtering

Steps Design procedures

Step 1: Establish the globally linearized model (19);

Step 2: Choose an attenuation level γ and a G;

Step 3: Obtain the five positive constants e1, e2, e3, e4, and α in (24) along the entire trajectory of the

nonlinear system (1) that comes from the simulation of the system (1);

Step 4: Calculate NNT, LLT, and M in Remark 7 as the expectations of the initial state in L2 sense

and mean-square sense, respectively;

Step 5: Solve the LP in (46) to get P1, P2, Q1, Q2, Q3, R1, R2, R3, βj , and Yj , then Lj = P−1
2 Yj ;

Step 6: Establish the globally linearized filter in (21).

0 5 10 15
0

0.5

1.0

1.5

2.0

Time (s)

Pe
ri

od
ic

 r
ec

ta
ng

le
 w

av
e

 

 
v(t)

0 50 100 150
−0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Time (s)

 

 

x2(t)
x1(t)

Figure 1 Exogenous disturbance v(t). Figure 2 Trajectories of the states with v(t) = 0.

5 Simulation example

Consider the following Itô-type general nonlinear stochastic time-varying delay system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) =
[−4x1(t)− 2x3

1(t) + 5x2(t) + 0.1x1(t− τ(t)) − 0.5 cos(x1(t))v(t)
]
dt

+
[
0.1x2

1(t) + 0.1x1(t− τ(t))
]
dW (t),

dx2(t) = [−4x1(t)− 10x2(t) + 0.1x2(t− τ(t)) − sin(x1(t))v(t)] dt

+ [0.1x2(t) + 0.1x2(t− τ(t))] dW (t),

dy(t) =
[
9x1(t)− x2

1(t)− 9x2(t) + 0.1x1(t− τ(t)) + 0.1x2(t− τ(t)) + 12x1(t)v(t)
]
dt

+
[
0.1x2

1(t) + 0.1x2(t) + 0.1x1(t− τ(t)) + 0.1x2(t− τ(t))
]
dW (t),

s(t) = x(t),

x(θ) = [x1(θ), x2(θ)]
T
, θ ∈ [−τ2, 0],

(47)

where xT(t) =
[
x1(t), x2(t)

]
. The external disturbance v(t) is described by the periodic rectangle wave

with amplitude 2 in Figure 1, and the trajectories of the states are displayed in Figure 2 when v(t) = 0.

τ(t) = exp(−(1 + t)−1), then τ2 = 1, τ̄ = 0.3679.

(1) Design 1: optimal H∞ globally linearized filter design.

Step (a). Establish the three vertices of the globally linearized model at x1(t) = −0.5,−0.1, and 1.5

as in (19) with A0i, A1i, C0i, C1i, Q0i, Q1i, J0i, J1i, i = 1, 2, 3 are shown in Appendix A.

Step (b). Choose the matrix G = I.

Step (c). Obtain the five positive bounding constants in (24) with the Simulink in Matlab as follows:

e1 = 0.0411, e2 = 0.0066, e3 = 0.0914, e4 = 0.0066, and α = 0.4751.

Step (d). Solve the LP in (35) with the LMI optimization toolbox in Matlab. From Table 1, one can

obtain γ2
min = 7.8745, with P1, P2, Q1, Q2, Q3, R1, R2, R3, βj , and Yj being displayed in Appendix B.

Then, the H∞ globally linearized filter gains are proposed as follows:

L1 =

[
−0.1278

0.1871

]

, L2 =

[
−0.0758

0.0288

]

, L3 =

[
−0.0704

0.0477

]

.
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Figure 3 Wiener process W (t) in Design 1. Figure 4 Wiener process W (t) in Design 2.
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Figure 5 Trajectories for the proposed optimal H∞ global linearization filter. (a) Trajectories for x1 and x̂1; (b) trajec-

tories for x2 and x̂2.

Step (e). Establish the globally linearized filter as in (21) with the subsequent interpolation functions

α1 =
1

(x̂1+0.5)2

1
(x̂1+0.5)2

+ 1
(x̂1+0.1)2

+ 1
(x̂1−1.5)2

, α2 =
1

(x̂1+0.1)2

1
(x̂1+0.5)2

+ 1
(x̂1+0.1)2

+ 1
(x̂1−1.5)2

, α3 =
1

(x̂1−1.5)2

1
(x̂1+0.5)2

+ 1
(x̂1+0.1)2

+ 1
(x̂1−1.5)2

,

for x1 = −0.5, x1 = −0.1, x1 = 1.5, respectively.

Let W (t) be a standard one-dimensional Wiener process with E{W (t)} = 0 and E{W 2(t)} = t.

The corresponding Wiener processes are shown in Figures 3 and 4. Figure 5 shows the trajectories of

x1(t), x2(t), x̂1(t), and x̂2(t), respectively, by the proposed H∞ globally linearized filter. It follows from

Figures 1 and 5 that the estimation error mainly results from the sharp change of exogenous disturbance

before finishing estimating the upward (downward) signal. In other words, the filter is forced to estimate

the downward (upward) signal before finishing estimating the upward (downward) signal so that the peak

and valley of the signal cannot be estimated accurately.

Assume that [x1(θ), x2(θ), x̂1(θ), x̂2(θ)]
T
= [x1(θ), x2(θ), 0, 0]

T
, where x1(θ), x2(θ) are random initial

values with E{[x1(θ), x2(θ)]} = 0, E{[x1(θ), x2(θ)]
T[x1(θ), x2(θ)]} = I. Thus, M = diag {I, 0}, and then,

in Remark 7, N = diag

{
I√

exp(1)
, 0

}
, L = diag

{
τ2I√

2
, 0
}
.

(2) Design 2: suboptimal mixed H2/H∞ globally linearized filter design. Solve the LP in (46) with

the LMI optimization toolbox in Matlab. In this case, for a prescribed γ2 = (4.16)2, by Table 2, one can

obtain P1, P2, Q1, Q2, Q3, R1, R2, R3, βj , and Yj , which are shown in Appendix C, the optimal H2 cost

J∗
2 = 48.0289. Then, the H2/H∞ globally linearized filter gains are presented as follows:

L1 =

[
−0.0955

0.1206

]

, L2 =

[
−0.0790

0.1589

]

, L3 =

[
−0.0418

0.0548

]

.

By the proposed suboptimal mixed H2/H∞ globally linearized filter, the trajectories of x1(t), x2(t), x̂1(t),

and x̂2(t) are displayed in Figure 6, respectively. One can obtain the average estimation errors by

the proposed filters as in Table 3. By the extra consideration of the H2 suboptimal filtering in (44), it

follows from Figures 7–10 that the mixedH2/H∞ filter substantially improves the estimation performance

compared with the H∞ filter.
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Figure 6 Trajectories for the proposed optimal H2/H∞ global linearization filter. (a) Trajectories for x1 and x̂1; (b)

trajectories for x2 and x̂2.

Table 3 Performance of the proposed filters

Filters E{∫ 15
0

‖e(t)‖2dt}
The proposed optimal H∞ global linearization filter 0.1668

The proposed suboptimal mixed H2/H∞ global linearization filter 0.1073
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Figure 7 Estimation error response for H∞ filter. Figure 8 Estimation error response for H2/H∞ filter.
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Figure 9 Estimation error response in mean-square sense

for H∞ global linearization filter.

Figure 10 Estimation error response in mean-square

sense for suboptimal H2/H∞ global linearization filter.

6 Conclusion

In this paper, based on a globally linearized model, a stochastic BRL is established to design the H∞
globally linearized filter for a nonlinear stochastic time-varying delay system by solving simultaneous LMIs

instead of a second-order HJI. The mixed H2/H∞ globally linearized filter design problem is formulated

as a LP with a desired attenuation level when the worst case disturbance is considered. A simulation

example is presented to demonstrate the proposed method. This method is applicable for state estimation

in filtering problem and state-estimator-based control designs in nonlinear stochastic time-varying delay

systems when state variables are unavailable. Undoubtedly, how to solve the HJI is a very valuable

research topic and deserves further study.
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Appendix A Coefficient matrices of the linearized systems in Example 1.

A01 =

[
−5.5 5

−4.0 −10

]

, A02 =

[
−4.06 5

−4.00 −10

]

, A03 =

[
−17.5 5

−4.0 −10

]

, C01 =

[
−0.1 0.0

0.0 0.1

]

,

C02 =

[
−0.02 0.0

0.00 0.1

]

, C03 =

[
0.3 0.0

0.0 0.1

]

, B1 =

[
−0.4388

0.4794

]

, B2 =

[
−0.4975

0.0998

]

, B3 =

[
−0.0353

−0.9975

]

,

Q01 =
[
10 −9

]
, Q02 =

[
9.2 −9

]
, Q03 =

[
6 −9

]
, J01 =

[ −0.1 0.1
]
, J02 =

[ −0.02 0.1
]
,

J03 =
[
0.3 0.1

]
, A1i = C1i = 0.1I, J1i = Q1i =

[
0.1 0.1

]
, i = 1, 2, 3. K1 = −6, K2 = −1.2, K3 = 18.

Appendix B The solutions for the Design 1.

P1 =

[
98.8078 −2.0187

−2.0187 58.8091

]

, P2 =

[
90.4942 0.9774

0.9774 57.3793

]

, Q1 =

[
202.8815 −126.6186

−126.6186 405.5264

]

,

Q2 =

[
134.3078 −67.1257

−31.3462 318.8367

]

, Q3 =

[
109.2999 −3.9626

−3.9626 267.6041

]

, R1 =

[
166.0323 −78.6251

−78.6251 275.3162

]

,

R2 =

[
115.8016 −32.5824

−14.7431 218.8133

]

, R3 =

[
96.0875 6.0596

6.0596 187.9714

]

, Y1 =

[
−11.3778

10.6131

]

,

Y2 =

[
−6.8297

1.5799

]

, Y3 =

[
−6.3267

2.6685

]

, β1 = 133.5388, β2 = 302.5023, β3 = 305.4660.

Appendix C The solutions for the Design 2.

P1 =

[
36.4424 0.9653

0.9653 26.4368

]

, P2 =

[
33.7293 2.0105

2.0105 26.0207

]

, Q1 =

[
10.4481 −3.8656

−3.8656 16.1123

]

,

Q2 =

[
6.6629 −1.2627

−0.4789 12.0140

]

, Q3 =

[
6.6007 0.5101

0.5101 10.9685

]

, R1 =

[
6.2920 −2.7815

−2.7815 14.6409

]

,

R2 =

[
4.6083 −0.9929

−0.3309 12.4857

]

, R3 =

[
3.7606 0.6977

0.6977 11.1249

]

, Y1 =

[
−2.9799

2.9471

]

,

Y2 =

[
−2.3460

3.9747

]

, Y3 =

[
−1.2982

1.3412

]

, β1 = 37.1182, β2 = 40.1896, β3 = 40.1227.
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