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Abstract This paper addresses the composite neural tracking control for the longitudinal dynamics of hy-

personic flight dynamics. The dynamics is decoupled into velocity subsystem, altitude subsystem, and attitude

subsystem. For the altitude subsystem, the reference command of flight path angle is derived for the attitude

subsystem. To deal with the system uncertainty and provide efficient neural learning, the composite law for

neural weights updating is studied with both tracking error and modeling error. The uniformly ultimate bound-

edness stability is guaranteed via Lyapunov approach. Under the dynamic surface control with novel neural

design, the neural system converges in a faster mode and better tracking performance is obtained. Simulation

results are presented to show the effectiveness of the design.
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1 Introduction

With high-speed flying, hypersonic flight vehicles (HFVs) provide a promising and cost-effective technol-

ogy to fulfill the need of commercial as well as military applications for space access and prompt global

reach capabilities. As discussed in [1], due to the highly coupled and nonlinear nature of the dynamic

behavior, the design of flight control systems for such kind of flight vehicles poses many challenges.

Currently, the focus is lying on control [2–4] of the longitudinal models such as winged-cone model [5]

and control oriented model (COM) [6]. In [7,8], the linear design is analyzed by linearizing the nonlinear

dynamics at the trim state. In [9], the sliding mode control (SMC) is designed for hypersonic flight

dynamics at 110,000 ft and Mach 15. With the same model, in [10,11], the disturbance-observer-based

controller is analyzed. In [12], the adaptive controller design with high gain observer is constructed where

the lumped system uncertainty is approximated by neural networks (NNs). In [13], using intermediate

models such as T–S modeling, the original dynamics is described by a set of linear equations and the

adaptive control is constructed. More details of recent progress in hypersonic flight control could be

found in [1].
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It is noted that for highly nonlinear dynamics, with small perturbation design or input/output lineariza-

tion, the derived dynamics might be quite different from the characteristics of original system. Recently,

more and more emphasis is on nonlinear control by decoupling the dynamics into several subsystems so

that the controller could be designed specifically for each subsystem and the problem of dealing with

uncertainty or disturbance could be done step by step. Once for each step the design is completed, in

the last step the uncertainty will not be cumulated.

Back-stepping is an efficient method for systematic design and it has been applied on flight control [14,

15]. The back-stepping design with parameter learning of the linearly parameterized dynamics is studied

in [16]. To deal with the “explosion of the complexity” of the back-stepping design, dynamic surface

control (DSC) design is analyzed in [17,18] by letting the signal pass though the filter. However, in

reality it is difficult to obtain the linearly parameterized dynamics since there is less flight data. In [19],

the adaptive discrete back-stepping is applied on the dynamics using the nominal information of the

nonlinearities and in [20], the flexible dynamics with input nonlinearity is studied. In case of unknown

dynamics, intelligent control [21,22] could be employed. In [23], the fuzzy DSC design is applied on the

winged-cone model.

Recently, the composite neural design [24] using both tracking error and NN modeling error is proposed

where faster adaptation and better tracking performance are achieved. Inspired by the idea in [24], we

analyze the composite neural control of longitudinal dynamics for HFV. The dynamics is transformed

into the strict-feedback form and then the command filter-based DSC design is presented with composite

learning algorithm.

This paper is organized as follows. Section 2 describes the longitudinal dynamics and the functional

decomposition. Sections 3 and 4 present the adaptive controller design and the stability analysis. The

simulation results are included in Section 5. Section 6 presents several comments and final remarks.

2 Model dynamics and problem formulation

2.1 Hypersonic flight dynamics

The COM of a generic HFV considered in this study is given by [6]. The equations are listed as follows:

V̇ =
T cosα−D

m
− g sin γ, (1)

ḣ = V sin γ, (2)

γ̇ =
L+ T sinα

mV
− g cos γ

V
, (3)

α̇ = q − γ̇, (4)

q̇ =
Myy

Iyy
. (5)

The dynamics is presented with five state variables Xh = [V, h, α, γ, q]T and two control inputs U =

[δe,Φ]
T
, where V is the velocity, γ is the flight path angle (FPA), h is the altitude, α is the attack angle,

q is the pitch rate, δe is elevator deflection, and Φ is the fuel equivalence ratio.

In (1)–(5), T , D, L, and Myy represent thrust, drag, lift-force, and pitching moment, respectively, and

have the following expressions:

T = TΦ(α)Φ + T0(α) ≈ [β1Φ+ β2]α
3 + [β3Φ+ β4]α

2 + [β5Φ+ β6]α+ [β7Φ + β8] ,

D ≈ q̄S(Cα2

D α2 + Cα
Dα+ C0

D),

L = L0 + Lαα ≈ q̄SC0
L + q̄SCα

Lα,

Myy = MT +M0(α) +Mδeδe ≈ zTT + q̄Sc̄(Cα2

M α2 + Cα
Mα+ C0

M ) + q̄Sc̄Cδe
Mδe,

q̄ =
1

2
ρV 2, ρ = ρ0 exp

[
−h− h0

hs

]
.

More related information of this model can be found in [6,17].
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2.2 Dynamics transformation

For the velocity subsystem (1), we have

V̇ = gvΦ+ fv − g sin γ (6)

with fv = T0 cosα−D
m , gv = TΦ cosα

m .

Assumption 1 ([19]). The thrust term T sinα in (3) can be neglected because it is generally much

smaller than L.

Lemma 1 ([12]). For the altitude subsystem, the altitude tracking error is defined as h̃ = h− hr and

the FPA command is chosen as

γd =
−kh (h− hr)− ki

∫
(h− hr) dt+ ḣr

V
. (7)

If kh > 0 and ki > 0 are chosen and the FPA is controlled to follow γd, the altitude tracking error is

regulated to zero exponentially.

Define X = [x1, x2, x3]
T, x1 = γ, x2 = θp, x3 = q, where θp = α+ γ. The attitude subsystem [12] can

be derived as ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = f1 (x1) + g1x2,

ẋ2 = x3,

ẋ3 = f3 (X) + g3u,

u = δe,

(8)

where f1 = L0−Lαγ
mV − g

V cosx1, g1 = Lα

mV , f3 = MT+M0(α)
Iyy

, g3 =
Mδe

Iyy
.

Assumption 2. For i = 1, 3, the nonlinearities fi are unknown and the control gain functions gi are

considered as known.

3 Composite attitude dynamic surface control with prediction error

The controller design for attitude subsystem is on DSC scheme where virtual control will be designed

step by step. Different from previous design in [17], the neural design is presented. Furthermore, the

composite learning will be constructed using NN modeling error with the design in [24].

Step 1: Considering the first equation of FPA in (8), we know

ẋ1 = f1(x1) + g1x2 = ω∗T
1 θ1(x1) + ε1 + g1x2, (9)

where ω∗
1 is the optimal NN weights vector to approximate f1 and ε1 is the NN approximation error

satisfying | ε1 |� εM .

Define the FPA tracking error

e1 = x1 − xd
1, (10)

where xd
1 = γd.

Design virtual control xd
2 as

xd
2 =

−ω̂T
1 θ1(x1)− k1e1 + ẋd

1

g1
, (11)

where ω̂1 is the estimation of ω∗
1 and k1 > 0 is the design constant.

Introduce a new state variable xc
2 and let xd

2 pass through a first-order filter with time constant α2 > 0

to obtain xc
2

α2ẋ
c
2 + xc

2 = xd
2, xc

2(0) = xd
2(0). (12)

Define e2 = x2 − xc
2. Then, the derivative of e1 is obtained as

ė1 = ẋ1 − ẋd
1 = ω∗T

1 θ1(x1) + ε1 + g1x2 − ẋd
1 = ω̃T

1 θ1(x1) + ε1 − k1e1 + g1e2 + g1(x
c
2 − xd

2), (13)
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where ω̃1 = ω∗
1 − ω̂1.

To remove the effect of the known error (xc
2 − xd

2), the compensating signal z1 is designed as

ż1 = −k1z1 + g1z2 + g1(x
c
2 − xd

2), z1(0) = 0, (14)

where z2 will be defined in the next step.

Now we obtain the compensated tracking error signals

ν1 = e1 − z1, ν2 = e2 − z2. (15)

Define the prediction error as

z1NN = x1 − x̂1, (16)

where the signal x̂1 is defined with the serial–parallel estimation model [25,26]:

˙̂x1 = ω̂T
1 θ1 (x1) + g1x2 + β1z1NN, x̂1(0) = x1(0) (17)

with β1 > 0 as the user-defined positive constant.

For the NN updating law, the signal z1NN is employed to construct the learning design

˙̂ω1 = γ1 [(ν1 + γz1z1NN) θ1(x1)− δ1ω̂1] , (18)

where γ1, γz1, and δ1 are positive design constants.

Step 2: Considering the second equation of pitch angle in (8), we know

ẋ2 = x3. (19)

The virtual control xd
3 is designed as

xd
3 = −k2e2 − g1e1 + ẋc

2, (20)

where k2 > 0 is the design constant.

Introduce a new state variable xc
3 and let xd

3 pass through a first-order filter with time constant α3 > 0

to obtain xc
3

α3ẋ
c
3 + xc

3 = xd
3, xd

3(0) = xc
3(0). (21)

Then, the derivative of e2 is calculated as

ė2 = ẋ2 − ẋc
2 = −k2e2 − g1e1 + e3 + (xc

3 − xd
3). (22)

To remove the effect of the known error (xc
3 − xd

3), the compensating signal z2 is defined as

ż2 = −k2z2 − g1z1 + z3 + (xc
3 − xd

3), z2(0) = 0, (23)

where z3 will be defined in the next step.

Define the compensated tracking error signal

ν2 = e2 − z2. (24)

Step 3: Considering the third equation in (8) and using NN to approximate f3(X), we know

ẋ3 = f3(X) + g3u = ω∗T
3 θ3(X) + ε3 + g3u, (25)

where ω∗
3 is the optimal NN weights vector and ε3 is the NN approximation error with | ε3 |� εM .

Define the third error surface e3 to be

e3 = x3 − xc
3. (26)
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The elevator deflection u is designed as

u =
−ω̂T

3 θ3(X)− k3e3 − e2 + ẋc
3

g3
, (27)

where ω̂3 is the estimation of ω∗
3 and k3 > 0 is the design constant.

Then, the derivative of e3 is obtained as

ė3 = ẋ3 − ẋc
3 = ω̃T

3 θ3(X) + ε3 − k3e3 − e2, (28)

where ω̃3 = ω∗
3 − ω̂3.

The compensating signal is defined as

ż3 = −k3z3 − z2, z3(0) = 0. (29)

Define the compensated tracking error signal

ν3 = e3 − z3 (30)

and the prediction error

z3NN = x3 − x̂3, (31)

where the derivative of NN modeling information is defined with the serial–parallel estimation model:

˙̂x3 = ω̂T
3 θ3 (X) + g3u+ β3z3NN, x̂3(0) = x3(0) (32)

with β3 > 0 as the user-defined positive constant.

The update law of ω̂3 is designed to be

˙̂ω3 = γ3 [(ν3 + γz3z3NN) θ3(X)− δ3ω̂3] , (33)

where γ3, γz3, and δ3 are positive design constants.

Remark 1. In (14) and (23), the control gain functions gi, i = 1, 2 are included to construct the

compensating signals zi.

4 Stability analysis

Theorem 1. Consider system (8) with the DSC laws defined in (11), (20), and (27), the NN adaptation

laws (18), (33), and compensated error signals defined in (15), (30). The signals νi, i = 1, 2, 3, and zjNN,

ω̃j , j = 1, 3 are guaranteed to be uniformly ultimately bounded.

Proof. The Lyapunov function is selected as

V =
1

2

3∑
i=1

ν2i +
1

2

∑
j=1,3

(
γzjz

2
jNN + ω̃T

j γ
−1
j ω̃j

)
. (34)

For error dynamics of νi, i = 1, 2, 3, we have

ν̇1 = ė1 − ż1 = ω̃T
1 θ1(x1) + ε1 − k1(e1 − z1) + g1(e2 − z2) = ω̃T

1 θ1(x1) + ε1 − k1ν1 + g1ν2, (35)

ν̇2 = ė2 − ż2 = −k2(e2 − z2)− g1(e1 − z1) + (e3 − z3) = −k2ν2 − g1ν1 + ν3, (36)

ν̇3 = ė3 − ż3 = ω̃T
3 θ3(X) + ε3 − k3(e3 − z3)− (e2 − z2) = ω̃T

3 θ3(X) + ε3 − k3ν3 − ν2. (37)

Define x̄j = [x1, x2, . . . , xj ]
T. With (11), (17), (27), and (32), for j = 1, 3 it is known that

żjNN = ẋj − ˙̂xj = ω̃T
j θj(x̄j) + εj − βjzjNN. (38)
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Defining mj = ω̃T
j θj(x̄j), the following equation can be obtained as

żjNNzjNN = zjNN (mj + εj)− βjz
2
jNN. (39)

The derivative of V is derived as

V̇ =
∑
j=1,3

(
γzjzjNNżjNN − ω̃T

j γ
−1
j

˙̂ωj

)
+

3∑
i=1

νiν̇i

=

3∑
i=1

−kiν
2
i +

∑
j=1,3

[νjmj + νjεj ]−
∑
j=1,3

mj

[
(νj + γzjzjNN) + δjω̃

T
j ω̂j

]

+
∑
j=1,3

[
γzjzjNN (mj + εj)− γzjβjz

2
jNN

]

=

3∑
i=1

−kiν
2
i +

∑
j=1,3

(
νjεj + γzjzjNNεj − γzjβjz

2
jNN − δjω̃

T
j ω̃j + δjω̃

T
j ω

∗
j

)
. (40)

Using the following facts

νjεj − kjν
2
j = −kj

(
νj − εj

2kj

)2

+
1

4kj
ε2j ,

zjNNεj − βjz
2
jNN = −βj

(
zjNN − εj

2βj

)2

+
1

4βj
εj

2,

ω̃T
j ω

∗
j − ω̃T

j ω̃j = −
∥∥∥∥ω̃j −

ω∗
j

2

∥∥∥∥
2

+
1

4

∥∥ω∗
j

∥∥2 .
Then, the derivative of V is calculated as

V̇ = −k2ν
2
2 −

∑
j=1,3

[
kj

(
νj − εj

2kj

)2

− 1

4kj
ε2j

]
−
∑
j=1,3

γzj

[
βj

(
zjNN − εj

2βj

)2

− 1

4βj
ε2j

]

−
∑
j=1,3

δj

[∥∥∥∥ω̃j −
ω∗
j

2

∥∥∥∥
2

− 1

4

∥∥ω∗
j

∥∥2
]

� −k2ν
2
2 −

∑
j=1,3

[
k0

(
νj − εj

2kj

)2

+ γzminβ0

(
zjNN − εj

2βj

)2

+ δ0

∥∥∥∥ω̃j −
ω∗
j

2

∥∥∥∥
2
]
+ P, (41)

where for j = 1, 3, k0 = min[kj ], β0 = min[βj ], γzmin = min[γzi], δ0 = min[δj ], P = 2
4k0

ε2M + 2γz max

4β0
ε2M +

2δmax

4 ω2
max, γzmax = max[γzi], ωmax = max[‖ω∗

j ‖], and δmax = max[δj ].

For j = 1, 3, if |νj − εj
2kj

| �
√

P
k0

or |ziNN − εj
2βj

| �
√

P
γz minβ0

or ‖ω̃j − ω∗
j

2 ‖ �
√

P
δ0
, then V̇ � 0. Then,

we know that νj , ziNN, and ‖ω̃j‖ are invariant to the sets defined as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ωνj =

(
νj

∣∣∣|νj | �
√

P

k0
+

εM
2k0

)
,

ΩziNN =

(
ziNN

∣∣∣|ziNN| �
√

P

γzminβ0
+

εM
2β0

)
,

Ωω̃j =

(
ω̃j

∣∣∣‖ω̃j‖ �
√

P

δ0
+

ωmax

2

)
,

(42)

and

Ων2 =

(
ν2

∣∣∣|ν2| �
√

P

k2

)
. (43)

So, all the signals are uniformly ultimately bounded. This completes the proof.
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Figure 1 Altitude tracking.
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Figure 2 System states.

5 Simulation

The effectiveness and performance of the proposed controller will be verified with the simulation. For

the velocity subsystem, the PID controller is employed and the parameters are selected as Kpv = 0.5,

Kiv = 0.001, and Kdv = 0.01.

The initial values of the states are set as v0 = 7850 ft/s, h0 = 86, 000 ft, α0 = 3.5◦, γ0 = 0, and q0 = 0.

The step command is Vc = 500 ft/s, hc = 1000 ft. The reference commands of hr and Vr are gener-

ated by the filters ωn1ω
2
n2/[(s+ ωn1)(s

2 + 2εcωn2s+ ω2
n2)] and ωv1ω

2
v2/[(s+ ωv1)(s

2 + 2εcωv2s+ ω2
v2)],

respectively, where ωn1 = 0.5 , ωn2 = 0.2, εc = 0.7, ωv1 = 0.5, and ωv2 = 0.2.

The control gains for the dynamic surface controller are selected as kh = 0.5, ki = 0.05, k1 = 1,

k2 = 2, k3 = 2. The parameters for adaptive laws are selected as γj = 0.05I, γzj = 0.01I, βj = 2,

δj = 0.001, j = 1, 3. The filter parameters are selected as εi = 0.05, i = 2, 3. The number of NN

nodes are set as N1 = 10, N3 = 33, with their centers x1 and X being evenly spaced in [−0.1; 0.1],

[−0.1; 0.1]× [−0.3; 0.3]× [−0.1; 0.1]. To clearly show the improved tracking performance, the design in

this paper is denoted as DSC-PE while the design without composite design is marked as DSC-CLASSIC.

It is noted that the control parameters in DSC-CLASSIC are selected as the same as DSC-PE.
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The simulation results are presented in Figures 1–5. From the tracking performance shown in Figure 1,

it is clearly known that the DSC design could achieve the tracking task and DSC-PE obtains better

performance with less chattering. Similarly design could be found for system states in Figure 2. However,

with composite design the system converges faster to the desired reference. The reason can be explained

from the response of elevator deflection in Figure 3 and fuel equivalence ratio in Figure 4. From the

NN response in Figure 5, it is obvious that with the information of prediction error, the neural weights

exhibit smoother adaptation.

6 Conclusion

The composite neural tracking control for the longitudinal dynamics of hypersonic flight dynamics is

studied in this paper. The highlight is that the composite design [24] could achieve faster NN adaptation

and better tracking performance. The design is constructed with DSC scheme and composite learning,

while the uniformly ultimate boundedness stability of closed-loop system is guaranteed. Simulation

results of COM are presented to show the effectiveness. For future work, the flexible dynamics should be

analyzed and the large envelope flight is interesting.
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