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Abstract In multipath routing of wireless sensor network (WSN), greedy path selection is always prone to

cause path oscillation (frequent path changes) between each couple of sensor and sink nodes. To alleviate the side

effect, we propose an adaptive path selection model (called a WSN path selection model based on the adaptive

response by attractor selection (ARAS) model (WARAS)) inspired by metabolism behaviors of Escherichia Coli.

The model consists of two main features. The first one is a new formula for a parameter called path-activity

used to indicate adaptation goodness of multipath traffic transmission in dynamic network environments, which

is inversely proportional to absolute value of difference between current path quality and best path quality.

The second one is a novel attractor expression for attractors of multi-attractor equations to concretely specify

stochastic effect of noise items in the equations on the path selection. Then, in an experimental WSN scenario

composed of many source nodes and their shared neighbor nodes, we validate a dynamic-adaptive selection

characteristic of the WARAS on distributing loads of the neighbor nodes. Subsequently, we design a path

quality probe scheme in a multipath ad hoc on-demand distance vector routing (AODV) protocol. Compared

with the greedy path selection through the path quality probe scheme, simulation results show the WARAS can

perform better on reducing network delay and the path oscillation.
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1 Introduction

The wireless sensor network (WSN) multipath routing has been extensively studied because of its ad-

vantages on transmission efficiency [1], security [2,3], and network lifetime elongation [4]. Normally, the

greedy selection is one of the most straightforward schemes for the multipath routing, which can select

the optimal path for the data transmission of each couple of the sensor and sink nodes according to the

path metrics, for example, path delay, path length [5], path energy consumption [3,6], and selfishness.

However, the greedy selection usually causes the transmission path change frequently. Consequently, the

path oscillation not only wastes the processing time of the data source to reorder the disorder arrival

packets or update the routing table, but also often leads to the unpredictable network congestion. Thus,

to decrease the path oscillation and improve the performance of the greedy path selection in the WSN, a
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biological model adaptive response by attractor selection (ARAS) [7] is introduced to optimize the greedy

path selection.

The path selection process in the WSN multipath routing is analogous to the adaptation process of

the Escherichia Coli (E. coli) [8]. Then, the analogousness can inspire us to optimize the greedy path

selection with the ARAS model. Concretely, the transmission quality of each path is analogous to the

concentration of one kind of mRNA, and each attractor of the bi-attractor equations is analogous to a

stable adaptation state of multipath transmission between each couple of the sensor and sink nodes. Here,

the path transmission quality can be expressed by the path metric, for example, the path transmission

rate, the path delay, the reliability, or the congestion level. Similarly, a parameter called activity in the

bi-attractor equations can indicate the adaptation goodness of the multipath transmission between the

sensor and the sink nodes to the dynamic network environments, and the noise represents some factors

taking the stochastic effect on the path transmission quality. Here, the factors may be the random failure

of the network equipment, the short-time burst traffic, the channel noise from the physical layer, and so

on. Consequently, the characteristic of the ARAS model for keeping the adaptive state is expected to

be able to reduce the path oscillation of the greedy selection, and the stochastic characteristic caused by

the noise is expected to be able to help each couple of the sensor and sink nodes to find the adaptive

transmission paths.

Inspired by the E. coli ’s metabolism behaviors, the paper proposes a path selection model, namely a

WSN path selection model based on the ARAS model (WARAS), which can make the data transmission

adapt to the dynamic network environments. In the proposed model, to express the real-time adaptation

goodness of the multipath traffic transmission, we redefine the activity as path-activity, which takes a new

formula inversely proportional to the absolute value of the difference between current path quality and best

path quality. Through the analogy between the path transmission quality and the mRNA concentration,

we redesign the attractor equations with multidimension extension to achieve the adaptive path selection

of WSN multipath routing in the dynamic network environments. Furthermore, to concretely specify the

stochastic effect of the noise on the path selection, we derive a novel expression for the attractors of the

multi-attractor equations. By supposing the uniform noise in multiple paths between each couple of the

sensor and sink nodes, the attractors containing the noise are first deduced. Subsequently, we set up an

experimental WSN scenario to validate the dynamic-adaptive characteristic of the proposed model. The

scenario is composed of many source nodes and neighbor nodes, and each source node can select its next

hop from all the neighbor nodes. Then, a path quality probe scheme is designed and integrated into an

AODV multipath routing protocol. Finally, based on the multipath routing, we compare the performance

of the WARAS and the greedy path selection about reducing the average network delay and the path

oscillation.

2 Related work

In recent years, there have been few studies about the path oscillation of the multipath routing, but

we still investigate some past related work. In IEEE 802.11 networks, the frequent changes in the link

conditions can cause the variations of the route quality, and then lead to the path oscillation [9]. Still

in IEEE 802.11 networks, Ref. [10] validated the route oscillation could also be caused by the reception

of many route request packets in a very short time. Besides, the route oscillation problem [11,12] also

exists in Border Gateway Protocol (BGP), which is generally triggered by local route policy conflictions.

Ref. [11] presented a novel approach to fast check the route oscillation of BGP, and the approach could

greatly protect the privacy of each autonomous system (AS) by only sharing of AS network ID. Then,

in [12], a BGP-Extended multipath framework was proposed to provide path diversity and backward

compatibility. In the framework, the stable policy guidelines based on anti-reflexive policy relations are

provided to prevent the route oscillation.

However, in these studies about the path oscillation, the literatures with regard to optimizing the greedy

path selection are fewer. Ref. [7] proposed a multipath routing scheme for the overlay networks based on

the ARAS model. In the scheme, the mRNA concentration is analogous to the path transmission rate,
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and the multi-attractor equations are proposed to model the change in the multipath transmission rates.

Then, the activity is used to express the adaptation goodness of data transmission in the source nodes.

Besides, the scheme classifies the paths between each source and destination pair into one primary path

and the other secondary paths [13], and the transmission rate of the primary one is higher than all the

secondary ones. Furthermore, to make the selection of the primary path adapt to the changing network

environments according to the activity, the scheme defines three path selection conditions expressed by

three fixed points (1, 0.85, and 0) of the activity. The first one is that all the paths should be equally

treated, the second one is that the primary path is excellent enough, and the last one is that no suitable

path can be selected. According to the first and last conditions, the source can select its primary path

in uniform random. According to the second condition, the source continues to keep the primary path.

Then, Ref. [7] analyzes the variation relationships between the activity and the path transmission rate.

Still in the multipath routing of the overlay networks, Ref. [14] proposed that the primary path of a data

source should be selected with a probability proportional to the goodness of path transmission (e.g., the

path reliability, the congestion level, the path security). Nonetheless, this scheme cannot perform better

than the greedy selection on reducing the average network delay and the path oscillation in the multipath

routing.

Besides, the ARAS model has some further applications about improving the WSN network perfor-

mance. Ref. [15] proposed a layered routing scheme based on the model in the WSN by clustering. In

the scheme, a data gathering layer [16] is made up of the sensor nodes in each cluster, and a routing

layer is composed of all the cluster heads in the WSN. Then, dynamical selection for each cluster head in

the data gathering layer and next hop in the routing layer can be optimized through the ARAS model.

In the same way, Ref. [17] also proposed a layered future mobile network management mechanism is

proposed based on the ARAS model by clustering. Also, the ARAS model can also improve the network

performance through adaptively controlling the topology of the mobile networks in [18], for example,

the energy efficiency and the transmission robustness. Nevertheless, although these studies [15,17,18]

propose the novel schemes with the ARAS model, they all do not compare the performance with the

greedy scheme in the corresponding scenarios.

In terms of the path oscillation problem caused by the greedy path selection, the aforementioned

studies [7,14,15,17,18] based on the ARAS model can not solve it. Therefore, we propose the path

selection model (WARAS) to alleviate the side effect of this problem. Also, these related works do not

propose how noise stochastically affects the selection. By supposing the uniform stochastic effect of the

noise on each path between each couple of the source and destination nodes, we derive a novel attractor

expression containing the noise, which can characterize the noise’s stochastic effect on the path selection.

3 Basic ARAS model and its drawbacks

In the changing nutrition environments, the E. coli cell can adaptively regulate its metabolism behaviors,

and this process can be modeled [8] by the bi-attractor equations with noise items as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dm1

dt
=

S(A)

1 +m2
2
−D(A)m1 + η1,

dm2

dt
=

S(A)

1 +m1
2
−D(A)m2 + η2,

(1)

where m1, m2, respectively, denote the concentrations of the cell’s two different kinds of mRNA, which

can also equivalently denote the concentrations of two different kinds of the protein because of the

transcription mechanism between mRNA and protein. Eq. (1) presents the formula about the mRNA

concentration rates. ηi denotes the noise, which specifies all kinds of the internal and external factors that

affect the cell’s metabolism. A denotes the cell’s activity, which specifies the cell’s adaptation goodness

to the environments. Then, S(A) and D(A) denote, respectively, the protein’s synthesis rate and the

decomposition rate, which are both proportional to the activity A. It is well known that an active cell

can metabolize more vigorously than the inactive one, and also its immunity is stronger. Similarly in
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the equations, when the cell becomes active, the mRNA concentration rates become high because of the

increasing S(A) and D(A). At the same time, the increasing S(A) and D(A) make the non-noise items of

(1) increase, so the effect of the noise on the concentration rate is reduced relatively. Also, the active cell

probably conducts the cell division, so the synthesis rate is supposed to be faster than the decomposition

rate.

We can deduce the attractors of (1) without the noise items according to the condition dmi

dt = 0, i = 1, 2.

A theorem about the attractors, Theorem 1, can be obtained based on the condition.

Theorem 1. If m �= 0, D(A) �= 0, and S(A)
D(A) > 2, two attractors can be derived from (1) without

the noise items, that is, (m, 1
m) and ( 1

m ,m). Otherwise, the equations have only one attractor, that is,

(m,m).

Proof. To get the attractors of (1) without the noise items, Eq. (2) can be obtained as follows through

the equations dmi

dt = 0, i = 1, 2:
⎧
⎪⎪⎨

⎪⎪⎩

m1(1 +m2
2)− S(A)

D(A)
= 0,

m2(1 +m1
2)− S(A)

D(A)
= 0.

(2)

Then, we can get m1(1 + m2
2) = m2(1 + m1

2) from (2), so the relationship of m1 and m2 in (2) is

m1 = 1
m2

or m1 = m2.

If m1 = 1
m2

, we can reduce (2) and obtain a sufficient condition S(A)
D(A) � 2 that Eq. (1) without the

noise items has one real attractor. When S(A)
D(A) = 2, we can obtain m1 = m2 = 1 from (2). Thus, Eq. (1)

without the noise items has an attractor as (1, 1). When S(A)
D(A) > 2, m1 +

1
m1

> 2 and m2 +
1
m2

> 2 from

(2) can be obtained. So apparently, Eq. (1) without the noise items has two different attractors that

satisfy m1 = 1
m2

.

If m1 = m2, we can get the cubic equations m1
3+m1− S(A)

D(A) = 0 and m2
3+m2− S(A)

D(A) = 0. Then, by

the discriminant Δ = ( S(A)
2D(A) )

2 + 1
27 > 0, Eq. (2) has a real root that satisfies m1 = m2. Hence, Eq. (1)

without the noise items has only one attractor (m1,m2) that satisfies m1 = m2. Thus, Theorem 1 holds.

Eq. (1) models the adaptation behaviors of the E. coli cell to the dynamic nutrition environments.

If the nutrition condition changes, the cell shifts its state according to its current activity. When the

activity is so high that the noise items cannot affect the mRNA concentration rates, the cell still stays

in the current state. On the contrary, when the current activity gets so low that the effect of the noise

on the metabolism rate cannot be neglected, the cell’s state will shift stochastically. Because the mRNA

concentrations become stochastic under the effect of the noise, the E. coli has the opportunity to regain

the adaptation to the new environment. Subsequently, if one state makes the cell’s activity rise so greatly

that the metabolism can ignore the noise’s effect, the state of the cell becomes stable and adapts to the

new environment.

The E. coli and the sensor node have many similar characteristics. For example, both of them are

independently distributed in the complex environments and have to adapt to the environments by reg-

ulating their states themselves. However, when the ARAS model applies into the path selection of the

WSN multipath routing, there still exist three drawbacks. The first one is how to define the activity to

reflect the adaptation goodness of the multipath transmission to the dynamic network environments, the

second one is that how each sensor node adaptively selects its working path toward the corresponding

destination, and the last one is how the noise affects the path selection stochastically. In the next section,

we introduce the proposed solutions for the three drawbacks. The solution for the first drawback is pro-

posed in the subsection of the novel expression of the path-activity, the second one in the subsection of

the definition of selection probability for each path selected as the working path, and the last one in the

subsection of the variation relationships among the noise, selection probability, and path-activity. Besides,

it is noted that only one path is used for the data transmission every moment between each couple of

the sensor and sink nodes in the proposed model. For convenience, this path is called the working path

in the following description.
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4 WARAS: an adaptive path selection model for WSN inspired by ARAS

4.1 The multi-attractor equations for WARAS

To model the adaptation of the multipath traffic transmission to the dynamic network environments, the

multi-attractor equations in [7] are adopted. With the equations, we propose an adaptive path selection

model for WSN multipath transmission, namely WARAS . The equations are shown as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm1

dt
=

S(A)

1 + m̂−m1
2
−D(A)m1 + η1,

dm2

dt
=

S(A)

1 + m̂−m2
2
−D(A)m2 + η2,

...

dmn

dt
=

S(A)

1 + m̂−mn
2
−D(A)mn + ηn,

(3)

where the mi denotes the transmission quality of the ith path between each couple of the source node

and destination nodes in WSN. The m̂ denotes the best transmission quality among the multipaths,

that is, m̂ = maxi{mi, i = 1, 2, . . . , n}. The A denotes the path-activity, which specifies the adaptation

goodness of the traffic transmission between each source and destination pair to the real-time network

environments. The S(A) and D(A) are, respectively, the path quality promoter and inhibitor, both of

which are proportional to the path-activity. Because the increasing path-activity can improve the path

transmission quality, the promoting rate of S(A) must exceed the inhibiting rate of D(A). ηi denotes the

noise, which can cause some local random fluctuations of mi. Here, the effect of the noise is supposed to

be transient and within a small range of mi. In fact, the noise represents an integration of the factors

taking the stochastic effect on the path transmission quality, for example, the short-time WSN traffic

and the random failures of WSN equipment.

Subsequently, by supposing the noise affecting each mi identical, that is, η = ηi, i = 1, 2, . . . , n, we

deduce a new attractor expression with the noise. According to the equations dmi

dt = 0, i = 1, 2, . . . , n, the

novel attractors (m1,m2, . . . ,mi, . . . ,mn) can be obtained, whose components are expressed as follows:

mi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

(√(
S(A) + 2η

D(A)

)2

+ 4− S(A)

D(A)

)

, i �= k,

S(A) + η

D(A)
, i = k.

(4)

Here, the attractor is composed of a special component mk = S(A)+η
D(A) and the other same components

mi�=k, where k denotes the index of the special component. Subsequently, we prove the following theorem

about the number of the attractors in (3) under the condition of η = ηi.

Theorem 2. If S(A) �= 0, D(A) �= 0, and η = ηi, i = 1, 2, . . . , n, the necessary and sufficient condition

that (3) has more than one attractor is D(A)2−2S(A)2

2S(A) �= η.

Proof. If (3) has only one attractor in the case of η = ηi, the attractor must be (m,m, . . . ,m), where

m = mi, i = 1, 2, . . . , n. Therefore, with (4), we can acquire mi�=k = mk. Then, we reduce it to get

η = D(A)2−2S(A)2

2S(A) . Thus, Theorem 2 holds.

In WARAS, each attractor can be considered to be a stable adaptation state of the multipath trans-

mission. Then, it is expected the adaptation state can be always achieved no matter how the network

environment changes. Here, the adaptation state is expressed due to the performance demands, for ex-

ample, load balancing, congestion avoidance, robustness, and reliability. In detail, when the path-activity

declines, the effect of the noise on the adaptation state rises. Then, the multipath transmission regains a

stable adaptation state through the stochastic effect of the noise on the original state. On the contrary,

the effect of the noise decreases with the increasing path-activity. Because of escaping from the stochastic
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effect of the noise, the stable adaptation state of the multipath transmission can be kept. According to

(4), we can perform the adaptation process and conclude a corollary as follows.

Corollary 1. If the path-activity increases, mk rises and mi�=k declines. Meanwhile, the effect of the

noise is negligible. Otherwise, mk declines and approachesmi�=k. Furthermore, the stochastic effect of the

noise on the transmission state becomes strong and cannot be ignored with the decreasing path-activity.

Proof. In (3), both the promoter S(A) and the inhibitor D(A) are proportional to the path-activity, and

the promoting rate of S(A) exceeds the inhibiting rate of D(A). Hence, the effect of the noise in (4) is

negligible with the sufficient increasing path-activity. Also, because the noise only leads to some small

local fluctuations, mk rises in the meanwhile. Then, if we might as well ignore the noise items in (4) and

let ω = S(A)
D(A) , then mi�=k = 4√

ω2+4+ω
. Because ω goes up with the increasing path-activity, mi�=k declines.

On the contrary, if the path-activity decreases, S(A) and D(A) both decline. Thus, apparently in (4), the

effect of the noise on the attractor becomes strong and cannot be ignored with the sufficient decreasing

S(A) and D(A). Because the rate of S(A) exceeds the rate of D(A), mk declines correspondingly. Then,

the decreasing path-activity makes S(A) approach D(A), so η approaches D(A)2−2S(A)2

2S(A) . Therefore,

according to Theorem 2, mk approaches mi�=k.

Subsequently, in the WSN multipath routing, the adaptation transmission state can be achieved

through the adaptive path selection model in (3). However, we first need to determine the expression of

the path-activity.

4.2 The novel expression of path-activity

In our proposed model, the path-activity is a metric that features the adaptation goodness of the data

transmission between each couple of the source and destination nodes to the real-time network environ-

ments. To reflect the real-time adaptive state of the data transmission as far as possible, we improve the

activity expression with the fixed points in [7] and define a continuous expression form for the path-activity

as follows:

A = f(|Qworking − m̂|). (5)

Here, Qworking denotes the transmission quality of the working path of the source node toward the

destination, and m̂ is the best transmission quality, for example, the minimum path delay, the shortest

path length, and the best reliability. f(·) is a function which is inversely proportional to |Qworking − m̂|.
That is to say, if the working path quality gets closer to the best path quality, the path-activity becomes

higher. Otherwise, the path-activity becomes lower. Subsequently, we define a concrete expression for the

path-activity in (6), and through this formula, we perform the dynamic-adaptive characteristic analysis

and the network simulation for the proposed model in the following sections:

A =
γ

α|Qworking − m̂|θ + β
, (6)

in this formula, α, β, γ, and θ are all positive constants.

In (6), when the quality of the working path achieves the maximum, that is, |Qworking = m̂|, the path-

activity also reaches its maximum A = γ
β . More obviously, the path-activity variations are presented in

Figure 1, where the bound of the path-activity is set in the range from 0 to 10 by β = 1, γ = 10, and Partial

Difference = |Qworking − m̂|. Figure 1 shows the effect of θ on the path-activity by fixing the value of α,

and the effect of α on the path-activity by fixing the value of θ. Basically, we can modify these constants

to obtain the suitable formula of the path-activity for the model in a simulation. Generally in various

network scenarios or services, quality of service (QoS) demands are very different. The transmission

adaptation states also differ in thousands of ways. So, we need to modify the path-activity to fit the

adaptation state, where β and γ are used to specify the bound of the path-activity. Besides, we can

prolong the transmission time of the working path by increasing the range of the high path-activity with

α and θ. The transmission quality of the working path fluctuates under the effect of the noise in the WSN

network environments. Furthermore, the higher the path-activity is, the bigger the possibility is that the

working path is kept. Therefore, the bigger range of the high path-activity can neglect more fluctuations



Gong W B, et al. Sci China Inf Sci October 2015 Vol. 58 102307:7

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Partial difference

P
at

h-
ac

ti
vi

ty

α=0.6, θ=4
α=0.6, θ=1
α=0.6, θ=0.5
α=0.01, θ=6
α=0.0005, θ=6
α=0.00005, θ=6

Figure 1 The variations of path-activity under different constraint parameters.

of the path quality and makes the working path transmit for a longer time. As shown in Figure 1, the

range of the high path-activity can be extended by reducing the value of α.

4.3 The definition of selection probability for each path selected as the working path

In the multipath routing, the traffic transmission between each couple of the source and destination

nodes can be regulated by shifting their working path among several candidate paths according to the

transmission quality of these paths. In our proposed model, the path-activity is used to reflect the

multipath transmission quality for regulating the transmission. When the path-activity is sufficiently

high, the traffic transmission will continue. On the contrary, the transmission needs to be improved by

reselecting the working path. Because of the burstiness and intermittency characteristics of the WSN

network traffic, randomization [14,19] is considered as an effective strategy to optimize the load balancing

and the congestion control for the multipath selection. The greedy path selection always easily makes the

best quality path a network hotspot and causes the congestion in the hotspot. Thus, the randomization

of the path selection can effectively reduce the possibility that the hotspot is formed, which is helpful

to avoid the network congestion and balance the network load. Then, in our model, the stochastic path

selection is also used to improve the transmission efficiency. Concretely, each path is selected as the

working path in this paper by a selection probability continuously proportional to the corresponding

path transmission quality. Specially, the selection probability is defined as Pi = mi∑n
j=1 mj

according to

(4). Especially, each source and destination pair is expected to transmit their traffic through the best

quality path, so the selection probability that the working path is kept is set as Pk = mk∑
n
j=1 mj

. Here, it

is the probability that the path is selected as their working path again.

4.4 The variation relationships among noise, selection probability and path-activity

Subsequently, we investigate the variation relationships among noise, selection probability, and path-

activity in a case that a source node gets five paths for the transmission. Figure 2 shows the variation

relationships among them under the case, where Pworking = Pk denotes the selection probability that

the working path is kept by the source node and Pcandidate denotes the selection probability that the

other candidate paths (non-working paths) are selected as the working path. In (3), the path quality

promoter and inhibitor are both proportional to the path-activity, and the promoting rate is higher

than the inhibiting rate. Furthermore, the noise affects the path quality in random within a small range.

Therefore, for the convenience of the following analysis, we set an instance of the multi-attractor equations

based on the characteristics of the promoter, the inhibiter, and the noise, as shown in (7). The selection
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probabilities in Figure 2 are calculated with the instance.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm1

dt
=

A(0.006A4 + 1)

1 + m̂−m1
2

− 2A ·m1 + rand(0, 1),

dm2

dt
=

A(0.006A4 + 1)

1 + m̂−m2
2

− 2A ·m2 + rand(0, 1),

...

dmn

dt
=

A(0.006A4 + 1))

1 + m̂−mn
2

− 2A ·mn + rand(0, 1),

(7)

where rand(0, 1) is a function to generate an arbitrary random number between 0 and 1.

Figure 2 shows the effect of the selection probability and the noise on the path selection. When the

transmission quality of the working path between a couple of source and destination nodes becomes

better, the path-activity in (5) increases. In the meanwhile, the component mk of the attractor increases

according to Corollary 1. Then, the selection probability Pworking goes up, as shown in Figure 2. Thus, due

to the increasing selection probability, the possibility rises that the working path is kept, and the effect of

the noise on the path selection can be gradually neglected. On the contrary, when the transmission quality

of the working path becomes worse, the path-activity decreases correspondingly. Then, because all the

components of the attractor in (4) become average according to Corollary 1, the selection probabilities of

all candidate paths also tend to become uniform. In Figure 2, when the path-activity declines sufficiently,

the Pworking approaches the Pcandidate. Furthermore, the noise determines the variations of all the selection

probabilities. As a result, the working path will be reselected mostly depending on the effect of the noise.

Finally, the stochastic characteristic can help each source and destination pair to rediscover the adaptive

working path. Here, it is noted that the merits of the path quality mentioned are relative to the best

transmission quality in (5).

Based on the relationship analysis, we can present the path selection operation in the proposed model,

which is shown in Figure 3. It can be seen from the figure the periodical path selection is performed

in each source node, and each candidate path is selected as the working path by the corresponding

selection probability. Then, if the working path is kept, the traffic transmission continues. Otherwise,
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Figure 4 A dynamic-adaptive selection demonstration of WARAS under the illustrative WSN layout. (a) Load variation

of neighbors; (b) path-activity variation; (c) selection probability variation; (d) load difference variation.

the route table will be updated with the selected path. In fact, the operation in Figure 3 is linear with

low calculation complexity, which can be performed very fast.

4.5 The dynamic-adaptive selection characteristic analysis of WARAS

In this section, we investigate the dynamic and adaptive selection characteristic of WARAS. For this

purpose, we take an illustrative WSN layout as an experimental scenario composed of many source nodes

and their shared neighbor nodes, where each source node will select one next hop from these neighbor

nodes for the traffic transmission. In the scenario, if a neighbor node is selected as a next hop by a

source node, the load of the neighbor node will increase. Furthermore, each source node can only use a

neighbor node as its next hop every moment, and at the same time, it can also acquire the load level

of each neighbor node every moment. Besides, in the experiment, the time is divided into many time

steps, and at each time step, each source node selects its next hop from the neighbor nodes according

to the operation in Figure 3. In the operation, the path-activity in (6) is expressed here by the load of

the neighbor nodes, where Qworking denotes the load of each source node’s next hop, and m̂ denotes the

minimum load among the neighbor nodes. Subsequently, to highlight the dynamic-adaptive characteristic

of our proposed model, we set a worse load distribution condition at the beginning of the experiment,

where each source node selects its next hop from two neighbor nodes in uniform random. After that,

each source can select the next hop from all the neighbor nodes. In the meantime, the load level of each

neighbor node is quantized for convenience, and set as 0 in the beginning of the experiment. Also, it

is supposed, if a neighbor node is selected as a next hop by a source node, the load of the neighbor is

increased by 0.5. When a neighbor node is selected by all the source nodes as their next hops, it reaches

its maximum load.

Subsequently, we first make a demonstration of the effect of the WARAS model on the load of the

neighbors in a concrete scenario composed of 40 source nodes and 5 neighbor nodes. Figure 4 shows the

load variation process of the neighbor nodes in 10 time steps, which is modeled by (7). To observe the

adaptive selection process, we show some parameter variations of our proposed model in Figure 4, for

example, the path-activity, the selection probability, and the difference between the max and min load

levels among all neighbor nodes. From Figure 4(a), it can be seen that all the neighbor nodes reach the
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Figure 5 The layout of the network simulation scenario.

identical load at last. In the meantime, the path-activity of all source nodes attains the maximum in

Figure 4(b), where the path-activity is bounded within the range from 0 to 10. It is consistent with the

load result in Figure 4(a). Figure 4(c) shows the overall variations of the selection probabilities in all

the source nodes, where they gradually tend to stabilization with the increasing time steps. Concretely,

the selection probability goes to 1 that the next hop of each source node is kept, which is marked by

the asterisk in Figure 4(c). The selection probability goes to 0 that each other neighbor node (non-

next-hop node) is selected as one next hop, which is marked by plus in Figure 4(c). Also, Figure 4(d)

shows the variations of the difference between the max and min load of all neighbor nodes. It can be

seen from the figure that the difference approaches 0 with the increasing time steps. Thus, it is also

consistent with the load variations in Figure 4(a). As a result, it is evident the WARAS can regulate

the load distribution of all the neighbor nodes dynamic-adaptively under the WSN layout. Besides, if a

neighbor node can represent a path, our proposed model can select the working path dynamic-adaptively

in the WSN multipath routing. Furthermore, it is expected our model can behave better on reducing the

network delay and the path oscillation than the greedy scheme. Therefore, in the section, we validate the

expectation in a platform (called optimizing the performance of the network (OPNET)).

5 Simulations

5.1 Simulation scenario setup

To investigate the efficiency of WARAS in the complex network conditions, we use a network simulation

platform OPNET. In the platform, a multipath routing protocol is implemented by modifying the single

path routing AODV. We simulate the multipath routing in a scenario that 46 nodes are homogeneously

distributed in a 2 km × 2 km area within some sensor nodes and sink nodes. Its basic layout is shown

in Figure 5, where Si (i = 1, 2, 3, . . . ) denote the sensor nodes which have some data to be delivered

and forwarded, and Di (i = 1, 2, 3, . . . ) denote the sink nodes. To facilitate the probe of the path

quality, we set four hotspot nodes Hi (i = 1, 2, 3, 4) to make all of routing paths pass through them.

Due to the burstiness and intermittency of the WSN network traffic, each sensor node is set to send

the data packets with an exponential distribution time in the simulation, and the size of the packets is

also set with an exponential distribution in the packet generation. Specifically, the traffic of each source

node in Figure 5 is generated with the distribution Exponential (1), where Exponential (1) denotes the

exponential distribution with the mean packet inter-arrival time of 1 s. Furthermore, every 5 min, the

sources in the layout are set to send the data packets with the packet inter-arrival time distribution

Exponential (0.1) for 15 min. Consequently, the simulation will be executed in an hour, so each source

sends the data packets with the inter-arrival time distribution Exponential (0.1) 3 times.

Besides, to validate the adaptation of WARAS to the dynamic network environments, the simulation

is performed in five different scenarios. In these scenarios, the four hotspots are, respectively, set the

different processing capabilities. In OPNET, the processing capacity of a network node is specified by a
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Table 1 Scenario parameters

Parameter Value Parameter Value

The number of nodes 46 Allowed hello loss 10

The size of area (m2) 2000×2000 Datagram forwarding rate (DFR) 40,50,60,70,80,90,100,110

Transmission radius (m) 500 Packet inter-arrival time (s) Exponential (1), Exponential (0.1)

Destination only flag Enabled Simulation time (min) 60

parameter datagram forwarding rate (DFR, packets/s), which indicates the maximum number of packets

forwarded by the node per unit time. The processing capacities of the four hotspots Hi (i = 1, 2, 3, 4)

are set, respectively, in the five scenarios, which are Sc1(DFR : 70, 70, 70, 70), Sc2(DFR : 70, 60, 50, 40),

Sc3(DFR : 90, 80, 70, 60), Sc4(DFR : 110, 100, 90, 80), and Sc5(DFR : 110, 100, 50, 40). Here, Sci (i =

1, 2, . . . , 5), respectively, indicate the five different scenarios. At the same time, DFRs of all the source

and destination nodes are set as 70 packets per second in these scenarios. We will simulate the multipath

routing with the adaptive path selection model WARAS in the five simulation scenarios. Also, for

comparison, the greedy path selection will also be used in the multipath routing in the meanwhile. The

parameters of these scenarios are summarily listed in Table 1, where the extra nodes not shown in Figure 5

are the source and destination nodes.

5.2 The path quality probe

In the multipath routing, the path selection should be performed periodically to make the data transmis-

sion between each couple of the source and destination nodes adapt to the real-time network environments.

Furthermore, each source needs to acquire the real-time transmission quality of each path toward its des-

tination for the path selection. So, the packet feedback mechanism is adopted, where each destination

node sends a feedback packet to the corresponding source node for each arrival data packet to inform of

the path quality, for example, the path delay. Based on the mechanism, the path quality probe of all

the paths between each couple of the source and destination nodes can be performed before each path

selection.

In AODV, each path has a lifetime. If one path does not receive the routing update message or forward

any traffic in its lifetime, the path will be set invalid. As a result, if the path quality probe always extends

the lifetime of the paths, the frequent route rediscoveries make the multipath routing suffer the worse

performance even than the single path routing. Therefore, the path quality probe of all the paths should

be completed in the lifetime of these paths. In the AODV, there are two measures that affect the lifetime

of each path, the route entry timeout, and the HELLO timeout. To keep the path alive as long as

possible, we ignore the route failure caused by the route entry timeout. Thus, the HELLO timeout is

the main factor that affects the lifetime of each path. Because the data transmission in each path can

prolong a period for the path lifetime in the routing protocol, we can perform the path quality probe in

this period to avoid path failure caused by the probe feedback waiting. In the multipath routing, this

period is set as the period of Allowed Hello Loss, which is the time threshold in OPNET that causes

the HELLO timeout. Furthermore, we will also perform the path selection in the interval of the Allowed

Hello Loss. Besides, to guarantee the successful quality probe of each path, each probe feedback packet is

set a feedback waiting threshold. Once a path probe packet is sent to a candidate path, a time threshold

will be set for its feedback packet. If the feedback packet is received in the threshold, the quality probe of

this path is finished. Otherwise, another probe packet will be sent to this path, but the feedback waiting

threshold will be double. The path quality probe will continue until all candidate paths are probed or the

Allowed Hello Loss time expires. In general, the initial feedback time threshold can be set as twice the

candidate path delay. However, if the path does not record the path delay information in the beginning of

simulation, it can be set a value roughly before the period of Allowed Hello Loss. Based on this method,

each source can perform the path quality probe of all candidate paths to its corresponding destination.

When the path quality probe is performed, the source node reselects its working path according to

the quality of all the paths toward its destination. Subsequently, if the source finishes the path selection,
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Figure 6 The average WSN network delay comparison of the two path selection schemes in the five simulation scenarios

by probing the path delay. (a) α = 1.2× 10−4; (b) α = 6× 10−4; (c) α = 0.008; (d) α = 0.04.

the next path selection period will restart. In the multipath routing, the path quality probe, the path

selection, the route discovery, and the data transmission are all performed in each source node. Besides,

we do not basically create additional packets for the path quality probe. A path quality probe packet

can be a data packet to be sent. With the aid of a flag that is set in the data packets, the destination can

identify it and send a corresponding feedback packet. Then, the feedback packet can be a data packet

to be sent or a high layer transmission control protocol (TCP) acknowledge (ACK) packet. However, if

there is no ACK packet or data packet to be sent timely, a feedback packet only including path quality

and destination-related information can be created for the source. Actually, the path quality probe is just

periodically carried out under the demand of traffic transmission, which increases the WSN throughput

less. In the following simulation, the path transmission quality will be expressed, respectively, by the path

delay and the max node packet arrival rate of each path, which are obtained with the path quality feedback

packets. Then, the parameter configuration of WARAS is the same with the numerical experiments in

the last section except θ and α in the path-activity formula (6). Because we also investigate the effect of

the different ranges of high path-activity on the networking performance, we might as well set a fixed θ

as 6 to facilitate the range adjustment.

5.3 Path selection by probing the path delay

Here, we use the path delay to measure the path transmission quality, where the path delay indicates the

time elapsed between a data packet creation at its source and destruction at its destination. Apparently,

the best path quality is the minimum path delay. Because WARAS evaluates the adaptation goodness

of the multipath transmission between each couple of the source and destination nodes to the network

environments by the path-activity, we investigate the effect of the different ranges of high path-activity on

average network delay and working path oscillation rate in the five different network scenarios, respec-

tively, in Figures 6 and 7. Here, we modify the range of the high path-activity with one of its parameters

α in (6). Besides, the average network delay indicates the average of the WSN network delay in different

simulation moments, and the oscillation rate means the shifting frequency of the working path among all

the paths between each couple of the source and destination nodes.

Figure 6 compares the two path selection schemes on reducing the average network delay in the five
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Figure 7 The working path oscillation rate comparison of the two path selection schemes in the five simulation scenarios

by probing the path delay.

different network scenarios (Sc1, Sc2, Sc3, Sc4, Sc5), which are WARAS and the greedy path selection.

The greedy path selection provides the path with the best transmission quality for each couple of the

source and destination nodes as its working path for every path selection. It can be seen from the figure

that the WARAS reduces the average network delay more than the greedy path selection. Besides, we

also compare the oscillation rates of the working paths in the two path selection schemes in Figure 7

respectively, in the five different network scenarios. Because each self-organization source node in WSN

selects its working path for each destination independently, the couple of the source and destination nodes

in Figure 7 is picked randomly to reflect the oscillation situation of the working path in our scenarios.

Evidently, it can be seen from Figure 7 that the WARAS can make the working path oscillation less

frequent than the greedy path selection. Consequently, through selecting the working path with the

WARAS according to the path delay, the average WSN network delay and the working path oscillation

can be both reduced.

5.4 Path selection by probing the node packet arrival rates in each path

In this subsection, we use the packet arrival rate of the nodes in each path to measure the path transmis-

sion quality. Similarly, we compare the two path selection schemes in the five different network scenarios.

Because the nodes in each path probably have different DFRs, real-time packet arrival situation in each

node can be expressed by PAR
DFR . Here, the PAR denotes the packet arrival rate (packets/s) of each node

in different simulation moments, which is periodically collected by each node in the simulation. Then,

we use a formula 1

maxi{PARi
DFRi

,i=1,2,... } to indicate the transmission quality of a path, where the PARi and

DFRi, respectively, denote the packet arrival rate and DFR of the ith node in the path. It is evident

that best path quality is minimum maxi{PARi

DFRi
, i = 1, 2, . . . }. Also, we also investigate the effect of the

different ranges of high path-activity on the average network delay and the working path oscillation in

the five different network scenarios, respectively, in Figures 8 and 9.

Figure 8 compares the two path selection schemes on reducing the average network delay in the five

network scenarios according to the node packet arrival rates in each path, which are the WARAS and the

greedy path selection. It can be seen from the figure that the WARAS can still reduce the average network

delay more than the greedy selection. Figure 9 shows the WARAS reduces the working path oscillation

more than the greedy selection between a couple of the source and destination nodes by probing the

node packet arrival rates in each path. Therefore, the WARAS performs better similarly than the greedy

selection on reducing the average network delay and the working path oscillation with the difference path

quality metrics, the packet arrival rates. Furthermore, the results also show the reliability of our proposed

model.
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Figure 8 The average WSN network delay comparison of the two path selection schemes in the five simulation scenarios

by probing the node packet arrival rates in each path. (a) α = 1.2× 10−4; (b) α = 6× 10−4; (c) α = 0.008; (d) α = 0.04.
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Figure 9 The working path oscillation rate comparison of the two path selection schemes in the five simulation scenarios

by probing the node packet arrival rates in each path.

6 Conclusion

Inspired by the adaptation of the E. coli to the changing nutrition environments, a novel path selection

model WARAS is proposed to improve the performance of WSN multipath transmission. In a multipath

AODV protocol, our proposed model is verified to perform better about reducing the WSN network delay

and the path oscillation than the greedy path selection with two path metrics, that is, the path delay

and the max node packet arrival rate of each path. Besides, through more experiments, we found the

multipath routing is not suitable to the networks with the frequent link failures caused by mobility, but the

fixed networks, the few mobility networks, or the slow-moving networks. Specially, because the frequent

path failures will not only undermine the path selection process, but also the repeated route discovery

will cripple the network. Then, in the future work, we will discuss the effect of the other parameters in

the WARAS in detail on the path oscillation, for example, the selection probability, the synthesis rate,
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and the decomposition rate. Furthermore, we will also optimize the other network performance with the

proposed model, for example, the QoS, the resource distribution, and management.
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