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Abstract This paper investigates the global practical tracking via adaptive output-feedback for a class of

uncertain nonlinear systems with generalized control coefficients. Notably, the system in question has the

function-of-output control coefficients and the serious unknowns in the system and the reference signal, and

hence is essentially different from the existing closely related literature. To solve the global practical tracking,

a high-gain observer is first introduced to reconstruct the unmeasurable system states, and then an adaptive

output-feedback controller is designed. It is worth emphasizing that the gains in the designed observer and

controller are functions of time and output, for which a novel updating law of the high-gain is introduced

to overcome the additional system nonlinearities and the serious unknowns mentioned above. The designed

controller is shown such that all the states of the closed-loop system are globally bounded, and furthermore,

tracking error will be ultimately prescribed sufficiently small. A numerical simulation is provided to demonstrate

the effectiveness of the proposed approach.
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1 Introduction and problem formulation

In this paper, we consider the global practical tracking for the following uncertain nonlinear system with

generalized control coefficients1):
⎧
⎪⎪⎨

⎪⎪⎩

η̇i = gi(y)ηi+1 + ψi(t, η), i = 1, . . . , n− 1,

η̇n = gn(y)u+ ψn(t, η),

y = η1 − yr,

(1)

*Corresponding author (email: lygfr@sdu.edu.cn)

1) Throughout this paper, R denotes the set of all real numbers, R+ denotes the set of all non-negative numbers, Rn

denotes the real n-dimensional space. For any given vector or matrix X, XT denotes its transpose, ‖X‖ denotes the

Euclidean norm for vectors, and the corresponding induced norm for matrices, respectively. For any symmetric matrix P ,

λmax(P ) and λmin(P ) denote its maximum and minimum eigenvalues, respectively. We use diag[a1, . . . , an] denote the

n× n diagonal matrix with ai’s on its diagonal.
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where η = [η1, . . . , ηn]
T ∈ R

n is the system state vector with the initial condition η0 = η(0); u ∈ R,

y ∈ R and yr(t) are the control input, system output (tracking error) and reference signal, respectively;

ψi(t, η)’s are unknown functions but continuous in the first argument and locally Lipschitz in the second

one, while gi(y)’s are known and locally Lipschitz functions. System (1) is said to have generalized control

coefficients since gi(y)’s are functions of output, rather than constants.

In what follows, we suppose that only system output y is available for feedback, which means that

system state η1 and yr are not necessarily known. Furthermore, we make three following assumptions on

system (1) and the reference signal yr:

Assumption 1. There exist known positive constants a, a, g, g and p, such that for ∀ y ∈ R,

0 < a � |gi(y)| � a(1 + |y|p), i = 1, . . . , n,

g � |gi(y)/gi−1(y)| � g, i = 2, . . . , n− 1.

Assumption 2. There exists an unknown positive constant θs, such that for ∀ t ∈ R
+, ∀ η ∈ R

n,

|ψi(t, η)| � θs + θs

i∑

j=1

|ηi|, i = 1, . . . , n.

Assumption 3. The reference signal yr : R+ → R to be tracked is continuously differentiable, and

moreover, there is an unknown positive constant θr such that

sup
t�0

(|yr(t)|+ |ẏr(t)|) � θr.

Assumption 1 shows that the control coefficients in system (1) are nonlinear functions of output,

essentially different from those in the closely related work [1–5] where all the control coefficients are known

constants (equal to 1), and hence system (1) allows additional system nonlinearities, compared with the

above works. Assumption 2 indicates that the growth of system (1) heavily relies on the unmeasurable

states, and has unknown growth rate. Therefore, system (1) possesses serious signal and parameter

unknowns, for which some estimation and compensation strategies are usually needed to counteract the

caused negative effects. Assumption 3 shows that to practical tracking, merely rather coarse information

is required on yr(t): it is enough that both yr(t) and its derivative belong to an unknown constant

interval, as those in [1–3, 6–12] and unlike those in [4, 5, 13–18].

The objective of global practical tracking in this paper is to construct the following adaptive output-

feedback controller for system (1) under Assumptions 1–3:

χ̇ = φλ(χ, y), u = ϕλ(χ, y), (2)

where χ is the state vector with an appropriate dimension and the initial value χ0 = χ(0); λ is a pre-given

positive constant used to represent the tracking accuracy/level; and φλ(·) and ϕλ(·) are vector-valued

and scalar locally Lipschitz functions, respectively, such that

(i) the solutions of the resulting closed-loop system are well-defined and globally bounded on [0,+∞);

(ii) for any initial condition and any prescribed constant λ > 0, there is a finite time Tλ > 0 such that

supt�Tλ
|y(t)| = supt�Tλ

|η1(t)− yr(t)| � λ. In this sense, λ is called tracking accuracy/level.

Asymptotic tracking requires the tracking error to ultimately converge to zero, rather than enter a

interval, which obviously is better than practical tracking. Therefore, the accomplishment of asymptotic

tracking needs more rigorous restrictions and more information on the system and the reference signal

[15–18]. Although practical tracking has a relatively conservative control objective, it needs weaker

restrictions and less related information, and particularly it is enough for many practical problems.

Mainly because of this, practical tracking has received much attention over the past decades [1–14],

and is still an active field of research. Specifically, work [6–9, 13] considered the practical tracking via

state-feedback. When only partial states or output is available for feedback, representative results were
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obtained in [1–5, 10–12,14]. In particular, work [1–3] considered the cases with the serious unknowns in

the system nonlinearities and the reference signal, but with the rather strong assumption that the control

coefficients should be precisely known constants (equal to 1). To the best knowledge of the authors,

when the control coefficients are generalized to be functions of output, the global stabilization has been

investigated (see, e.g., [19, 20]), but the practical tracking via output-feedback has not been studied and

solved for the nonlinear systems with such generalized control coefficients, for example, system (1).

The paper extends the work [1], and considers the global practical tracking via output-feedback for

a class of uncertain nonlinear systems with generalized control coefficients. The remarkable feature

of the system in question is the function-of-output control coefficients, rather than the constant ones as

in [1–5,11,12]. Considering the dead zone in [1,2,7,10,11], a novel updating law of high-gain is introduced

to overcome the additional nonlinearities caused by the function-of-output control coefficients and the

serious unknowns in system (1) and the reference signal yr, and moreover to ultimately establish the

described practical tracking. Based on [20], a high-gain full-order observer is designed to reconstruct

the unmeasurable system states, where the gains involved are functions of output and time, and hence

are substantially different from the closely related work [1–3,5]. Then, in terms of the universal controls

in [1,2,21] and [20], an adaptive output-feedback controller is constructed to establish the global practical

tracking of the closed-loop system.

We would like to compare and contrast between this paper and the closely related work [1–5,10–12,14],

to show the main contributions of this paper. (i) The control coefficients of system (1) are functions of

output, rather than constants [1–5,11,12], and hence give rise to additional nonlinearities to the system.

Moreover, the growth of system (1) heavily relies on the unmeasurable states, and has unknown growth

rate. This is unlike the case of known growth rate in [4, 5], and unlike the work [10–12, 14] where the

system growth only relies on the measurable output. (ii) The information on the reference signal to

be tracked is rather coarse: it is unknown, but itself and its derivative are required to belong to an

unknown constant interval. This is unlike the case of known constant interval in [4, 5], and unlike the

work [14] where the higher order derivatives of the reference signal are required. (iii) The gains in the

observer and the controller to be designed should be chosen as functions of output and time, in order

to simultaneously overcome the additional nonlinearities (originated from the function-of-output control

coefficients), and the serious unknowns in system (1) and the reference signal. This is essentially different

from the works [1–3] where the gains are functions of time. (iv) The establishment, analysis and proof of

the main result are motivated by [3] and different from [1, 2], and for the need, a key design parameter

(i.e., “b” in (8) later) is introduced in the updating law (of high-gain) to be designed. This, we believe,

would inspire us study and solve the practical tracking via output-feedback for other uncertain nonlinear

systems.

The remainder of the paper is organized as follows. Section 2 provides the control design scheme for

the global practical tracking and summarizes the main result obtained in this paper. Section 3 collects

the detailed proofs of a technical proposition and an important lemma. Section 4 gives a simulation

example, and Section 5 addresses some concluding remarks.

2 Global practical tracking via adaptive output-feedback

In this section, an adaptive output-feedback controller is designed to achieve the global practical tracking

for system (1) under Assumptions 1–3. Since no system states are measurable and the serious unknowns

exist, an observer and a dynamical compensator should be delicately sought, and of course are necessary

parts of the desirable controller.

We introduce the new coordinates

x1 = y = η1 − yr, xi = ηi, i = 2, . . . , n, (3)

and let x = [x1, . . . , xn]
T for later use.
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Then by (1), we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = g1(y)x2 + f1(t, x, yr, ẏr),

ẋi = gi(y)xi+1 + fi(t, x, yr), i = 2, . . . , n− 1,

ẋn = gn(y)u+ fn(t, x, yr),

y = x1,

(4)

where f1 = ψ1(t, x1 + yr, x2, . . . , xn)− ẏr, fi = ψi(t, x1 + yr, x2, . . . , xn), i = 2, . . . , n.

Notably, under (3), the practical tracking for the original system (1) is transformed into the stabilization

for the uncertain time-varying nonlinear system (4): search for one controller u in the form (2) such that

all the states x of system (4) are globally bounded on [0, +∞) and furthermore, its output y keeps in

[−λ, λ] after a finite time. Therefore, it establishes the above described stabilization of system (4), as

the subsequent sections done.

In view of Assumption 1 and Remark 3 of [20], we can choose known locally Lipschitz functions

hi(y), i = 1, . . . , n be linear constant-coefficient combinations of gi(y), i = 1, . . . , n − 1, known locally

Lipschitz functions ki(y), i = 1, . . . , n, known symmetric positive-definite matrices P and Q, and known

positive constants νo and νc, such that for ∀ y ∈ R,
{
PA(y) +AT(y)P � −νo|g1(y)|In,
QB(y) +BT(y)Q � −νc|g1(y)|In,

(5)

where

A(y) =

⎡

⎢
⎢
⎣

−h1(y)
... diag[g1, . . . , gn−1]

−hn(y) 0 · · · 0

⎤

⎥
⎥
⎦ , B(y) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
... diag[g1, . . . , gn−1]

0

−k1(y) −k2(y) · · · − kn(y)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

The above choice of hi’s and Assumption 1 make a known positive constant h̄ exist such that

‖H(y)‖ =

√
√
√
√

n∑

i=1

h2i (y) � h|g1(y)|, (6)

where H(y) = [h1(y), . . . , hn(y)]
T.

Since P and Q are symmetric positive-definite matrices, it is not hard to show that there are positive

constants νo, νo, νc and νc, such that
{
νoI � PD +DP � νoI,

νcI � QD +DQ � νcI,
(7)

where D = diag[b, b+ 1, . . . , b+ n− 1] with b a small design parameter satisfying 0 < b < 1
2 .

For any pre-given λ > 0 which denotes the tracking level, we construct the following adaptive output-

feedback controller for system (4):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = − 1

gn(y)

n∑

i=1

Ln−i+1(t)ki(y)x̂i,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xi = gi(y)x̂i+1 + Li(t)hi(y)(y − x̂1), i = 1, . . . , n− 1,

˙̂xn = gn(y)u+ Ln(t)hn(y)(y − x̂1),

L̇ = max

{
1

L2b

(

ρ(ε1, z1)
(
(y − x̂1)

2 + x̂21
)− λ2

2

)

, 0

}

, L(0) = 1,

ε = [ε1, . . . , εn]
T =:

[
x1 − x̂1
Lb

, . . . ,
xn − x̂n
Lb+n−1

]T

,

z = [z1, . . . , zn]
T =:

[
x̂1
Lb
, . . . ,

x̂n
Lb+n−1

]T

,

(8)
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where x̂ = [x̂1, . . . , x̂n]
T with the initial value x̂(0) = x̂0, ρ = 1 + (1 + (ε1 + z1)

2)
p
2 = 1 + (L2b+y2)

p
2

Lbp , p is

the same as in Assumption 1, and as stated above, b is small such that 0 < b < 1
2 .

Thus, from (4) and (8), we derive the dynamics of ε and z as follows.

⎧
⎪⎪⎨

⎪⎪⎩

ε̇ = L(t)A(y)ε+ F (t, x, yr, ẏr, L)− L̇(t)

L(t)
Dε,

ż = L(t)B(y)z + L(t)H(y)ε1 − L̇(t)

L(t)
Dz,

(9)

where F = [ f1Lb ,
f2

Lb+1 , . . . ,
fn

Lb+n−1 ]
T.

For the closed-loop system resulting from (1) and (8), we have the following two propositions.

Proposition 1. The gain L determined by (8) is monotone nondecreasing and L(t) � 1, and its

dynamics are locally Lipschitz in (y, x̂1, L).

Proof. From (8), we see that L̇(t) � 0, and therefore, L is monotone nondecreasing and L(t) � L(0)

= 1. Then, noting that “max{ω, 0}” is locally Lipschitz in ω (see the proof of Proposition 1 in [1]), and
1

L2b (ρ(ε1, z1)((y− x̂1)2+ x̂21) −λ2

2 ) is smooth in (y, x̂1, L), we know that L̇ is locally Lipschitz in (y, x̂1, L).

By (4) (or (1)), (8) and Proposition 1, we can see that the right-hand sides of the ordinary differential

equations describing the resulting closed-loop system are locally Lipschitz with respect to (x, x̂, L) (or to

(η, x̂, L)) in an open neighborhood of the initial condition, and hence the closed-loop system has a unique

solution on a small interval [0, tf) (see Theorem 3.1, page 18 of [22]). Let [0, Tf) be the maximal interval

on which a unique solution exists, where 0 < Tf � +∞ (see Theorem 2.1, page 17 of [22]). If one can

prove Tf = +∞, then all the closed-loop system states would be well-defined on [0,+∞).

Proposition 2. For (9), define V (ε, z) = V1(ε) + γV2(z) := εTPε + γzTQz with γ = νcνo
4h

2‖Q‖2
. Then

there exists an unknown positive constant Θ, such that on [0, Tf),

V̇ � −amin{νo, νc}
2

(L−Θ) (‖ε‖2 + γ‖z‖2) + Θ.

Proof. See Subsection 3.1 later.

Noting that the above defined V (ε, z) also satisfies

α1(‖ε‖2 + γ‖z‖2) � V (ε, z) � α2(‖ε‖2 + γ‖z‖2), (10)

with α1 = min{λmin(P ), λmin(Q)} and α2 = max{λmax(P ), λmax(Q)}, by Proposition 2 we conclude

that if L(t) � Θ,

V̇ � −β (L−Θ)V +Θ, (11)

where β = amin{νo,νc}
2α2

.

The following lemma shows that the closed-loop system signals L(t) and (z(t), ε(t)) do not blow-up

(escape in finite time) and is key to establish the desired practical tracking.

Lemma 1. For the closed-loop system consisting of (4) and (8), the gain L(t) and system states

(z(t), ε(t)) are globally bounded on [0, Tf).

Proof. See Subsection 3.2 later.

We are now in a position to summarize the main result into the following theorem.

Theorem 1. For system (1) under Assumptions 1–3, the dynamical output-feedback controller (8)

guarantees that, for any initial condition, all the signals (system states and control input) of the closed-

loop system consisting of (1) and (8), are well-defined and bounded on [0,+∞), and furthermore, the

global practical tracking can be achieved; that is, for any pre-given tracking level λ > 0, there exists a

finite time Tλ such that |y(t)| � λ, ∀ t � Tλ.

Proof. By (8) and Lemma 1, we know that all the signals of the closed-loop system are bounded on

[0, Tf), and therefore Tf = +∞.
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By (4), (8) and (9), and the boundedness of ε(t), z(t), x(t), x̂(t) and L(t) on [0,+∞), we can see that

ε̇1(t), ż1(t), ẏ(t), ˙̂x1(t) and L̇(t) are all bounded on [0,+∞), and hence L̇ can be proved to be uniformly

continuous on [0,+∞) (see the proof of Theorem 1 in [1]). Then, by Barbălat Lemma [1, 23], we have

limt→∞ L̇(t) = 0. This and the boundedness of L(t) on [0,+∞) means that, for any initial condition

(η(0), x̂(0)), a finite time Tλ > 0 exists such that 1
L2b(t) (ρ(ε1(t), z1(t))

(
(y(t)− x̂1(t))2+ x̂21(t)

)− λ2

2 ) � L̇(t)

� λ2

2L2b(t) for ∀ t > Tλ, which together with L(t) � 1 and ρ(ε1, z1) � 2 implies (y(t) − x̂1(t))
2 + x̂21(t)

� 1
ρ(ε1(t),z1(t))

(λ
2

2 + λ2

2 ) � λ2

2 , ∀ t > Tλ, which implies |y(t)| = |η1(t)− yr(t)| � λ, ∀ t � Tλ.

We subsequently give two remarks to address the peculiar features of controller (8) and to further

highlight the contributions in this paper.

Remark 1. We can see three-fold essential differences between the controller described by (8) and that

in [1], which are caused by the functions-of-output control coefficients, rather than the constant ones

in [1]. (i) The novel updating law of L(t), motivated by [1–3], is quite essential to effectively overcome

the system nonlinearities caused by the functions-of-output control coefficients, and the serious unknowns

in the system and the reference signal. (ii) The gains ki(y)’s and hi(y)’s, respectively in the controller u

and the observer ˙̂xi’s, are functions of output, cannot be constants as in [1]. (iii) The design parameter

b should satisfy 0 < b < 1
2 and cannot be picked to be 1 as in [1], and otherwise, the later proof for the

global practical tracking would be invalid.

Remark 2. In (8), function ρ(·) has two different expressions. The former expression is preferable

for the tracking performance analysis, for example, the proof of boundedness of (ε(t), z(t)) on [0, Tf) in

Lemma 1 below. The latter one is preferable for the simulation examples since it is more direct.

3 Proofs of Proposition 2 and Lemma 1

This section collects the proofs of a technical proposition and an important lemma, which are required

to establish the desired global practical tracking.

3.1 Proof of Proposition 2

By (5), (7) and the fact L̇(t) � 0, L(t) � 1 for ∀ t ∈ [0, Tf), along the trajectories of (9), we have

V̇ = L(εTATPε+ εTPAε) + 2εTPF − L̇

L

(
εTDPε+ εTPDε

)

+γ

(

L
(
zTBTQz + zTQBz

)
+ 2Lε1z

TQH − L̇

L

(
zTDQz + zTQDz

)
)

� −νoL|g1(y)|‖ε‖2 − γνcL|g1(y)|‖z‖2 + 2εTPF + 2γLε1z
TQH. (12)

We next deal with the last two terms on the right-hand side of (12). By Assumptions 2 and 3, and

noting L(t) � 1, we have that for i = 1, . . . , n,

|fi|
Lb+i−1

� 1

Lb+i−1

(
θs(|x1 + yr|+ |x2|+ · · ·+ |xi|) + θs + θr

)

� 1

Lb+i−1

⎛

⎝θs

i∑

j=1

(|xj − x̂j |+ |x̂j |) + θrθs + θr + θs

⎞

⎠

� θ√
n
(‖ε‖+ ‖z‖+ 1),

where θ =
√
nmax{θs√n, θr(θs + 1) + θs} is an unknown positive constant.

Then, the last second term on the right-hand side of (12) satisfies

2εTPF � 2θ‖P‖ · ‖ε‖ · (‖ε‖+ ‖z‖+ 1) � 4θ‖P‖(‖ε‖2 + ‖z‖2) + θ‖P‖. (13)
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By (6), the last term on the right-hand side of (12) satisfies

2γLε1z
TQH � 2γL|ε1| · ‖z‖ · ‖Q‖ · h|g1(y)|

� γνc
2
L|g1(y)| · ‖z‖2 + 2γh

2‖Q‖2
νc

L|g1(y)| · ‖ε‖2. (14)

Substituting (13) and (14) into (12) first, and then noting γ= νcνo
4h

2‖Q‖2
and by Assumption 1, we arrive at

V̇ � −L
(

νo − 2γh
2‖Q‖2
νc

)

|g1(y)| · ‖ε‖2 − γνc
2
L|g1(y)| · ‖z‖2 + 4θ‖P‖(‖ε‖2 + ‖z‖2) + θ‖P‖

� −aνo
2
L‖ε‖2 − aγνc

2
L‖z‖2 + 4θ‖P‖(‖ε‖2 + ‖z‖2) + θ‖P‖

� −amin{νo, νc}
2

L(‖ε‖2 + γ‖z‖2) + 4θ‖P‖max

{

1,
1

γ

}

(‖ε‖2 + γ‖z‖2) + θ‖P‖

� −amin{νo, νc}
2

(L−Θ) (‖ε‖2 + γ‖z‖2) + Θ,

where Θ = 8θ‖P‖max{ 1
8 ,

1
aνo

, 1
aνc

, 1
aγνo

, 1
aγνc

} is an unknown positive constant.

The proof of Proposition 2 is completed.

3.2 Proof of Lemma 1

The whole proof of Lemma 1 is divided into two parts, to respectively prove the boundedness of L(t) and
(
ε(t), z(t)

)
, both on [0, Tf).

Claim 1: Boundedness of L(t)L(t)L(t) on [0, Tf)[0, Tf)[0, Tf)

Suppose for contradiction that L(t) is unbounded on [0, Tf). This and noting L(t) � 1 imply

limt→Tf
L(t) = +∞, and hence a finite time t1 ∈ [0, Tf) exists such that

L(t) � Θ+ 1, ∀ t ∈ [t1, Tf ),

from which and (11), it follows that

V̇ � −βV (t) + Θ, ∀ t ∈ [t1, Tf ),

and hence

V (t) � Θ

β
+ V (t1) exp

(− β(t− t1)
)
, ∀ t ∈ [t1, Tf),

where and in what follows, V (t) denotes V (ε(t), z(t)) if no confusion occurs. This and (10) imply the

following:

lim
t→Tf

L(t) = +∞ =⇒ sup
t∈[0,Tf )

V (t) < +∞ ⇐⇒ sup
t∈[0,Tf )

(‖ε(t)‖+ ‖z(t)‖) < +∞. (15)

We next show that this is impossible, whether Tf < +∞ or Tf = +∞.

When Tf < +∞, by (15), the expression of L̇(t) in (8), the fact L(t) � 1, and the smoothness of ρ(·),
we have

+∞ = L(Tf)− L(0) =

∫ Tf

0

L̇(t)dt �
∫ Tf

0

ρ
(
ε1(t), z1(t)

)
(ε21(t) + z21(t))dt < +∞,

a contradiction.

When Tf = +∞, (15) still leads to a contradiction. We first prove the following implication:

lim
t→+∞L(t) = +∞ =⇒ lim

t→+∞V (t) = 0 ⇐⇒ lim
t→+∞

(‖ε(t)‖+ ‖z(t)‖) = 0. (16)
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For this, let δ be any positive constant. Since limt→Tf
L(t) = +∞ implies that a finite time t2 exists such

that L(t) � Θ+ 2Θ
βδ , ∀ t � t2, by (11), we have

V̇ � −2Θ

δ
V (t) + Θ, ∀ t � t2,

and in turn

V (t) � δ

2
+ V (t2) exp

(

−2Θ

δ
(t− t2)

)

, ∀ t � t2. (17)

On the other hand, another finite time t3 � t2 exists such that V (t2) exp
(− 2Θ

δ (t− t2)
)
� δ

2 , ∀ t � t3,

which and (17) imply V (t) � δ, ∀ t � t3. This and the arbitrariness of δ conclude limt→+∞ V (t) = 0.

We introduce the function Γ(L(t), ε, z) = L(t)V (ε, z). Since limt→Tf
L(t) = +∞ implies that a finite

time t4 exists such that L(t) � 2Θ, ∀ t � t4, by (11) and noting L(t) � 1, we obtain

Γ̇ � L̇(t)V (t) + L(t)

(

−β
2
L(t)V (t) + Θ

)

= L(t)

(

−
(
β

2
− L̇(t)

L2(t)

)

Γ(t) + Θ

)

, ∀ t � t4. (18)

Considering the expression of L̇(t) in (8), the implication (16) illustrates limt→+∞ L̇(t) = 0, and hence

by L(t) � 1, a finite time t5 � t4 exists such that L̇(t)
L2(t) �

β
4 , ∀ t � t5. Thus, from (18), it follows that

Γ̇ � −L(t)
(
β

4
Γ(t)−Θ

)

, ∀ t � t5. (19)

This implies that Γ(t) is bounded on [0,+∞) 2), namely supt∈[0,+∞) Γ(t) �M1 min{λmin(P ), γλmin(Q)}
for a constant M1 > 0.

Then, we have

L1−2b(t)
(
(x1(t)− x̂1(t))

2 + x̂21(t)
)
= L(t)

(
ε21(t) + z21(t)

)
� Γ(t)

min{λmin(P ), γλmin(Q)} �M1, ∀ t � 0,

and in turn

(x1(t)− x̂1(t))
2 + x̂21(t) � M1

L1−2b(t)
, ∀ t � 0. (20)

Since (16) implies that a constant M2 > 0 exists such that 0 < supt∈[0,+∞) ρ(ε1(t), z1(t)) < M2, from

(20), it follows that

ρ
(
ε1(t), z1(t)

)(
(x1(t)− x̂1(t))

2 + x̂21(t)
) − λ2

2
� M1M2

L1−2b(t)
− λ2

2
, ∀ t � 0.

Noting 1− 2b > 0, limt→Tf
L(t) = +∞ implies that a finite time t6 � t5 exists such that

M1M2

L1−2b(t)
− λ2

2
� 0, ∀ t � t6.

By this and the expression of L̇(t) in (8), we know that L̇(t) ≡ 0 when t � t6, which contradicts

lim
t→+∞L(t) = +∞.

The above two contradictions mean that L(t) is bounded on [0, Tf), regardless of whether Tf is finite

or not.

2) Otherwise, there is t′5 ∈ (t5, +∞) such that Γ(t′5) > max{Γ(t5), 4Θ
β

}. Then, by the continuity of Γ(t), there is t′′5
∈ [t5, t′5) such that Γ(t) > Γ(t′′5 ) = max{Γ(t5), 4Θ

β
}, ∀ t ∈ (t′′5 , t

′
5]. From this and (19), it follows that Γ̇(t) � 0, ∀ t ∈ [t′′5 , t

′
5]

which implies Γ(t) � Γ(t′′5 ), ∀ t ∈ (t′′5 , t
′
5], and a contradiction occurs.
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Claim 2: Boundedness of ε(t)ε(t)ε(t) and z(t)z(t)z(t) on [0, Tf)[0, Tf)[0, Tf)

We first prove the boundedness of z(t) on [0, Tf). For this, we define the function V2(z) = zTQz. Then

by (5), (7) and noting L̇(t) � 0 and L(t) � 1, we obtain

V̇2 = L
(
zTBTQz + zTQBz

)
+ 2Lε1z

TQH − L̇

L

(
zT(DQ+QD)z

)

� −νcL|g1(y)| · ‖z‖2 + 2Lε1z
TQH. (21)

Considering (6), the last term on the right-hand side of (21) satisfies

2Lε1z
TQH � 2L|ε1| · ‖z‖ · ‖Q‖ · h|g1(y)| � νc

2
L|g1(y)| · ‖z‖2 + 2h

2‖Q‖2
νc

L|g1(y)|ε21. (22)

Moreover, by Assumption 1, the definitions of ε1, z1 and ρ(·) in (8), and considering L(t) � 1, we have

g1(y) � a(1 + |y|p) = a
(
1 + |Lb(ε1 + z1)|p

)

� aLpb(1 + |ε1 + z1|p)
� aLpb(1 + (1 + (ε1 + z1)

2)
p
2 ) = aLpbρ(ε1, z1). (23)

Substituting (22) and (23) into (21), and considering Assumption 1, L(t) � 1 and the expression of

L̇(t) yield

V̇2 � −νc
2
L|g1(y)| · ‖z‖2 + 2h

2‖Q‖2
νc

L|g1(y)|ε21

� −aνc
2

‖z‖2 + 2ah
2‖Q‖2
νc

L1+pbρ(ε1, z1)ε
2
1

� −aνc
2

‖z‖2 + 2ah
2‖Q‖2
νc

L1+pbL̇(t) +
aλ2h

2‖Q‖2
νc

L1+(p−2)b.

Then by (8) and noting 1+(p−2)b > 0 and letting Lf = limt→Tf
L(t) (its boundedness has been proved),

we have

V̇2 � −aνc
2

‖z‖2 + 2ah
2‖Q‖2
νc

L1+pbL̇(t) +
aλ2h

2‖Q‖2L1+(p−2)b
f

νc
� − q1V2(t) + q2L

1+pbL̇(t) + q3, (24)

where q1 = aνc
2λmax(Q) , q2 = 2ah

2‖Q‖2

νc
and q3 =

aλ2h
2‖Q‖2L

1+(p−2)b
f

νc
are positive constants.

From (24), it follows that d
dt (e

q1tV2(t)) � q2e
q1tL1+pbL̇ + q3e

q1t, ∀ t ∈ [0, Tf). Then integrating both

sides yields

eq1tV2(t) � V2(0) + q2

∫ t

0

eq1sL1+pb(s)dL(s) + q3

∫ t

0

eq1sds

� V2(0) +
q2

2 + pb
L2+pb
f eq1t +

q3
q1

eq1t, ∀ t ∈ [0, Tf),

which implies V (t) � V2(0)e
−q1t + q2

2+pbL
2+pb
f + q3

q1
, ∀ t ∈ [0, Tf), and hence z(t) is bounded on [0, Tf).

We next prove the boundedness of ε(t) on [0, Tf). For this, we introduce the following change of

coordinates:

ξi =
xi − x̂i

(L∗)b+i−1
, i = 1, . . . , n, (25)

where L∗ is a constant large enough such that

L∗ � max

{

Lf ,
8θ∗‖P‖
νoa

+ 1

}

, θ∗ =
√
nmax

{
√
nθs,

θr(θs + 1) + θs

Lb
f

}

. (26)
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Then, by (4) and (8), we have

⎧
⎪⎪⎨

⎪⎪⎩

ξ̇i = L∗gi(y)ξi+1 − L∗hi(y)ξ1 + L∗hi(y)ξ1 − L

(
L

L∗

)i−1

hi(y)ξ1 +
fi

(L∗)b+i−1
, i = 1, . . . , n− 1,

ξ̇n = −L∗hn(y)ξ1 + L∗hn(y)ξ1 − L

(
L

L∗

)n−1

hn(y)ξ1 +
fn

(L∗)b+n−1
,

which can also be written in the following compact form:

ξ̇ = L∗A(y)ξ + L∗H(y)ξ1 − L(t)Λ(t)H(y)ξ1 + F ∗(t, x, yr, ẏr), (27)

where ξ = [ξ1, . . . , ξn]
T, Λ = diag[1, L

L∗ , . . . , (
L
L∗ )

n−1], F ∗ = [ f1
(L∗)b ,

fi
(L∗)b+i−1 , . . . ,

fn
(L∗)b+n−1 ]

T, and H has

been defined above.

We define V3(ξ) = ξTPξ. Then, by (27) and (5), we have

V̇3 = L∗ξT(ATP + PA)ξ + 2L∗ξ1HTPξ − 2Lξ1H
TΛPξ + 2F ∗TPξ

� −L∗νo|g1(y)| · ‖ξ‖2 + 2L∗ξ1HTPξ − 2Lξ1H
TΛPξ + 2F ∗TPξ. (28)

Considering ξ21 =
(

L
L∗
)2b

ε21 and by (6), the second term on the right-hand side of (28) satisfies

2L∗ξ1HTPξ � 2L∗|ξ1| · ‖P‖ · ‖ξ‖ · h|g1(y)| (29)

� L∗|g1(y)|
(
νo
4
‖ξ‖2 + 4h

2‖P‖2
νo

ξ21

)

(30)

=
L∗νo
4

|g1(y)| · ‖ξ‖2 + 4(L∗)1−2bh
2‖P‖2

νo
L2b|g1(y)|ε21, (31)

and quite similarly, the third term satisfies (noting ‖Λ‖ = 1)

−2Lξ1H
TΛPξ � L∗νo

4
|g1(y)| · ‖ξ‖2 + 4h

2‖P‖2
(L∗)1+2bνo

L2+2b|g1(y)|ε21. (32)

Moreover, similar to the deduction of (13) and by the definitions of εi’s, ξi’s and L
∗, we have that for

i = 1, . . . , n,

|fi|
(L∗)b+i−1

� θ∗√
n
(‖z‖+ ‖ξ‖+ 1).

Thus, the last term on the right-hand side of (28) satisfies

2F ∗TPξ � 2‖F ∗‖ · ‖P‖ · ‖ξ‖ � 2θ∗‖P‖ · ‖ξ‖(‖z‖+ ‖ξ‖+ 1)

� 2θ∗‖P‖
(

2‖ξ‖2 + 1

2
‖z‖2 + 1

2

)

= θ∗‖P‖(4‖ξ‖2 + ‖z‖2 + 1).

From this, (29) and (32), it follows that

V̇3 � −L
∗νo
2

|g1(y)| · ‖ξ‖2 + θ∗‖P‖(4‖ξ‖2 + ‖z‖2 + 1)

+

(
4(L∗)1−2bh

2‖P‖2
νo

L2b +
4h

2‖P‖2
(L∗)1+2bνo

L2+2b

)

|g1(y)|ε21

= −L
∗νo
2

|g1(y)| · ‖ξ‖2 + θ∗‖P‖(4‖ξ‖2 + ‖z‖2 + 1) + τ(L)|g1(y)|ε21,

where τ(L) = 4(L∗)1−2bh
2‖P‖2

νo
L2b + 4h

2‖P‖2

(L∗)1+2bνo
L2+2b clearly satisfies 0 < τ(L(t)) � τ(Lf ), ∀ t ∈ [0, Tf).
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Thus, by Assumption 1, (23) and (26), we have

V̇3 � −νoa
2

(

L∗ − 8θ∗‖P‖
νoa

)

‖ξ‖2 + θ∗‖P‖(‖z‖2 + 1) + τ(L)|g1(y)|ε21

� − νoa

2λmax(P )
V3 + aτ(L)LpbL̇+ θ∗‖P‖(‖z‖2 + 1) +

aλ2τ(L)L(p−2)b

2

� − νoa

2λmax(P )
V3 + aτ(Lf )L

pbL̇+ θ∗‖P‖ sup
t∈[0,Tf)

‖z(t)‖2 + θ∗‖P‖+ aλ2τ(Lf )max{1, L(p−2)b
f }

2
,

from which, quite similar to the above, we can prove the boundedness of ξ(t) on [0, Tf). Considering the

relation between ε and ξ described by (25) and (8), we directly obtain the boundedness of ε on [0, Tf).

Thus, the proof of Lemma 1 is completed.

4 A simulation example

In this section, an example is given to illustrate the effectiveness of theoretical results for the following

system:
⎧
⎪⎪⎨

⎪⎪⎩

η̇1 = (1 + y2)η2,

η̇2 = u+ θ(η1 + η2),

y = η1 − yr,

(33)

where yr is the signal to be tracked. Suppose θ = 0.8, yr = sin(t).

We can check that system (33) satisfies Assumption 1 with p = 2 and Assumption 2 with θ = 0.8, and

the the reference signal yr satisfies Assumption 3 with θr = 2.

We choose h1(y) = 2.1(1+ y2), h2(y) = 1.2(1+ y2), k1(y) = 1.3(1+ y2) and k2(y) = 1.5(1+ y2). These

functions are suitable since from which solving (5) and (7) with νo = 0.1, νc = 0.2 can yield symmetric

positive definite matrices

P =

[
1.2 −0.3

−0.3 0.5

]

, Q =

[
2.8 0.2

0.2 2.1

]

.

In view of the design procedure developed in Section 2, under the pre-given tracking level λ = 0.1, we

obtain the following dynamical output-feedback controller to system (33):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = −1.3L2(t)(1 + y2)x̂1 − 1.5L(t)(1 + y2)x̂2,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂x1 = (1 + y2)x̂2 + 2.1L(t)(1 + y2)(y − x̂1),

˙̂x2 = u+ 1.2L2(t)(1 + y2)(y − x̂1),

L̇ = max

{
1

L0.02(t)

((

1 +
L0.02(t) + y2

L0.02(t)

)
(
(y − x̂1)

2 + x̂21
)− 0.005

)

, 0

}

, L(0) = 1.

Setting the initial conditions of the closed-loop system by η1(0) = −3.5, η2(0) = −1.5, x̂1(0) = 1.2,

x̂2(0) = −1 and L(0) = 1, the simulation results are shown in Figures 1–4 where the logarithmic X-

coordinates have been adopted to show the transient behavior prominently. These figures show that all

the closed-loop system states are bounded, and especially, Figure 4 shows that the tracking error satisfies

|η1−yr| � 0.1 after about one second, which means that the prescribed tracking performance is achieved.

5 Conclutions

In this paper, the global practical tracking has been accomplished via adaptive output-feedback for a

class of uncertain nonlinear systems with generalized control coefficients. The novelty of work lies in the
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Figure 1 The trajectories of state η1 and η2. Figure 2 The trajectories of state x̂1 and x̂2.
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Figure 3 The trajectory of gain L. Figure 4 The trajectory of the tracking error y.

introduction of a new updating law of high-gain, based on which, a high-gain observer and an adaptive

output-feedback controller have been designed (involved gains are functions of output and time, and

essentially different from the existing related literature). This paper rather extends our earlier result

in [1], while the analysis and proof of our main result are motivated by [3] and different from those

in [1, 2]. It is noteworthy that system (1) is typically representative but far from general: the upper

bounds of the control coefficients are merely polynomials of output, and the system growth linearly relies

on the unmeasurable system states and its growth rate is only a constant. Apparently, the proposed

approach in this paper is inapplicable for the cases where the upper bounds of the control coefficients are

non-polynomials of output, the system growth nonlinearly relies on the unmeasurable system states, or

where the growth rate is function of output. Nevertheless, the proposed approach in this paper provides

insight, for solving the global practical tracking for more general nonlinear systems, as the cases that

have been mentioned for example. This will be attempted in our future research.
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